ESPTR: Radar Basics

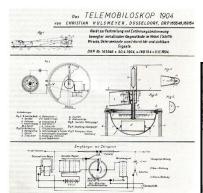
Jacek Misiurewicz

March 31, 2015

Prototype

RADAR - echolocation

RAdio Detection And Ranging detection—transmit some energy and watch it return ranging—and measure the round-trip time


Electromagnetic version

- 1865 James Clerk Maxwell theory of electromagnetic waves
- 1886 Heinrich Hertz experimental proof
- 1904 Christian Hülsmeyer *Telemobiloskop*: ship collision avoidance apparatus, patented in Germany and UK; demonstration at the Rhine river in Cologne, DE.

...

1939-1945 Chain Home, Klein Heidelberg and other installations

Telemobiloskop

Chain Home

Frequency:	20 to 30 MHz
Peak Power:	350 kW (750 kW)
p.r.f.:	25 and 12.5 p.p.s.
Pulse Length:	20 us

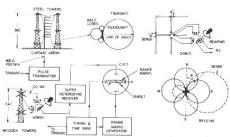
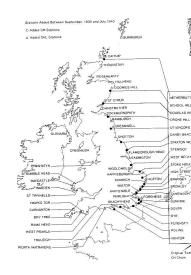
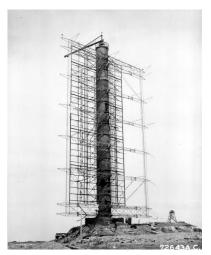




Fig. 1. Principles of CH (Chain Home) R.D.F. system

Klein Heidelberg Parasit

Range 400 km, accuracy 1 - 2 km and 1 degree

Radar equation

Transmit-reflect-receive-detect:

http://commons.wikimedia.org/wiki/File:Radarops.gif

Received power: radar range equation

$$P_r = \frac{P_t G_t A_r \sigma F^4}{(4\pi)^2 R_t^2 R_r^2}$$

 P_t transmitter power

 G_t gain of the transmitting antenna $G=4\pi A_{eff}/\lambda^2$

 A_r effective aperture (area) of the receiving antenna

 σ radar cross section, or scattering coefficient, of the target

F pattern propagation factor

 R_t distance from the transmitter to the target

 R_r distance from the target to the receiver.

 $2x \text{ range } \longrightarrow 2^4 = 16x \text{ power needed } \dots$

Signal model

Transmit:

$$x_T(t) = A_T(t)e^{j\phi_T(t)}$$

Receive:

$$x_R(t) = A_T(t - R(t)/c)e^{j\phi_T(t - R(t)/c)}$$

simple case: $\phi_T(t) = \omega t + \phi_M(t)$, $R(t) = R_0 + vt$

$$\mathbf{x}_{R}(t) = A_{T}(t - R_{0}/c - vt/c)e^{j(\omega(t - R_{0}/c - vt/c) + \phi_{M}(t - R_{0}/c - vt/c))}$$

$$x_R(t) = A_T(t - R_0/c - vt/c)e^{j(\omega t)}e^{-j\omega(R_0/c)}e^{-j\omega vt/c}e^{j\phi_M(t - R_0/c - vt/c)}$$

$$\mathbf{x}_{R}(t) = A_{T}(t - R_{0}/c - vt/c)e^{j\phi_{M}(t - R_{0}/c - vt/c)}e^{j(\omega t)}e^{-j\omega(R_{0}/c)}e^{-j\omega vt/c}$$

Baseband:

$$x_{R}(t) = A_{T}(t - R_{0}/c - vt/c)e^{j\phi_{M}(t - R_{0}/c - vt/c)} \qquad e^{-j\omega(R_{0}/c)}e^{-j\omega vt/c}$$

