
Fractal-based hierarchical mip-pyramid texture compression

J. Stachera and P. Rokita
Institute of Computer Science, Warsaw University of Technology, Poland

October 16, 2006

Abstract. As the level of realism of computer generated images increases with the number and resolu-

tion of textures, we are faced with the problem of limited hardware resources. Additionally, the filtering

methods require multiple accesses and extra memory space for the texture representation, thus severely

reducing the memory space and bandwidth, the most common example being mip-mapping technique.

We propose a hierarchical texture compression algorithm for real-time decompression on the GPU. Our

algorithm is characterized by low computational complexity, random access and hierarchical structure

which allow us to access first three levels of encoded mip-map pyramid. The hierarchical texture com-

pression algorithm HiTC is based on block-wise approach, where each block is subject to local fractal

transform and further effectively coded by one level of Laplacian Pyramid.

Key words: Texture compression, fractal compression, Laplacian pyramid, mip-mapping

1. Introduction

The computer generated scenery composed of wire-frame models was the first step into
the virtual world. The models could only reflect the 3D structure of objects and were
devoid of any other form of visual information. That was changed by the introduction of
texture mapping techniques. Textures in their basic form are images which are applied
upon 3D wire-frame models. When mapped onto an object surface, the color of the
object surface is modified by the corresponding color from the texture. In general, the
process of texture mapping takes several steps. Since textures are represented by an
array of discrete samples, a continuous image must first be reconstructed from these
samples. In the next step, the image must be warped to match any distortion and
filtered to remove high-frequency aliasing artefacts. In most cases, the filtering is done
by mip-mapping [3], which introduces additional memory cost in the form of texture
pyramid.
Current applications of textures are much wider and textures are used to control most of
the visual parameters of the object surfaces such as transparency, reflectivity, bumpiness,
roughness. This greatly increases the realism of the virtual objects and pushes the
hardware resources to the limits. To simulate the real world at the interactive frame
rate, it is necessary to have fast and random access to a large number of high resolution
detailed textures. Thus, the bandwidth and storage requirement for textures introduces
the need to use more efficient texture compression methods.

Machine GRAPHICS & VISION vol. , no. , pp. 12

2 Fractal-based hierarchical mip-pyramid texture compression

2. Problem definition

Although a texture can be regarded as a digital image, most of the classical image com-
pression algorithms can not be applied to textures. There is a strong need for efficient,
highly specialized texture compression algorithms. According to Beers et al. [9] and our
findings [30] when designing a texture compression algorithm the following aspects must
be taken into consideration:
Decoding speed. It is the most important feature which allows for rendering directly from
the compressed texture. As the texture compression is mainly used in real time com-
puter graphics the decompression algorithm must be designed to allow high frame-rate.
Random access. Since the mapping process introduces discontinuous texture access in
the texture space, it is difficult to know in advance how the texture will be accessed.
Thus, the methods which may be considered for fast random access are based on fixed
length codes.
Hierarchical representation. To deal efficiently with level of detail and mip-map tex-
ture representations this requirement must be fulfilled. Hierarchical structure allows for
rendering directly from the compressed texture represented on number of different reso-
lution levels.
Compression rate and visual quality. The difference between textures and images is that
the images are viewed on their own and they are presented in the static content, while
the textures are the part of the scene which usually changes dynamically. Thus, the loss
of information in texture compression is more acceptable and the compression ratio is
more important issue.
Encoding speed. Texture compression is an asymmetric process, in which the decompres-
sion speed is crucial and the encoding speed is useful but not essential.

3. Previous work

All the existing texture compression algorithms can be divided into three major groups:
block truncation coding (BTC) and local palettes, vector quantization (VQ) and trans-
form coding.

