Advanced RADAR techniques

- SAR + GMTI
- ISAR
- IfSAR (InSAR)
- GPR
- Noise radar
- Passive radar (coherent + radiometric)

Secondary radars and similar systems:
- IFF
- AIS
- ILS
Antenna size and beam width

\[\sin \frac{\alpha}{2} = \frac{\lambda}{l} \]

\(l = 1 \text{ m} \)
\(F = 10 \text{ GHz} \)
\(\alpha \approx 3^\circ \)

\(3^\circ \ @ \ 100 \text{ km} \approx 6 \text{ km} \)
SAR technique
SAR – angle & Doppler

- SAR – Earth surface mapping
 - Doppler frequency changes with angle
 - Low-pass filtering = unfocused SAR (one filter for all distances)
 - Matched filtering = focused SAR (filter changes with distance!)
- STAP/GMTI – moving target detection with SAR
- SAR combined with Direction of Arrival = STAP (N antennas, 2D processing!) -> GMTI
• Inverse SAR
• imaging a moving (e.g. rotating) object: ship on waves, rotating satellite, aircraft in turn
• TIRA: 34m antenna for satellite imaging
TIRA radar image of ADEOS with overlayed wiregrid model and the results of intrinsic motion and damage analysis.
Should be like this...
range: 693 km
IfSAR (InSAR)
ex:SRTM mission

add third dimension to SAR
Two antennas -> phase difference
SRTM: 60m boom
Ground Penetrating Radar

- Check before you dig...
- De-mining

Technology:
- As LF as possible (penetration)
- ... as WB as possible (depth resolution)
- SAR (along-track resolution)
- ground bounce and multi-bounce problems
Noise radar

- Noise can fill wide band = good resolution
- Pin-type autocorrelation function = low ambiguity
- Long integration time possible
- Good compatibility
- Nonspecific signal = low probability of intercept (LPI) = covert operation

Problems:
- near-far echo
- moving target (Doppler, stretch)
- computational complexity
Daventry experiment (passive radar)

Two receiving aerials fed into a sensitive mobile receiver connected to an oscilloscope. The equipment had been rigged inside a van to detect any echoes that were bounced back from the aeroplane. After careful adjustment, the results were dramatic; 'blips' appeared on the screen at distances of up to eight miles.

The BBC had a powerful short-wave transmitter Station near Daventry, the Empire Radio Station, with a power output of 10 kW. The wavelength was 49m and the continuous beam was about 30 degrees wide and with a 10 degree elevation. Hadley Page Heyford bomber made a number of passes at differing altitudes from 6000 ft down to 1000 ft.

26th February, 1935
Arnold Wilkins (as operator), A.P. Rowe and Robert Watson Watt.

Two receiving aerials fed into a sensitive mobile receiver connected to an oscilloscope. The equipment had been rigged inside a van to detect any echoes that were bounced back from the aeroplane. After careful adjustment, the results were dramatic; 'blips' appeared on the screen at distances of up to eight miles.
Passive radar (coherent)

- Uses audio/tv/cellular *transmitters of opportunity*
- Correlation receiver (two antennas)
- Problem with direct signal & near/far
- Direction finding – more receivers (or more transmitters)
Radiometric techniques (totally passive)

- Natural thermal emission of the scene (passive)
- Noise-like illuminator (active)
- Millimeter wavelengths (good resolution)
 - Concealed weapon detection (CWD) - even non-metallic objects (ceramic weapons and potentially plastic explosives) can be detected
- Detection of immigrants in soft-sided vehicles
DOA (ESM) systems

- Direction Of Arrival – measuring objects own transmission
- locate emitters by triangulation (angles) or multilateration (TDoA – Time Difference of Arrival)
 --> multisite operation!
- „Kolchuga” (UA), „Vera” (CZ)
IFF (SSR)

Identification Friend or Foe (mil.)
or Secondary Surveillance Radar (civ.)

- To shoot or not to shoot?
- Who is it?
- Radar equation \(\frac{1}{R^4}\) vs. \(\frac{1}{R^2}\)
- Altitude measurement problem

Technology: transponder, 2- channels

- 1030 MHz interrogation
- 1090 MHz reply

Required for all the aircrafts flying above some limit.
B-68. Interrogator krótkiego zasięgu zamontowany na przenośnej wyrzutni przeciwlotniczych pocisków rakietowych.
IFF with prim. radar
IFF Modes

• Mode 1: 64 codes, (mil ATC): type of aircraft or mission
• Mode 2, (mil ATC) 4096 "tail numbers"
• Mode 3/A (civ. ATC - squawk code):
 • instrument flight rules – unique A/C codes.
 • G/A A/C under visual flight rules - common code 1200.
• Mode C: aircraft altitude (usually alt.with 3/A)
 • special codes for emergency/hijack etc.
• Mode S ("selective")
 • Duplex data link
 • More flight params sent down
• ADS-B (Automatic Dependent Surveillance – Broadcast)
 – reply w/o question
AIS

Automatic Identification System

- VHF (156-162 MHz)
- GPS/GLONASS position, course, maneuvering – every 2 to 10 s (underway), 3 min (anchor)
- various status info (cargo, destination) - every 6 min
- more accuracy, more info than radar
- incl. safety-related messages
• safe landing under bad visibility
• modulation depth
• 108-112 MHz