ESPTR
 (English)
 Signal Processing in Telecommunications and Radar

Jacek Misiurewicz
e-mail: jmisiure@elka.pw.edu.pl
Institute of Electronic Systems
Warsaw University of Technology
Warsaw, Poland

ESPTR: General information

"Credits"	$2 \mathrm{~h} /$ week lecture $+2 \mathrm{~h} /$ week project.
Lecture	Thursday, 08:15-10(Possible move to Tue, 08:15-10, probably room 122) Team: dr J. Misiurewicz, dr K. Kulpa, mgr M. Malanowski
Contact	J. Misiurewicz, (jmisiure@elka.pw.edu.pl) room 447. A web page is still expanding (http://staff.elka.pw.edu.pl//jmisiure/esptr)
Projects	Simulation of a selected mechanism or technique. Two projects ("R" - Radar, due mid-term, "T" - Telecomm, due before end of term), each with two stages: 1. definition, 2. final. Environment: Matlab or Octave, C/C++ (selected projects), other (special projects).
Exam	A final exam during the session
	$\begin{array}{cl} 5 \% & \text { proj. R1: definition } \\ +\quad 20 \% & \text { proj. R2: final } \end{array}$
Scoring:	+ 5\% proj. T1: definition
Scoring:	$+20 \%$ proj. T2: final
	$=50 \%$ Project total
	$=50 \%$ exam

Plan

- Some basics: frequency conversions, sampling\&D/A, digital processing
- Radio channel, propagation, software radio, directional reception
- Radar basics, pulsed/CW radar, special radars
- Digital broadcasting and reception: DAB, DVB
- Cellular systems up to UMTS, structure, modulations, receivers

Basics: sampling

- ideal sampling
- non-ideal sampling: model as LP filter(conv)+sampling(mul), integrating AD converter case (multimeter)
- Nyquist sampling
- undersampling of narrowband signals (ideal and non-ideal case)
- reconstruction (ideal and nonideal)
- Oversampling to ease the antialiasing filter design

The Sampling Theorem

Named also after:

- 1915 Edmund T. Whittaker (UK)
- 1928 Harry Nyquist [ny:kvist] (SE) \longrightarrow (US)
- 1928 Karl Küpfmüller (DE)
- 1933 Vladimir A. Kotelnikov (USSR)
- 1946 Gábor Dénes (HU) \longrightarrow Dennis Gabor (US)
- 1949 Claude E. Shannon (US)
- Cardinal Theorem of Interpolation Theory

Nyquist frequency, Nyquist rate

Sampling: bandlimited signal (aliasing problem)
Moiré pattern - as seen on TV, an exmaple of too low sampling frequency.

Reconstruction

Reconstruction: interpolation, (sinus cardinalis sinc $=\mathrm{Sa}=\frac{\sin (\pi \mathrm{x})}{\pi \mathrm{x}}=\mathrm{j}_{0}(\pi \mathrm{x})$)

$$
x(t)=\sum_{n=-\infty}^{\infty} x[n] \cdot \operatorname{sinc}\left(\frac{t-n T}{T}\right)
$$

lowpass filtering (Küpfmüller filter) (DE)

$$
x(t)=\left(\sum_{n=-\infty}^{\infty} x[n] \cdot \delta(t-n T)\right) * \operatorname{sinc}\left(\frac{t}{T}\right)
$$

Bandpass sampling

(sometimes called "undersampling")
Bandwidth less than $f_{s} \longrightarrow$ e.g. a signal in the band $N f_{s} \pm 0.5 f_{s}$
Antialiasing filter: bandpass!
Reconstruction: with bandpass filter!
The influence of non-ideal sampling (system bandwidth) \longrightarrow unwanted lowpass filter.
Sampling jitter problem: present with Nyquist sampling, much sharper with bandpass sampling. (steeper slope of the signal at the sampling point...)

A/D noise

Quantization Noise

$$
\begin{equation*}
V_{Q}=V_{1}-V_{i n} \text { or } V_{1}=V_{i n}+V_{Q} \tag{8}
\end{equation*}
$$

A/D noise

Quantization Noise

- Above model is exact
- approx made when assumptions made about V_{Q}
- Often assume V_{Q} is white, uniformily distributed number between $\pm V_{\text {LSB }} / 2$

A/D SNR

Noise amplitude: $q / 2$, assumed uniformly distributed $\longrightarrow \sigma_{n}^{2}=\frac{q^{2}}{12}$ (power).
Each extra bit gives $2 x$ smaller $q \longrightarrow 6.02 \mathrm{~dB}$ less noise.
SNR with assumption that "signal" is a maximum-amplitude ($V_{p p}=2^{N} \cdot q$, and $\operatorname{power}($ sinusoid $\left.)=\left(V_{p p} / 2\right)^{2} / 2\right)$ sinusoid:

$$
\begin{aligned}
S N R & =10 \log _{10} \frac{\text { signal power }}{\text { noise power }}[d B]=10 \log _{10} \frac{\left(2^{N} q\right)^{2} /\left(2 \cdot 2^{2}\right)}{q^{2} / 12}[d B]= \\
& =10 \log _{10}\left(1.5 * 4^{N}\right)[d B]=1.76+6.02 \cdot N[d B]
\end{aligned}
$$

Oversampling

- More space for transition band of antialiasing filter (A/D) or reconstruction filter (D/A)
- (AD) later we may LP filter and downsample signal: we gain 1 bit of accuracy for a 4-sample average; more gain with noise shaping \longrightarrow sigma-delta converters (not discussed further at ESPTR)

D/A

- speed
- bits
- nonidealities