3.1. Block Truncation Coding and Local Palettes

Introduced by Delph and Mitchel [1], Block Truncation Coding (BTC) has become the
standard for the many real-time texture compression methods implemented in hardware
[13][24][28]. The method gained its popularity due to simple decoding algorithm. In BTC
the image is divided into uniform grid of 4x4 blocks where each block is represented by
fixed number of greyscale values and index map to reference the values for block pixels.
An extension of BTC (called Color Cell Compression CCC) to color images was proposed
by Campbell et al. [4]. The block was represented by index map but the color values

Machine GRAPHICS & VISION vol. , no. , pp. 12

J. Stachera and P. Rokita 3

were stored in a color palette which was shared by all image blocks. The drawbacks of
CCC were indirect data access and color banding. The CCC problems were effectively
addressed by S3TC, which is based on the concept that most of the natural image block
colors lie close to the line in RGB color space. Although the texture quality of S3TC is
significantly better than CCC and BTC, it shares the problem of block artefacts typical
to BTC methods and in some cases false color due to linear color interpolation. A
number of solutions were proposed to tackle those problems, a good examples being:
color distribution [19], sub-palettes [21], low frequency signal modulation [24] and others
[23][28].

3.2. Vector Quantization

The pioneered work of Beers et al. which gives fundamentals for texture image com-
pression, was also the first which used vector quantization for image compression and
stored texture representation in the hierarchical structure [9]. This representation was
able to represent first three levels of mip-map pyramid at 1bpp. Based on the remarks
made by Beers in his paper [9], Kwoon applied the Interpolative Vector Quantization
(IVQ) to compress whole mip-map pyramid [20]. The resulted code was comprised of two
codebooks for image AC and DC component and requires additional memory accesses.
Completely different approach was taken by Tang et al. where the codebook was repre-
sented by image blocks chosen by taking into account such issues as visual importance
and texture mapping distortions [29].

3.3. Transform coding

The most common transform method used in image compression which was applied to
textures was Discrete Cosine Transformation (DCT). It was used in Talisman Texturing
System (TREC) [10] and in Image Processing Unit (IPU) of Playstation [15]. In the case
of TREC random access to compressed data required index tables and linked lists. More
elaborate scheme was proposed by Chen and Lee [17]. They encoded DCT 8x8 blocks
to fixed length code using a form of adaptive quantization. That allowed for random
access without the use of dynamic structures. Pereberin proposed a method based on
Haar wavelet transform [14] to represent three levels of mip-map pyramid. Mapping the
4x4 texture blocks to YUV color space and reducing the insignificant coefficients allows
him to achieve moderate compression ratio of 4bpp and random access to texture data.

3.4. Problems

The general problem with BTC based methods is that they do not address the problem
of mip-mapping (Figure 5). It results in additional decompression units when applied to
hierarchical structures such as mip-maps. The problem is partially solved in transform
methods, where wavelet transform is used. But the compact representation of wavelets

Machine GRAPHICS & VISION vol. , no. , pp. 12

4 Fractal-based hierarchical mip-pyramid texture compression

which ensure high compression ratios is based on the variable length code. Moreover, the
decompression process needs tree walk procedures [27], thus requiring intensive memory
communications. It is not clear how to reduce the insignificant coefficient of wavelet
transform to obtain the random access without severely reducing the compression ratio
[14]. In the case of VQ methods which are also the basis of some of the GPU compression
methods, the problem is with the indirect data access and codebook handling. Each
reference to the texel requires at least two memory transactions (one to read index and
another to read the data). The problem is especially magnified in the methods which
use more than one codebook [20][26][29].

4. Hierarchical Texture Compression

As the level of detail representation and filtering based on mip-mapping technique is
ubiquitous in real-time applications, it is needed for textures to have a form of hierarchi-
cal structure. We propose a new algorithm for hierarchical texture compression (HiTC)
with the implementation on the GPU. The next section will briefly introduce the main
concepts of fractal image compression related to our work (IFS, PIFS and no search
fractal methods).

4.1. Fractal Compression

The main principle of fractal image compression is to represent an image by a contractive
transformation which fixed point is close to that image. The first fully automatic fractal
compression method was introduced by Jacquin as an extension of IFS [5], which was
called PIFS (Partitioned Iterated Function System) [6]. The difference between IFS
and PIFS is that it the case of PIFS the individual mapping operates on the subset of
the image rather than on the entire image. Thus, to encode the image Jacquin defined
two types of blocks: range blocks and domain blocks. Formally, let I be an encoded
image. A set R of non-overlapping range blocks R̂ = {R0, R1, ..., Rn}, Ri ∩ Rj = ∅
that tile I, I =

