Name:	. 1
	1
ESPTR 2011 – Final Exam 1, version A 16.06.2011	2
	3
Try to write the answer in the provided space. If you need it,	4
put your calculations on an additional sheet.	5
If there are multiple answers for a problem - give one to have	6
full score, give all to have $+1$ bonus point.	1
	8
Y	9
Filter_1 Filter_2 Filter_3	10
	11
	12
Het_1 Het_2	13
	\sum
2. (3 p.) Find the intermediate frequency (IF) and LO frequency whe $F_{image} = 1.9 \; GHz$? Answer: $F_{IF} = $ $F_{LO} = $. Calculations. Calculations of the straight and has length of 3000 m, the other is a bounce off to Rx are 30 m over the flat earth surface. (In case of any doubt, ask the teach blackboard). At which signal frequencies will there be the strongest of Answer: Calculations:	er (Rx) along two paths. The ground. Both Tx and eacher for a sketch on the constructive interference?
4. (8 p.) A 6 GHz radar is located on an airplane, which flies at 1 km a trajectory passing exactly over a radar reflector (assume this moment velocity is 100 m/s. Calculate the frequency received by radar at some the aircraft path, and then sketch the Rx frequency vs. flight time.	as t=0). Airplane linear
5. (5 p.) For a given pulsed radar with 2 kW (peak) transmitter, the small the distance of 100 km has 16 square meters of effective radar cross-sec square meter, at what maximum distance could it be detected?	tion. If the object had 1
6. (4 p.) A signal expected at the digital receiver input is a $N=32$ -samp	le Gaussian pulse.
• Describe the impulse response of a filter required to detect this s	signal in the presence of
white noise. Answer:	

	• Sketch the output signal of this filter when the above signal is present at the input (no noise). What is the response length? Answer:			
	· ·			
	•			
7.	(6 p.) Describe the working principle of ISAR radar system. Hint: start from the idea of Doppler frequency, describe the radar or object movement. Answer:			
8.	(5 p.) An OFDM system is designed to be used for communication in multipath environment with maximum path difference of 1 km. Carrier frequency is $F_c = 2.4 \ GHz$, QPSK is used in subchannels.			
	• Calculate the possible number of subcarriers in 7 MHz band, if the guard intervals occupy 25% of total transmission time. Answer:			
	• Calculate the bit rate in the system (Hint: add 10% overhead for pilots and synchronization). Answer:			
9.	(4 p.) Two users are transmiting 1 W each in an OFDM system at 2.4 GHz carrier. One is stationary and is using even subcarriers, second moves at 72 km/h towards the base station and he is using odd subcarriers.			
	(a) Calculate relative frequency error at the reception of the second user signal (in % of subcarrier spacing which is equal to 1 kHz). Answer:			
	(b) Calculate the amount (power) of ICI caused by this effect (approximate the slope of sin(x) at zero crossing linearly). Answer:			
10.	(3 p.) The duration of 148 bits transmitted in a GSM time slot is equal to 0.546ms while the time slot lasts for 0.577ms (so some part of the slot is wasted). What is the reason of this duration difference?			
11.	(3 p.)Does the near-far problem occur in CDMA uplink (userbase) or downlink (baseuser) transmission? Describe this problem closer.			
12.	(3 p.) What are the roles of two antennas in a passive (parasitic) radar?			
13.	(3 p.) How can all users in an ideal TDMA system share the same band? Answer:			

Name:	_		1
		1	
ESPTR 2011 – Final Exam 1,	version B 16.06.2011	2	
,		3	
Try to write the answer in the pro-	vided space. If you need it,	4	:
put your calculations on an additi-	onal sheet.	5	
If there are multiple answers for a	problem - give one to have	6	
full score, give all to have $+1$ bonu	is point.	$\overline{}$	
		8	
\vee		9	
Filter_1		$\overline{10}$	
Filter_2	Filter_3	11	
		$\overline{12}$	}
		13	
Het_1	Het_2	$\frac{1}{\sum}$	
1. (4 p.) A dual conversion receiver	idea is sketched above. Fr	$g_F = 970 \; MHz, \; F_F$	$_{net1} = 820 MHz,$
$F_{Filter3} = 30.7 MHz$ Choose the r			
properly. Answer: $F_{Filter1} =$	$F_{Eilton2} =$	$F_{hot2} = $] ' '
r r J J Letter I) 1 666012	j) 11002	_
3. (2 p.) The signal propagates from One path is straight and has lengt Rx are 30 m over the flat earth surblackboard). At which signal free Answer: Calculations:	h of 6000 m, the other is a largace. (In case of any doubt	bounce off the grounds, ask the teacher for strongest construct	nd. Both Tx and or a sketch on the cive interference?
4. (8 p.) A 9 GHz radar is located trajectory passing exactly over a velocity is 100 m/s. Calculate the the aircraft path, and then sketch	radar reflector (assume the frequency received by rad	is moment as $t=0$). ar at some (e.g. 5)	. Airplane linear
5. (5 p.) For a given pulsed radar w the distance of 100 km has 16 sq object would be detected at 25 km	uare meters of effective rac m?	dar cross-section. V	What size (RCS)
6. (4 p.) A signal expected at the di $cos(2\pi n/N)$ pulse.	gital receiver input is a N	= 64-sample raised	cosine $1/2 \cdot (1 +$
• Describe the impulse respon	se of a filter required to d	letect this signal in	the presence of

white noise. Answer:....

	• Sketch the output signal of this filter when the above signal is present at the input (no noise). What is the response length? Answer:
	· ·
7.	(6 p.) Describe the working principle of ISAR radar system. Hint: start from the idea of Doppler frequency, describe the radar or object movement. Answer:
8.	(5 p.) An OFDM system is designed to be used for communication in multipath environment with maximum path difference of 2 km. Carrier frequency is $F_c = 2.4~GHz$, QPSK is used in subchannels.
	• Calculate the possible number of subcarriers in 7 MHz band, if the guard intervals occupy 25% of total transmission time. Answer:
	• Calculate the bit rate in the system (Hint: add 10% overhead for pilots and synchronization). Answer:
0	
9.	(4 p.) Two users are transmiting 1 W each in an OFDM system at 2.4 GHz carrier. One is stationary and is using even subcarriers, second moves at 108 km/h towards the base station and he is using odd subcarriers.
	(a) Calculate relative frequency error at the reception of the second user signal (in % of subcarrier spacing which is equal to 1 kHz). Answer:
	(b) Calculate the amount (power) of ICI caused by this effect (approximate the slope of sin(x) at zero crossing linearly). Answer:
10.	(3 p.) The duration of 148 bits transmitted in a GSM time slot is equal to 0.546ms while the time slot lasts for 0.577ms (so some part of the slot is wasted). What is the reason of this duration difference?
11.	(3 p.)Does the near-far problem occur in CDMA uplink (userbase) or downlink (baseuser) transmission? Describe this problem closer.
12.	(3 p.) What are the roles of two antennas in a passive (parasitic) radar?
13.	(3 p.) How can all users in an ideal FDMA system share the same time slot? Answer: