ESPTR: Radar Basics

Jacek Misiurewicz

April 6, 2009

Jacek Misiurewicz ESPTR: Radar Basics

・ロト ・ 日 ・ ・ ヨ ト

토 > 토

Prototype

Find more wallpapers at www.nationalgeographic.com © 2006 National Geographic Society. All rights reserved. Photograph © Michael & Patricia Fogden/Corbis

Jacek Misiurewicz

ESPTR: Radar Basics

Electromagnetic version

. . .

- 1865 James Clerk Maxwell theory of electromagnetic waves
- 1886 Heinrich Hertz experimental proof
- 1904 Christian Hülsmeyer *Telemobiloskop*: ship collision avoidance apparatus, patented in Germany and UK; demonstration at the Rhine river in Cologne, DE.

1939-1945 Home Chain and other installations

Radar equation

Transmit-reflect-receive-detect: http://commons.wikimedia.org/wiki/File:Radarops.gif Received power: radar *range* equation

$$P_r = \frac{P_t G_t A_r \sigma F^4}{\left(4\pi\right)^2 R_t^2 R_r^2}$$

 P_t transmitter power

- G_t gain of the transmitting antenna $G=4\pi A_{eff}/\lambda^2$
- A_r effective aperture (area) of the receiving antenna
 - $\sigma\,$ radar cross section, or scattering coefficient, of the target
 - F pattern propagation factor
- R_t distance from the transmitter to the target
- R_r distance from the target to the receiver.

2x range $\longrightarrow 2^4 = 16x$ power needed ...

Signal model

Transmit:

$$x_T(t) = A_T(t)e^{j\phi_T(t)}$$

Receive:

$$x_R(t) = A_T(t - R(t)/c)e^{j\phi_T(t - R(t)/c)}$$

simple case: $\phi_{\mathcal{T}}(t) = \omega t + \phi_{\mathcal{M}}(t)$, $R(t) = R_0 + vt$

$$x_R(t) = A_T(t - R_0/c - vt/c)e^{j(\omega(t - R_0/c - vt/c) + \phi_M(t - R_0/c - vt/c))}$$

$$x_{R}(t) = A_{T}(t - R_{0}/c - vt/c)e^{j(\omega t)}e^{-j\omega(R_{0}/c)}e^{-j\omega vt/c}e^{j\phi_{M}(R_{0}/c + vt/c)}$$
$$x_{R}(t) = A_{T}(t - R_{0}/c - vt/c)e^{j\phi_{M}(R_{0}/c + vt/c)}e^{j(\omega t)}e^{-j\omega(R_{0}/c)}e^{-j\omega vt/c}$$

イロン イヨン イヨン イヨン

æ

Detection

 \longrightarrow compare signal with threshold

$$P_r > P_{\textit{noise}} \cdot D \quad \longrightarrow \quad \text{declare a target}$$

with integration (by a matched filter) over t_i seconds

$$\frac{P_t G_t A_r \sigma F^4 t_i B}{(4\pi)^2 R_t^2 R_r^2} > k TBD$$

so the minimum detected object RCS

$$\sigma_{min} = \frac{(4\pi)^2 R_t^2 R_r^2 k T D}{P_t G_t A_r \sigma F^4 t_i}$$

We sometimes express σ in dBsm (dB w.r.t. square meter).

• • E • •

Detection threshold

Maximize P_d (detection), keep P_{fa} (false alarm) low. The threshold D set above:

- Noise (thermal etc)
- Clutter (unwanted echoes)
- Multipath
- Jamming (intentionally malicoius transmitters)
- Interferences (other equipment, e.g. other radars)

Improvements: matched filter (S \uparrow), interference cancellation (C \downarrow) Typical: SNR \approx 13 dB Adaptation: CFAR History Principle Receiver

Noise distribution (complex)

Two-dimensional (imag / real) gaussian distribution

Noise distribution (abs)

< 🗗

≣) ≣

Range measurement

—→signal delay measurement

- Max unambiguous range limited by modulation period
- Min range limited by transmit signal entering the receiver (in pulsed radar)
 - Antenna separation
 - T/R switch + receiver safety (ionised gas + pin diode)

Transmit/receive switch

Make friends with good microwave engineers

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

History Principle Receiver

Receiver input protection

₽

Velocity measurement

 \longrightarrow Doppler shift measurement

 $x_R(t) = A_T(t-R_0/c-vt/c)e^{j\phi_M(R_0/c+vt/c)}e^{j(\omega t)}e^{-j\omega(R_0/c)}e^{-j\omega vt/c}$

- Min velocity: ground/meteo clutter
- Max velocity (frequency): (inverse of) modulation period

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Angle measurement

► azimuth

elevation

Methods

- Scanning: mechanical, electronic
- Monopulse techniques (multielement antenna)
 - Power ratio
 - Sigma-Delta (power)
 - Phased arrays

• • E •