⋃n
i=0 Ri is called range pool. A set D of overlapping domain blocks

D̂ = {D0, D1, ..., Dn} is called domain pool Di ∈ I. A set W is consisted of contractive
transformation which for each range block R maps on its corresponding domain block
D, wi : Di → R. The most expensive operation in the fractal compression is the
searching part where for each range block R ∈ R̂ we seek to find the best domain block
D ∈ D̂, minimize the error E(R,D). A number of papers were proposed to address
this problem [16]. But, there was considerably less research done on the fast fractal
decompression methods which are especially important in real-time texture mapping
applications. Turner [22] examined the fractal properties in the process of the texture
mapping. The decompression process in Turner algorithm is applied to the transformed
texture in the image space and is based on the iterative decoding method. The use of

Machine GRAPHICS & VISION vol. , no. , pp. 12

J. Stachera and P. Rokita 5

iterative method in texturing has potential disadvantages: the process needs buffering
of intermediate texture images, the number of iteration is variable for different images,
viewing only a part of the texture requires decoding full texture.

4.2. Design of Hierarchical Texture Compression algorithm (HiTC)

Taking into account the aspects of texture compression (section 2) we divided the design
process of hierarchical texture compression algorithm into several steps, which comprised:
partitioning scheme, parameters selection, parameters coding and color space selection.

4.2.1. Partitioning scheme

We chose the fixed size square blocks which can be represented by the fixed length code
and thus allows for random access. The domain range relation which is similar to fractal
coding based on IFS [5](Figure 1a). The difference is that we compress each texture block
independently. Thus, it is IFS coding on the block basis [7] as opposed to Jacquin PIFS
[6] where the domain block could be referenced from the whole image. In the proposed
fixed partitioning scheme we restrict the domain block size to 4x4 pixels (Figure 1c).
The domain block size of 4x4 pixels can achieve better reconstruction quality than bigger
blocks used with fixed partitioning [7]. Moreover, the texture block can be represented
more compactly, thus reducing the number of accesses for compressed texture block data.
The domain range relation in our scheme is: D = R0 ∪ R1 ∪ R2 ∪ R3 (1). Thus, the
domain block is represented by the union of four range blocks.

R0 R1

R2 R3

 D

4x4

a) Proposed b) Block c) Texture

Fig. 1. The domain range relation (a) and Code representation (b,c)

4.2.2. Parameters selection

Because of the strong correlation of contrast scaling si and luminance offset oi in standard
transform [6]: R̃ = wi(D) = siϕ(D) + oi (2) it is difficult to find optimal bit allocation
for those parameters. Oien and Lepsoy [8] and later on Pi et al. [25] advocated to replace
the luminance offset oi by range block mean r̄. Thus, replacing oi with r̄−sd̄ in standard
affine transform (equation 2), resulted in: R̃ = wi(D) = siϕ(D− d̄)+ r̄iU (3) and in the
error expression: E(R, D) =‖ R − s(D − d̄U) − r̄U ‖2= ∑

(rij − sϕ(dij − d̄) − r̄i)2 (4)

Machine GRAPHICS & VISION vol. , no. , pp. 12

6 Fractal-based hierarchical mip-pyramid texture compression

where the parameters s and r̄ are pre-quantized. Thus, each range block R ∈ R̂ is
represented by: {s, r̄, id, jd} (5). Due to the block size restriction, equal to D = 2B and
proposed partitioning scheme, the spatially contracted domain block is stored in our code
in the form of range block means: ϕ(D) = r̄0 ∪ r̄1 ∪ r̄2 ∪ r̄3 (6) (Figure 1b). Therefore,
the only parameter in the decoding phase (equation 3) which needs iteration is domain
average d̄. In our algorithm, we store this average as a part of our code, making our
algorithm non-iterative. Each texture compressed block in our scheme is represented
by four range blocks affine parameters (Figure 1a): W = {{wi}3i=0, d̄}, wi = {s, r̄} (7).
It should be noted, that in our algorithm the compressed texture block constitutes the
domain block and these names may be used interchangeably. The domain range position
is fixed (Figure 1a) thus we do not store the domain position (equation 5, 7).

4.2.3. Parameters coding and Color space selection

As can be seen from equation 7, the compressed 4x4 block code W = {wi}3i=0 is partly
represented by its reduced (averaged) versions: 2x2 and 1x1 which are in the form of
{r̄i}3i=0 and d̄ (Figures 1b, 1c). In terms of the compressed texture, those parameters
represent first and second level of Gaussian Pyramid [2] (known in texture filtering as
a Mip-Map pyramid [3]). In our algorithm, we use one level of Laplacian pyramid to
reduce the correlation between parameters {r̄i}3i=0 and d̄ (level 1 and 2). We use the
simplest expand operation by zero order polynomial. Thus, the parameters {r̄i}3i=0

(level 1) are stored as the difference terms in the form: diff = {r̄i − d̄}3i=0 (8) and the
domain average values are stored explicitly (level 2). Thus, the block code is represented
by: W = {{wi}3i=0, d̄}, wi = {s, diff} (9). In the case of textures, which are mostly
represented in RGB color space, we make use of pre-processing phase in which the texture
data are converted to YUV color space. This color space decorrelates the color data and
even coarse approximation of chrominance channels (UV) leads to good approximation
of the whole image.

5. Hierarchical Texture Compression - the algorithm

Taking into account the design phase of Hierarchical texture compression algorithm
(HiTC), we propose an algorithm for hierarchical texture compression, in which com-
pression phase is consisted of the following steps (Figure 2a):
1. Conversion of the texture to YUV color space.
2. For Y component apply:

• Partitioning of the texture to 4x4 blocks (Figure 1).
• For each 4x4 texture block apply local fractal transform.
• The resulting coefficients code by one level of Laplacian pyramid.

3. For U and V component apply:

Machine GRAPHICS & VISION vol. , no. , pp. 12

J. Stachera and P. Rokita 7

• Low-pass filtering operation to reduce the component size to 1
4 .

and the decompression phase is consisted of (Figure 2b):
1. For referenced texture texel compute the compressed texture block address.
2. Apply local inverse transform to Y component.
3. Expand the U and V values 4 times.
4. Convert the texel YUV values to RGB values.

Local Fractal
Transform

Laplace
coding

4x4
Texture Block

RGB YUV

YUV

Ys Ydiff

Reduce 1/4

U, V Y

L1
HiTC Code

L2

Local Inverse
Fractal

Transform

HiTC
compressed
4x4 Block

YUV RGB

Expand 4

U,VY
0

diff
1diff

2
diff

3
diff

d1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0

R0 R1

R2 R3
ddd vuyd

ddiffdiffsr

,,

03003

1 L2 L1

2 Y U V s0 s1 s2 s3 diff0 diff1 diff2 diff3

3 8 8 8 2 2 2 2 8 8 8 8

4 R G B A R G B A

1. Mip level
2. Parameters
3. Bit depth
4. Texture component

a) Compressiom b) Decompression c) Inverse LF transform d) Block structure

Fig. 2. HiTC algorithm

5.1. Local fractal transform

The local fractal transform is computed by minimizing the equation 4 for each range
block R (Figure 1a), with respect to the scaling parameter s. It means that for each

range block R we need to compute the scaling parameter s: s = 〈R−r̄U,D
′−d̄U〉

‖D′−d̄U‖2 and as

a part of this process range block mean r̄ and the domain mean d̄ (Figure 1b). The
result of applying the local fractal transform to the luminance values (Y) is the set of
parameters: W = {{wi}3i=0, d̄}, wi = {s, r̄}. The range block means are next subject to
one level of Laplace coding, where they are encoded as the difference terms. Finally, the
luminance values are represented by: W = {{wi}3i=0, d̄}, wi = {s, diff}

5.2. Inverse local fractal transform

The inverse local transform is computed as in equation 2: R̃ = wi(D) = siϕ(D − d̄) +
r̄iU . The only difference is that we do not store the range means r̄ but the difference
terms diff (equation 7), which also represent the normalized contracted domain values
ϕ(D − d̄). Thus, to reconstruct the range value we need to compute: rij = wi(D) =
sidiffj + diffi + d̄ (10) where diffi is used to reconstruct the range mean and diffj is
contracted normalized domain value, which depends on the texel positions in the range
block (Figure 2c).

Machine GRAPHICS & VISION vol. , no. , pp. 12

8 Fractal-based hierarchical mip-pyramid texture compression

The range blocks as the texels in the range blocks are arranged in Morton Order. We
do not apply any isometry operation prior to mapping the domain block onto the range
block as in Jacquin [6] since the one to one mapping is dominant in most cases [11][30].

6. GPU implementation

6.1. Block structure

We decided to use rectangular RGBA texture format with 8bit texel depth. The structure
of the HiTC block is presented on the figure 2d. We use the uniform quantization for
scaling parameters {si}3i=0 in the range [0.0, 1.5] [11][30], which are represented by 2bits
(s = {0, 0.375, 0.75, 1.125}). The difference terms {diff}3i=0 are stored on 8bits [30].
The normalization of difference term is performed to effectively exploit the 8bit texture
values and to avoid negative values. Thus, they are normalized prior to packing the data
to the texture. Therefore, it is needed to calculate the bias and scale factor:

bias = min(diff)

scale =
{

max(diff)−min(diff) if max(diff) 6= min(diff)
1 else

(11)

The normalized values are computed by: diffnorm = diff−bias
scale (12). The block structure

is represented totally by 64bits, which corresponds to two RGBA texture values (Figure
2d). This allocation scheme is not optimal for the compression, since we do not take
into account the difference terms quantization. They are characterized by low variance
and thus they can be quantized coarsely. The reason, why we decided for this allocation
is that it allows for simple decoding. We experimented with other allocations schemes
[30][31] which can significantly increase the compression ratios. But, storing few different
parameters (e.g. scaling and difference term) in one byte requires bit-wise operations
and additionally applying non-uniform quantization to difference terms involve complex
decoding and additionally nowadays GPU are not equipped with integer processing units.

6.2. Decoding

We implemented our algorithm in two modes with nearest neighbor and 3 mip-map level
filtering. The block diagram on figure 3b represents the algorithm for CG language. The
rectangular texture sampler object and texture coordinates are the input data to our
algorithm, the output constitutes the linearly interpolated texel values. The decompres-
sion algorithm is executed in the pixel shader units. Generally, the HiTC decompression
algorithm can be divided into following steps (Figure 3b):

1. For given texture coordinates find the HiTC address and compute the mip-level.
2. Fetch the HiTC block data from the texture.
3. Unpack the parameters from the HiTC block.

Machine GRAPHICS & VISION vol. , no. , pp. 12

J. Stachera and P. Rokita 9

4. Apply filtering.

7. Experimental results

7.1. GPU decompression

We measured the raw performance of our algorithm for simple scene consisted from the
textured rotating cube for two modes: nearest neighbor and 3 level mip-mapping on the
NVIDIA GeForce 6800 in the resolution 1280x1024 with screen coverage equal to 75%.
The values in the table represent the peak performance of our algorithm.

texture size fps*

Lilia 256 192

Baboon 512 192

Earth 2048 187

nearest neighbor

texture size fps*

Lilia 256 265

Baboon 512 265

Earth 2048 252

3 level mip-mapping

HiTC address Mip-Level

Read Texture

<block,pixel>hitc

texCoordtexRECTSample

lowMipLevel >
2

Unpack coeffs

L2

Yes
lowMipLevel

== 2

Lerp(L2,L1)

Yes

Lerp(L1,L0)

No

No

Decode L2

Decode L1

Decode L0

Input

Output

<low, frac>MipLevel

YUV->RGB

TRGB

Scale & Offset

a) Decompression b) Pixel shader program

Fig. 3. HiTC GPU performance and implementation

7.2. Reconstruction results

We used the peak signal to noise ratio PSNR to measure the reconstruction error for
luminance image. The luminance component was chosen taking into account its visual
importance and the HiTC compression algorithm, in which we compress only luminance,
the chrominance components are only sub-sampled. In this case the reconstruction

Machine GRAPHICS & VISION vol. , no. , pp. 12

10 Fractal-based hierarchical mip-pyramid texture compression

quality of chrominance depends only on applied interpolation method. For three mip-
map levels that are stored in HiTC block, it results in the compression ratio CR =
9 : 1. The compared compression algorithms are characterized by compression ratios
CR = 6 : 1 (DXTC [13], FXT1 [12], PVRTC [24]), the only difference is PVRTC2 which
has CR = 6 : 1. The reconstruction results of our method are comparable to block
compression methods. The advantage of our method can be seen in higher compression
ratio as opposed to DXTC, FXT1 and PVRTC4 (CR = 6 : 1). The reconstruction
quality is better than PVRTC2 which gives compression ratio CR = 12 : 1.