Signal model

Transmit:

$$x_T(t) = A_T(t)e^{j\phi_T(t)}$$

Receive:

$$x_R(t) = A_T(t - R(t)/c)e^{j\phi_T(t - R(t)/c)}$$

simple case: $\phi_T(t) = \omega t + \phi_M(t)$, $R(t) = R_0 + vt$

$$x_R(t) = A_T(t - R_0/c - vt/c)e^{j(\omega(t - R_0/c - vt/c) + \phi_M(t - R_0/c - vt/c))}$$

$$x_R(t) = A_T(t - R_0/c - vt/c)e^{j(\omega t)}e^{-j\omega(R_0/c)}e^{-j\omega vt/c}e^{j\phi_M(t - R_0/c - vt/c)}$$

$$x_R(t) = A_T(t - R_0/c - vt/c)e^{j\phi_M(t - R_0/c - vt/c)}e^{j(\omega t)}e^{-j\omega(R_0/c)}e^{-j\omega vt/c}$$

Baseband:

$$x_R(t) = A_T(t - R_0/c - vt/c)e^{j\phi_M(t - R_0/c - vt/c)}$$
 $e^{-j\omega(R_0/c)}e^{-j\omega vt/c}$

Signal model

Transmit:

$$x_T(t) = A_T(t)e^{j\phi_T(t)}$$

Receive:

$$x_R(t) = A_T(t - R(t)/c)e^{j\phi_T(t - R(t)/c)}$$

simple case:
$$\phi_T(t) = \omega t + \phi_M(t)$$
, $R(t) = R_0 + vt$

$$x_R(t) = A_T(t - R_0/c - vt/c)e^{j(\omega(t - R_0/c - vt/c) + \phi_M(t - R_0/c - vt/c))}$$

$$x_R(t) = A_T(t - R_0/c - vt/c)e^{j(\omega t)}e^{-j\omega(R_0/c)}e^{-j\omega vt/c}e^{j\phi_M(t - R_0/c - vt/c)}$$

$$x_R(t) = A_T(t - R_0/c - vt/c)e^{j\phi_M(t - R_0/c - vt/c)}e^{j(\omega t)}e^{-j\omega(R_0/c)}e^{-j\omega vt/c}$$

Baseband:

$$x_R(t) = A_T(t - R_0/c - vt/c)e^{j\phi_M(t - R_0/c - vt/c)} \qquad e^{-j\omega(R_0/c)}e^{-j\omega vt/c}$$

Detection

→compare signal with threshold

$$P_r > P_{noise} \cdot D \longrightarrow \text{declare a target}$$

with integration (by a matched filter) over t_i seconds

$$\frac{P_t G_t A_r \sigma F^4 t_i B}{(4\pi)^2 R_t^2 R_r^2} > kTBD$$

so the minimum detected object RCS

$$\sigma_{min} = \frac{(4\pi)^2 R_t^2 R_r^2 kTD}{P_t G_t A_r F^4 t_i}$$

We sometimes express σ in dBsm (dB w.r.t. square meter).

Detection threshold

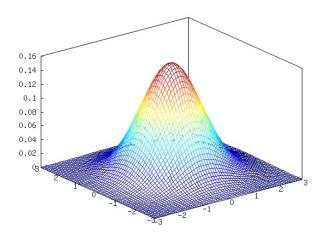
- $x(t) < D \longrightarrow H_0$ Hypothesis 0: only noise
- $x(t) > D \longrightarrow H_1$ Hypothesis 1: noise + signal

Maximize P_d (detection), keep P_{fa} (false alarm) low.

The threshold *D* set above:

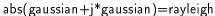
- ► Noise (thermal etc)
- Clutter (unwanted echoes)
- Multipath
- Jamming (intentionally malicious transmitters)
- ► Interferences (other equipment, e.g. other radars)

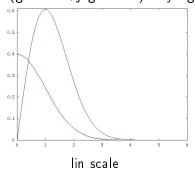
Improvements: matched filter (S \uparrow), interference cancellation (C \downarrow)

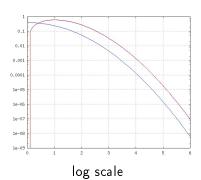

Typical: SNR \approx 13 dB Adaptation: CFAR


Noise and clutter

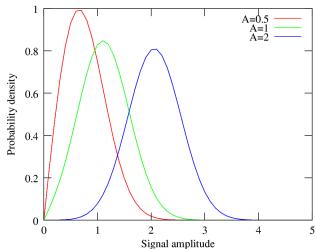
You can fight noise, jamming and interferences by using more power or better matched filtering.
You cannot fight clutter or multipath this way.

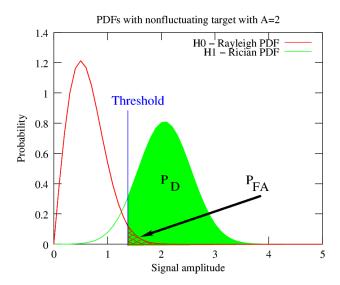

H0: Noise distribution (complex)




Two-dimensional (imag / real) gaussian distribution

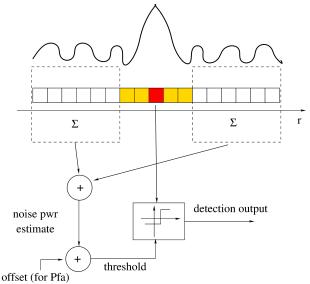
H0: Noise distribution (abs)

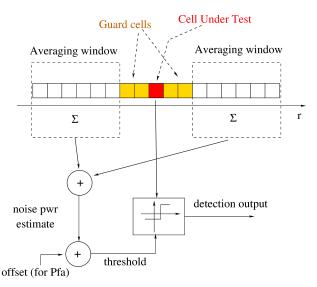


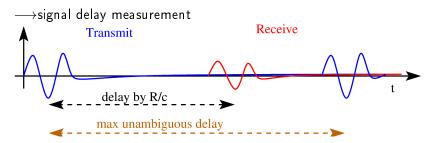


H1: Signal + noise distribution (abs)

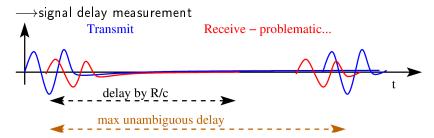
abs((gaussian+j*gaussian)+constant A)=rician
Rician PDF with s=0.5


Neyman-Pearson detector

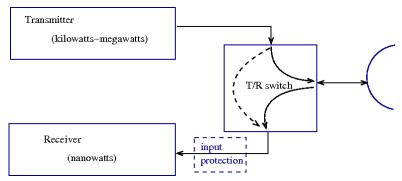

Neyman-Pearson detector


CFAR- Constant False Alarm Rate

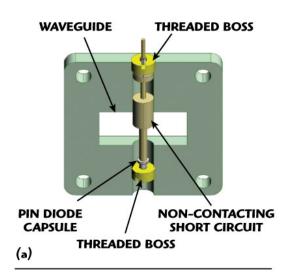
CFAR- Constant False Alarm Rate


Range measurement

- Max unambiguous range limited by modulation period
- Min range limited by transmit signal entering the receiver (in pulsed radar)
 - Antenna separation
 - ► T/R switch + receiver safety (ionised gas + pin diode)


Range measurement

- ► Max unambiguous range limited by modulation period
- Min range limited by transmit signal entering the receiver (in pulsed radar)
 - Antenna separation
 - ► T/R switch + receiver safety (ionised gas + pin diode)



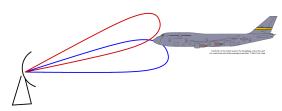
Transmit/receive switch

Make friends with good microwave engineers . . .

Receiver input protection

Velocity measurement

→ Doppler shift measurement


$$x_R(t) = A_T(t - R_0/c - vt/c)e^{j\phi_M(R_0/c + vt/c)}e^{j(\omega t)}e^{-j\omega(R_0/c)}e^{-j\omega vt/c}$$

- ► Min velocity: ground/meteo clutter
- ► Max velocity (frequency): inverse of modulation period (PRI)

Angle measurement

- azimuth
- elevation

Methods

- Scanning: mechanical, electronic
- Monopulse techniques (multielement antenna)
 - Power ratio
 - Sigma-Delta (power)
 - Phased arrays

