CW (Continuous Wave) radar

• Radar equation:

$$P_r = \frac{P_t G_t A_r \sigma F^4}{\left(4\pi\right)^2 R_t^2 R_r^2}$$

Pulse radar: power transmitted in pulses (easy range measurement, but $P_{peak} \gg P_{mean}$)

CW radar: power transmitted continuously (easier for a solid state transmitter, $P_{peak} \approx P_{mean}$)

- CW problems:
 - receive during transmit
 (2 antennas or some tricks necessary)
 - how to measure distance with CW ? 100% overlap of echoes \rightarrow time encoding on CW needed

Police radar

- Very simple design mixer is the 1st stage (single antenna possible!)
- Bands:
 - X (~10GHz)
 - K (~24 GHz)
 - Ka (~34 Ghz)
- Doppler freq: few kHz
 - c = 30000000 [m/s]
 - v=100[km/h] = 27.778 [m/s]

 $\lambda = c/24e9 = 0.012500 [m]$

 $2*v/\lambda = 4444.4$ [Hz]

Simple head design example

FMCW radar

Measure distance: waveform coding

- correlation receiver (or some tricks)

• LFM trick: a simple solution to processing $\uparrow^{f(t)}$

FMCW – two antennas

FMCW processing

- Range = difference frequency
 - FFT as the correlation receiver!
 - range gain steering = HP filter
- Velocity (Doppler) = phase drift between sweeps
 - second FFT for velocity distinguishing
- Range-Doppler plane

Range & Doppler FFT

Range-Doppler plane

Fast targets

 Doppler freq. adds to range freq. (problem!)

Grand designs

Other FMCW applications

- Radar altimeter
- Anti-collision radar
- Level meters
- microdoppler:
 - human detection
 - object classification