Luminance

25

27

29

31

33

35

37

Lenna Lilia Brick Wood Peppers Baboon

Images

P
S

N
R

 [
d

B
]

a) HiTC
PSNR - Block texture methods (Lenna image)

25

27

29

31

33

35

37

DXTC FXT1 PVRTC4 PVRTC2 HiTC*

Methods

P
S

N
R

 [
d

B
]

b) TC methods comparison

Brick Lilia Lenna Lenna error

Wood Peppers Baboon Baboon error

a) Reconstruction error b) Test and error images

Fig. 4. Reconstruction error, PSNR for luminance component [SE02]

8. Conclusion

We have presented a new algorithm for texture compression with the implementation on
GPU. The major advantage of our fractal block-based approach is a hierarchical repre-
sentation, which allows for:

• direct decompression of three levels of mip-map pyramid, easily extendable to all
levels,

• low computational complexity, which allowed us to implement the method on the
GPU,

• compact block representation, which allows for fast random access to texture data.

Machine GRAPHICS & VISION vol. , no. , pp. 12

J. Stachera and P. Rokita 11

The overhead related to access the levels of mip-map pyramid is greatly reduced in
our method, since HiTC block represents three levels of mip-map pyramid. Thus, in
terms of the number of accesses in trilinear filtering modes, the HiTC method reduces it
by one third as compared to state of the art block texture compression methods. When
compared to hierarchical methods such as wavelets, the texture access in our method
does not require any tree walk procedures. The computational complexity was reduced to
minimum with the aim of real-time application. Moreover, all the requirements outlined
earlier in section 2 are fulfilled, thus making it superior for high performance rendering
architectures (Figure 5).

References

1979
[1] Delp J., Mitchell R.: Image Compression Using Block Truncation Coding, IEEE TOC, v. 27, n. 9,

1979.

1983
[2] Burt P.J., Adelson E.H.: The Laplacian pyramid as a compact image code. IEEE Transactions on

Communications.
[3] Williams L.: Pyramidal Parametrics. Computer Graphics (SIGGRAPH’83 Proceedings), Pages 1-11.

1986
[4] Campbell G., Defanti T. A., Frederiksen J., Joyce S. A., Leske L. A., Lindberg J. A., Sandin D. J.:

Two Bit/Pixel Full Color Encoding, In Proceedings of SIGGRAPH (1986), vol. 22, pp. 215-223.

1988
[5] Barnsley M., Sloan A., A better way to compress images, BYTE, Volume 13 , Issue 1 (January 1988),

pp. 215-223.

1992
[6] Jacquin, A.E.: Image coding based on a fractal theory of iterated contractive image transformations,

IEEE Transactions on Image Processing, Volume 1, Issue 1, Jan. 1992, pp. 18-30.

1995
[7] Dudbridge F.: Least Squares Block Coding by Fractal Functions, Fractal Image Compression: Theory

and Application to Digital Images, Springer-Verlag, New York, pp. 231 -244.
[8] Oien G. E., Lepsoy S.: A class of fractal image coders with fast decoder convergence, Fractal image

compression: theory and application, pp: 153 - 175.

1996
[9] Beers A. C., Agrawala M., Chaddha N.: Rendering from compressed textures, Siggraph 1996, pp.

373-378, July 1996.
[10] Torborg J., Kajiya J.: Talisman: Commodity Realtime 3D Graphics for the PC, Siggraph’96.

1997
[11] Ning Lu: Fractal Imaging, Academic Press.

