
EUROGRAPHICS 2006 / D. W. Fellner and C. Hansen Short Papers

© The Eurographics Association 2006

GPU-Based Hierarchical Texture Decompression

J. Stachera and P. Rokita

Institute of Computer Science, Warsaw University of Technology, Poland

Abstract
We propose a hierarchical texture compression algorithm for real-time decompression on the GPU. Our
algorithm is characterized by low computational complexity, random access and hierarchical structure which
allow us to access first three levels of encoded mip-map pyramid. The hierarchical texture compression
algorithm HiTCg is based on block-wise approach, where each block is subject to local fractal transform.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading,
shadowing, and texture

1. Problem definition.

Although a texture can be regarded as a digital image, most
of the classical image compression algorithms can not be
applied to textures. There is a strong need for efficient,
highly specialized texture compression algorithms.

According to Beers et al. [BAC96] and our findings
[SR06] when designing a texture compression algorithm
the following aspects must be taken into consideration:
Decoding speed. It is the most important feature which
allows for rendering directly from the compressed texture.
As the texture compression is mainly used in real time
computer graphics the decompression algorithm must be
designed to allow high frame-rate.
Random access. Since the mapping process introduces
discontinuous texture access in the texture space, it is
difficult to know in advance how the texture will be
accessed. Thus, the methods which may be considered for
fast random access are based on fixed length codes.
Hierarchical representation. To deal efficiently with level
of detail and mip-map texture representations this
requirement must be fulfilled. Hierarchical structure allows
for rendering directly from the compressed texture
represented on number of different resolution levels.
Compression rate and visual quality. The difference
between textures and images is that the images are viewed
on their own and they are presented in the static content,
while the textures are the part of the scene which usually
changes dynamically. Thus, the loss of information in
texture compression is more acceptable and the
compression ratio is more important issue.
Encoding speed. Texture compression is an asymmetric
process, in which the decompression speed is crucial and
the encoding speed is useful but not essential.

2. Previous work.

All the existing texture compression algorithms can be
divided into three major groups: block truncation coding
(BTC) [DM79] and local palettes [INH99][Fen03][SA05],
vector quantization (VQ) [BAC96][KPK00], transform
coding [TK96][CL02] and hierarchical coding
[Per99][SR06]. In the case of the GPU implementation
there is no clear division and we can observe algorithms
being a mixture of different compression methods.

2.1. GPU texture compression/decompression.

Kraus and Ertl [KE02] introduced an algorithm for
adaptively representing the texture map based on uniform
grid index method which allows for random access and
decompression on the GPU. Similar method was
introduced by Tang et al. [TZQB05]. The difference was
that in Tang method the texture blocks were of fixed size.
Thus, those methods allowed for lossless compression of
critical texture parts and were primarily useful for sparse
textures. Candusi et al. [CDH05] used discrete Haar
wavelet transform to compress textures. They used two
structures, one to represent the wavelet coefficient tree
(WCT) and another to store the index data to reference the
tree nodes. Schneider proposes to use vector quantization
to three levels of Laplacian pyramid which represented the
volumetric texture [Sch03]. That representation required to
store two codebooks for first two levels and explicit values
of third level.

2.2. Problems.

The general problem with BTC based methods is that they
do not address the problem of mip-mapping. It results in
additional decompression units when applied to
hierarchical structures such as mip-maps. The problem is
partially solved in transform methods, where wavelet

J. Stachera & P. Rokita/GPU-Based Hierarchical Texture Decompression

© The Eurographics Association 2006

transform is used. But the compact representation of
wavelets which ensure high compression ratios is based on
the variable length code. Moreover, the decompression
process needs tree walk procedures [CDH05], thus
requiring intensive memory communications. It is not clear
how to reduce the insignificant coefficients of wavelet
transform to obtain the random access without severely
reducing the compression ratio as for example in
hierarchical approach presented by Pereberin [Per99]. The
completely different hierarchical approach based on local
fractal transform was proposed in [SR06] with higher
compression ratios and less complex decoding scheme. In
the case of VQ methods, the problem is with the indirect
data access and codebook handling. Each reference to the
texel requires at least two memory transactions. The
problem is especially magnified in the methods which use
more than one codebook [KPK00] [Sch03][TZQB05].

3. The GPU Hierarchical Texture Compression.

Taking into account the limitations of the nowadays GPU's
we are proposing a new version of hierarchical
compression algorithm introduced earlier in [SR06] we call
HiTCg.

3.1. HiTCg Compression.

As opposed to HiTC [SR06] algorithm the proposed new
HiTCg compression algorithm for GPU does not apply the
local fractal transform to chrominance texture data. This
allows for fast decompression since we do not have to
decode two chrominance texture channels (U, V). In the
process of the compression the chrominance values are
only sub-sampled. This simplification was possible due to
the fact that the reduction of the chrominance data has little
impact on final image quality as opposed to the luminance.
Thus, in the GPU decompression step we only need to
apply local fractal transform to luminance channel. We
observed that this led to three time faster decompression as
opposed to the base scheme implementation [SR06].

Generally, the compression phase is composed of the
following steps (Figure 1a):
1. Conversion of the texture to YUV color space (as in [SE02] –

floating point version).
2. For Y component apply:

a. Partitioning of the texture to 4x4 blocks.
b. For each 4x4 texture block apply local fractal transform

[SR06].
c. The resulting coefficients code by one level of

Laplacian pyramid.
3. For U and V component apply:

a. Low-pass filtering operation to reduce the
component size to ¼.

 a) compression b) decompression

Figure 1: HiTCg algorithm.

and the decompression phase is composed of (Figure 1b):

1. For referenced texel compute the compressed texture
block address.

2. Apply local inverse transform to Y component.
3. Expand the U and V values 4 times.
4. Convert the texel YUV values to RGB values.

3.2. Block structure.

We decided to use rectangular RGBA texture format with
8bit texel depth (Figure 2).

mip level L2 L1
Parameters yd ud vd s0 s1 s2 s3 diff0 diff1 diff2 diff3

bit res. 8 8 8 2 2 2 2 8 8 8 8
texture components R G B A R G B A

Figure 2: HiTCg Block structure.

Figure 3: HiTCg Block addressing. Decoding of texel r03.

We use the uniform quantization for scaling parameters
{ }3

0=iis in the range [0.0, 1.5] [Ni97][SR06], which are
represented by 2bits ({ }125.1,75.0,375.0,0=s). The
difference terms { }3

0=idiff are stored on 8bits [SR06].

The normalization of difference term is performed to
effectively exploit the 8bit texture values and to avoid
negative values. It is done prior to packing by first
computing bias and scale parameters:

()diffbias min=
() () () ()

() ()⎩
⎨
⎧

=
≠−

=
diffdiffif
diffdiffifdiffdiff

scale
minmax1
minmaxminmax

(1)

then the normalized values are computed by:

scale
biasdiffdiffnorm

−
= (2)

The block structure is represented in total by 64bits,
which corresponds to two RGBA texture values and
additionally for each texture we need to store bias and scale
values as texture header parameters. This allocation
scheme is not optimal for the compression, since we do not
take into account the difference terms

normdiff quantization.
They are characterized by low variance [BA83] and thus
they can be quantized coarsely. We experimented with
other allocations schemes [SR06] which can significantly
increase the compression ratios and are perfectly suited for
hardware implementations. But in the case of the GPU
implementation, storing few different parameters (e.g.
scaling and difference term) in one byte requires bit-wise
operations and additionally applying non-uniform
quantization to difference terms involve complex decoding.
Nowadays GPU are not equipped with integer processing

0diff
1diff

2diff
3diff

d 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0

R0 R1

R2 R3
{ }ddd vuyd

ddiffdiffsr
,,

03003

∈

++⋅=

Local Inverse
Fractal

Transform

HiTCg
compressed
4x4 Block

YUV → RGB

Expand 4

U,VY

Local Fractal
Transform

Laplace
coding

4x4
Texture Block

RGB → YUV

YUV

Ys Ydiff

Reduce 1/4

U, V Y

 L1 HiTC Code

 L2

J. Stachera & P. Rokita/GPU-Based Hierarchical Texture Decompression

© The Eurographics Association 2006

units and all bit-wise operations are done on the floating
point numbers and therefore require extra computations.

