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Abstract 
We propose a hierarchical texture compression algorithm for real-time decompression on the GPU. Our 
algorithm is characterized by low computational complexity, random access and hierarchical structure which 
allow us to access first three levels of encoded mip-map pyramid. The hierarchical texture compression 
algorithm HiTCg is based on block-wise approach, where each block is subject to local fractal transform.  

 
Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, 
shadowing, and texture 

 
 

1. Problem definition. 

Although a texture can be regarded as a digital image, most 
of the classical image compression algorithms can not be 
applied to textures. There is a strong need for efficient, 
highly specialized texture compression algorithms. 

According to Beers et al. [BAC96] and our findings 
[SR06] when designing a texture compression algorithm 
the following aspects must be taken into consideration: 
Decoding speed. It is the most important feature which 
allows for rendering directly from the compressed texture. 
As the texture compression is mainly used in real time 
computer graphics the decompression algorithm must be 
designed to allow high frame-rate.  
Random access. Since the mapping process introduces 
discontinuous texture access in the texture space, it is 
difficult to know in advance how the texture will be 
accessed. Thus, the methods which may be considered for 
fast random access are based on fixed length codes.  
Hierarchical representation. To deal efficiently with level 
of detail and mip-map texture representations this 
requirement must be fulfilled. Hierarchical structure allows 
for rendering directly from the compressed texture 
represented on number of different resolution levels. 
Compression rate and visual quality. The difference 
between textures and images is that the images are viewed 
on their own and they are presented in the static content, 
while the textures are the part of the scene which usually 
changes dynamically. Thus, the loss of information in 
texture compression is more acceptable and the 
compression ratio is more important issue. 
Encoding speed. Texture compression is an asymmetric 
process, in which the decompression speed is crucial and 
the encoding speed is useful but not essential.  

2. Previous work. 

All the existing texture compression algorithms can be 
divided into three major groups: block truncation coding 
(BTC) [DM79] and local palettes [INH99][Fen03][SA05], 
vector quantization (VQ) [BAC96][KPK00], transform 
coding [TK96][CL02] and hierarchical coding 
[Per99][SR06]. In the case of the GPU implementation 
there is no clear division and we can observe algorithms 
being a mixture of different compression methods.  

2.1.   GPU texture compression/decompression. 

Kraus and Ertl [KE02] introduced an algorithm for 
adaptively representing the texture map based on uniform 
grid index method which allows for random access and 
decompression on the GPU. Similar method was 
introduced by Tang et al. [TZQB05]. The difference was 
that in Tang method the texture blocks were of fixed size. 
Thus, those methods allowed for lossless compression of 
critical texture parts and were primarily useful for sparse 
textures. Candusi et al. [CDH05] used discrete Haar 
wavelet transform to compress textures. They used two 
structures, one to represent the wavelet coefficient tree 
(WCT) and another to store the index data to reference the 
tree nodes. Schneider proposes to use vector quantization 
to three levels of Laplacian pyramid which represented the 
volumetric texture [Sch03]. That representation required to 
store two codebooks for first two levels and explicit values 
of third level.  

2.2.   Problems. 

The general problem with BTC based methods is that they 
do not address the problem of mip-mapping. It results in 
additional decompression units when applied to 
hierarchical structures such as mip-maps. The problem is 
partially solved in transform methods, where wavelet 
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transform is used. But the compact representation of 
wavelets which ensure high compression ratios is based on 
the variable length code. Moreover, the decompression 
process needs tree walk procedures [CDH05], thus 
requiring intensive memory communications. It is not clear 
how to reduce the insignificant coefficients of wavelet 
transform to obtain the random access without severely 
reducing the compression ratio as for example in 
hierarchical approach presented by Pereberin [Per99]. The 
completely different hierarchical approach based on local 
fractal transform was proposed in [SR06] with higher 
compression ratios and less complex decoding scheme.  In 
the case of VQ methods, the problem is with the indirect 
data access and codebook handling. Each reference to the 
texel requires at least two memory transactions. The 
problem is especially magnified in the methods which use 
more than one codebook [KPK00] [Sch03][TZQB05]. 

3. The GPU Hierarchical Texture Compression. 

Taking into account the limitations of the nowadays GPU's 
we are proposing a new version of hierarchical 
compression algorithm introduced earlier in [SR06] we call 
HiTCg. 

3.1. HiTCg Compression. 

As opposed to HiTC [SR06] algorithm the proposed new 
HiTCg compression algorithm for GPU does not apply the 
local fractal transform to chrominance texture data.  This 
allows for fast decompression since we do not have to 
decode two chrominance texture channels (U, V). In the 
process of the compression the chrominance values are 
only sub-sampled. This simplification was possible due to 
the fact that the reduction of the chrominance data has little 
impact on final image quality as opposed to the luminance. 
Thus, in the GPU decompression step we only need to 
apply local fractal transform to luminance channel. We 
observed that this led to three time faster decompression as 
opposed to the base scheme implementation [SR06].  

Generally, the compression phase is composed of the 
following steps (Figure 1a): 
1. Conversion of the texture to YUV color space (as in [SE02] – 

floating point version). 
2. For Y component apply: 

a. Partitioning of the texture to 4x4 blocks. 
b. For each 4x4 texture block apply local fractal transform 

[SR06]. 
c. The resulting coefficients code by one level of 

Laplacian pyramid. 
3. For U and V component apply: 

a. Low-pass filtering operation to reduce the 
component size to ¼. 

 

 

 

                  a) compression        b) decompression 
 

Figure 1: HiTCg algorithm. 

 

and the decompression phase is composed of (Figure 1b): 
 

1. For referenced texel compute the compressed texture 
block address. 

2. Apply local inverse transform to Y component. 
3. Expand the U and V values 4 times. 
4. Convert the texel YUV values to RGB values. 

3.2.   Block structure. 

We decided to use rectangular RGBA texture format with 
8bit texel depth (Figure 2).  

mip level L2 L1 
Parameters yd ud vd s0 s1 s2 s3 diff0 diff1 diff2 diff3

bit res. 8 8 8 2 2 2 2 8 8 8 8 
texture components R G B A R G B A 

 

Figure 2: HiTCg Block structure. 

 
Figure 3: HiTCg Block addressing. Decoding of texel r03. 

We use the uniform quantization for scaling parameters 
{ }3

0=iis  in the range [0.0, 1.5] [Ni97][SR06], which are 
represented by 2bits ( { }125.1,75.0,375.0,0=s ). The 
difference terms { }3

0=idiff are stored on 8bits [SR06].         

The normalization of difference term is performed to 
effectively exploit the 8bit texture values and to avoid 
negative values. It is done prior to packing by first 
computing bias and scale parameters:  
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then the normalized values are computed by: 
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The block structure is represented in total by 64bits, 
which corresponds to two RGBA texture values and 
additionally for each texture we need to store bias and scale 
values as texture header parameters.  This allocation 
scheme is not optimal for the compression, since we do not 
take into account the difference terms 

normdiff  quantization. 
They are characterized by low variance [BA83] and thus 
they can be quantized coarsely. We experimented with 
other allocations schemes [SR06] which can significantly 
increase the compression ratios and are perfectly suited for 
hardware implementations. But in the case of the GPU 
implementation, storing few different parameters (e.g. 
scaling and difference term) in one byte requires bit-wise 
operations and additionally applying non-uniform 
quantization to difference terms involve complex decoding.  
Nowadays GPU are not equipped with integer processing 
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units and all bit-wise operations are done on the floating 
point numbers and therefore require extra computations. 

3.3. HiTCg Decompression. 

The rectangular texture sampler object, texture 
coordinates and scale/offset are the input data to our 
algorithm (Figure 4). The output constitutes the linearly 
interpolated texel values. The decompression algorithm is 
executed in the pixel shader units. 

Generally, the HiTCg decompression algorithm can be 
divided into following steps:  

1) For given texture coordinates find the HiTCg address 
and compute the mip-level.  
The HiTCg address is composed of two parts: 

( ){ }indexblockhitc
jiyhxhindexblock ,,.,., →  

a. 
block

yhxh .,.  - HiTCg block coordinates are used 

to access the HiTCg block data in the compressed 
texture, 

b. ( )indexji,  - indices are used to access the 
difference terms and scaling parameters in the 
fetched HiTCg block (Figure 2):  
 

    The mip-level is computed in the pixel shader (Figure 5):  
)(, texRCoordMipLevelfraclow

MipLevel
=  

The low value indicates the lower mip level and frac 
value is the fractional part which is used to interpolate 
the values between mip levels in the 3 level mip-map 
mode. 
 

2) Fetch the HiTCg block data from the texture. 
3) Unpack the parameters from the HiTCg block. 

Since, all the texture values which are accessed in the  
pixel shader are normalized, we need to perform 
additional step to unpack the scaling parameters and 
difference terms. In the case of scaling parameters it 
is required, to unpack the data from the byte and 
multiply it by the quantization step: 
 

stepquantdeq Qss ⋅=  

biasscalediffdiff norm +⋅=  
(3) 

 

then decode the texel value on the basis of mip level, 
and convert the YUV texel to RGB color space 
[SE02]. 

4) Apply filtering. 
We have implemented two simple filtering modes: 
nearest neighbor and 3 level mip-mapping due to the 
limitations of GPU architectures. In nearest neighbor 
mode we omit the step related to computation of mip-
map level and after unpacking the parameters we 
directly compute the texel value (Figure 4).  In 3 level 
mip-mapping on the basis of the mip-map level we 
apply the linear interpolation to two values, which are 
accessed from two consecutive mip levels. It 
corresponds to GL_NEAREST_MIPMAP_LINEAR mode in 
OpenGL for the first three mip-map levels.   

 

 
 

Figure 4: HiTCg decompression on the GPU, pixel shader 
program. 
 

float2 MipLevel(float2 texRCoord) { 
 float2 fw= max(abs(ddx(texRCoord)),      

     abs(ddy(texRCoord))); 
 float m = log2(max(fw.x, fw.y)); 
 return float2(floor(m), frac(m)); } 

 

Figure 5: Mip-level computations on the basis of texture 
coordinates (texRCoord). 

4. Experimental results. 

4.1. GPU decompression. 

We measured the raw performance of our algorithm  
for simple scene composed of the textured rotating cube for 
two modes: nearest neighbor and 3 level mip-mapping on 
the GeForce 6800 in the resolution 1280x1024 with screen 
coverage equal to 75%. 
 

texture size fps*
Lilia 256 265 

Baboon 512 265 
Earth 2048 252  

texture size fps*
Lilia 256 192 

Baboon 512 192 
Earth 2048 187  

1) nearest neighbor 2) 3 level mip-mapping  
 

*fps – frames per second (peak performance) 

Table 1,2: Decompression performance. 
 

The values in the table represent the peak performance of 
our algorithm. The problem with the GPU implementation 
is that the pixel shader units are SIMD processors and in 
our algorithm we need to index the unpacked block data. It 
has obvious performance influence since we use 
conditional instruction. If the condition is differently 
evaluated by some processors then all the computations 
must be repeated. It can be noticed in our algorithm with 
decompression speed oscillations in the range of 25%.  

4.2. Reconstruction results. 

We have done many experiments to validate our new 
solution. The reconstruction quality of our algorithm was 
evaluated on the set of the standard images used in image 
compression field (Figure 6). More tests, results and 
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examples are provided on the web page [WWW06]. For 
HiTCg block, the compression ratio is 1:9≅RC  (measured 
for three levels of mip-map: 4x4, 2x2, 1x1). The compared 
compression algorithms are characterized by compression 
ratios 1:6=RC  (DXTC[INH99], FXT1[3df99], 
PVRTC[Fen03]), the only difference is PVRTC2 which has 

1:12=RC . The reconstruction results of our method are 
comparable to block compression methods. The advantage 
of our method can be seen in higher compression ratio as 
opposed to DXTC, FXT1 and PVRTC4. The reconstruction 
quality is better than PVRTC2 which gives compression 
ratio 1:12=RC . 

5. Conclusion. 

We have presented a new algorithm for texture  
compression on GPU. The major advantage of our fractal 
block-based approach is a hierarchical representation, 
which allows for: 
- direct decompression of three levels of mip-map pyramid, 
- low computational complexity,  
- compact block representation, which allows for fast  
   random access to texture data. 
The overhead related to access the levels of mip-map 
pyramid is greatly reduced in our method, since HiTCg 
block represents three levels of mip-map pyramid. Thus, in 
terms of the number of accesses in trilinear filtering modes, 
the HiTCg method reduces it by one third as compared to 
state of the art block texture compression methods such as 
S3TC [INH99], PVRTC [Fen03]. Thus, it constitutes better 
alternative to S3TC in hardware architectures where the 
filtering and the memory bandwidth are of paramount 
importance. The texture quality requires further research. 

When compared to hierarchical methods based on 
wavelets, the texture access in our method does not require 
any tree walk procedures. The computational complexity 
was reduced to minimum with the aim of real-time 
application. Moreover, all the requirements outlined earlier 
in section 1 are fulfilled, thus making it superior for high 
performance rendering architectures (Table 3).  

Our GPU implementation is strictly based on one 
structure in the form of the HiTCg compressed texture and 
we do not use any external structures, such as lookup tables 
in the form of additional textures. Thus, our method can 
preserve the memory bandwidth as opposed to previously 
proposed GPU-based methods [KE02][Sch03][TZQB05][CDH05], 
which require intensive memory communication.  

We have evaluated two decompression modes on the 
GPU with nearest neighbor filtering and 3 level mip-
mapping. The raw decompression speed of our algorithms 
meets the real-time requirements for GPU 
implementations. Current GPU hardware designs, as can be 
seen in section 3.2 - are not adjusted to the implementation 
of filtering modes. We hope that our work will also suggest 
changes in GPU designs.  
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Figure 5: Reconstruction error, PSNR for luminance 
component [SE02], a) HiTCg, b) TC methods comparison 
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Method Random 
Access 

Simple 
decoding 

Simple  
hardware 

implementation 

Hierarchical 
representation 

Compression
Ratio 

Image 
quality 

BTC Yes Yes Yes No Average Average
VQ Yes Yes No No High Average
DCT No No No No High High 
DWT No No No Yes Highest Highest 
Fractal No Yes No Yes Highest High 
HiTCg Yes Yes Yes Yes Average Average
 

Table 3: Texture compression methods comparison 