1999
[12] 3dfx. FXT1: White paper. 3dfx Interactive. http://wwwdev.3dfx.com/fxt1/fxt1whitepaper.pdf
[13] Iourcha K., Nayak K., Hong Z.: System and Method for Fixed-Rate Block-based Image Compression

with Inferred Pixels Values. In US Patent 5,956,431
[14] Pereberin A.V.: Hierarchical Approach for Texture Compression, Proceedings of GraphiCon ’99,

1999,195-199.
[15] Suzuoki, M. Kutaragi, K. Hiroi, T. Magoshi, H, et. al.: A microprocessor with a 128-bit CPU,

ten floating point MAC’s, four floating-point dividers, and an MPEG-2 decoder, IEEE Journal of
Solid-State Circuits, November 1999, Vol 34, Issue 11

[16] Wohlberg B., Jager G., A review of the fractal image coding literature, IEEE Transactions on Image
Processing, vol. 8, no. 12, pp. 1716–1729

Machine GRAPHICS & VISION vol. , no. , pp. 12

12 Fractal-based hierarchical mip-pyramid texture compression

2000
[17] Chen C.-H., Lee C.-Y.: A JPEG-like texture compression with adaptive quantization for 3D graphics

application. The Visual Computer, vol. 18, pp. 29-40
[18] G. Sullivan, S. Estrop.: Video Rendering with 8-Bit YUV Formats, Microsoft Developer Network.
[19] Ivanov D., Kuzmin Y.: Color Distribution - A New Approach to Texture Compression. In Proceed-

ings of Eurographics (2000), vol. 19, pp. C283-C289.
[20] Kwon Young-Su, Park In-Cheol, and Kyung Chong-Min: Pyramid Texture Compression and De-

compression Using Interpolative Vector Quantization. Proceedings of 2000 International Conference
on Image Processing, vol. 2, pp.191-194, Sep. 10-13.

[21] Levkovich-Maslyuk L., Kalyuzhny P. G., Zhirkov A. Texture Compression with Adaptive Block
Partitions. ACM Multimedia 2000.

[22] Turner M.J.: Properties of Fractal Compression and their use within Texture Mapping, First IMA
Conference on Fractal Geometry: Mathematical Methods, Algorithms and Applications.

2003
[23] Akenine-Mller T., Strm J.: Graphics for the Masses: A Hardware Rasterization Architecture for

Mobile Phones. ACM Transactions on Graphics, 22, 3 (2003), 801-808.
[24] Fenney S.: Texture Compression using Low-Frequency Signal Modulation. In Graphics Hardware

(2003), ACM Press.
[25] Pi M., Basu A., Mandal M.: A new decoding algorithm based on range block mean and contrast

scaling, IEEE International Conference on Image Processing (ICIP), vol. 2, pp. 241-274, Barcelona,
Spain, September 14-17.

[26] Schneider J.: Kompressions- und Darstellungsmethoden fr hochaufgelste Volumendaten, Diploma
Thesis (in English), RWTH Aachen, Germany.

2005
[27] Candussi N., DiVerdi S., Hollerer T. Real-time Rendering with Wavelet-Compressed Multi-

Dimensional Textures on the GPU. Computer Science Technical Report 2005-05, University of Cal-
ifornia, Santa Barbara.

[28] Strom J. Akenine-Moller T.: iPACKMAN: High-Quality, Low-Complexity Texture Compression for
Mobile Phones, Graphics Hardware 2005, pp. 63-70.

[29] Tang Ying, Zhang Hongxin, Qing Wang, Bao Hujun: Importance-Driven Texture Encoding based
on Samples, in Proceedings of Computer Graphics International 2005, N.Y.

2006
[30] Stachera J., Rokita P.: Hierarchical Texture Compression, WSCG Conference proceedings.
[31] Stachera J.: Hierarchical Texture Compression, http://staff.elka.pw.edu.pl/ jstacher/

Method
Random
Access

Simple
decoding

Simple
hardware

implementation

Hierarchical
representation

Compression
Ratio

Image
quality

BTC Yes Yes Yes No Average Average

VQ Yes Yes No No High Average

DCT No No No No High High

DWT No No No Yes Highest Highest

Fractal No Yes No Yes Highest High

HiTCg Yes Yes Yes Yes Average Average

Fig. 5. Texture compression methods comparison

Machine GRAPHICS & VISION vol. , no. , pp. 12