3.3. HiTCg Decompression.

The rectangular texture sampler object, texture
coordinates and scale/offset are the input data to our
algorithm (Figure 4). The output constitutes the linearly
interpolated texel values. The decompression algorithm is
executed in the pixel shader units.

Generally, the HiTCg decompression algorithm can be
divided into following steps:

1) For given texture coordinates find the HiTCg address
and compute the mip-level.
The HiTCg address is composed of two parts:

(){ }indexblockhitc
jiyhxhindexblock ,,.,., →

a.
block

yhxh .,. - HiTCg block coordinates are used

to access the HiTCg block data in the compressed
texture,

b. ()indexji, - indices are used to access the
difference terms and scaling parameters in the
fetched HiTCg block (Figure 2):

 The mip-level is computed in the pixel shader (Figure 5):
)(, texRCoordMipLevelfraclow

MipLevel
=

The low value indicates the lower mip level and frac
value is the fractional part which is used to interpolate
the values between mip levels in the 3 level mip-map
mode.

2) Fetch the HiTCg block data from the texture.
3) Unpack the parameters from the HiTCg block.

Since, all the texture values which are accessed in the
pixel shader are normalized, we need to perform
additional step to unpack the scaling parameters and
difference terms. In the case of scaling parameters it
is required, to unpack the data from the byte and
multiply it by the quantization step:

stepquantdeq Qss ⋅=

biasscalediffdiff norm +⋅=
(3)

then decode the texel value on the basis of mip level,
and convert the YUV texel to RGB color space
[SE02].

4) Apply filtering.
We have implemented two simple filtering modes:
nearest neighbor and 3 level mip-mapping due to the
limitations of GPU architectures. In nearest neighbor
mode we omit the step related to computation of mip-
map level and after unpacking the parameters we
directly compute the texel value (Figure 4). In 3 level
mip-mapping on the basis of the mip-map level we
apply the linear interpolation to two values, which are
accessed from two consecutive mip levels. It
corresponds to GL_NEAREST_MIPMAP_LINEAR mode in
OpenGL for the first three mip-map levels.

Figure 4: HiTCg decompression on the GPU, pixel shader
program.

float2 MipLevel(float2 texRCoord) {
 float2 fw= max(abs(ddx(texRCoord)),

 abs(ddy(texRCoord)));
 float m = log2(max(fw.x, fw.y));
 return float2(floor(m), frac(m)); }

Figure 5: Mip-level computations on the basis of texture
coordinates (texRCoord).

4. Experimental results.

4.1. GPU decompression.

We measured the raw performance of our algorithm
for simple scene composed of the textured rotating cube for
two modes: nearest neighbor and 3 level mip-mapping on
the GeForce 6800 in the resolution 1280x1024 with screen
coverage equal to 75%.

texture size fps*
Lilia 256 265

Baboon 512 265
Earth 2048 252

texture size fps*
Lilia 256 192

Baboon 512 192
Earth 2048 187

1) nearest neighbor 2) 3 level mip-mapping

*fps – frames per second (peak performance)

Table 1,2: Decompression performance.

The values in the table represent the peak performance of
our algorithm. The problem with the GPU implementation
is that the pixel shader units are SIMD processors and in
our algorithm we need to index the unpacked block data. It
has obvious performance influence since we use
conditional instruction. If the condition is differently
evaluated by some processors then all the computations
must be repeated. It can be noticed in our algorithm with
decompression speed oscillations in the range of 25%.

4.2. Reconstruction results.

We have done many experiments to validate our new
solution. The reconstruction quality of our algorithm was
evaluated on the set of the standard images used in image
compression field (Figure 6). More tests, results and

HiTC address Mip-Level
Read Texture

<block,pixel>hitc

texCoordtexRECTSample

lowMipLevel >
2

Unpack coeffs

L2

Yes lowMipLevel
== 2

Lerp(L2,L1)

Yes

Lerp(L1,L0)

No

No

Decode L2

Decode L1

Decode L0

Input

Output

<low, frac>MipLevel

YUV->RGB

TRGB

Scale & Offset

J. Stachera & P. Rokita/GPU-Based Hierarchical Texture Decompression

© The Eurographics Association 2006

examples are provided on the web page [WWW06]. For
HiTCg block, the compression ratio is 1:9≅RC (measured
for three levels of mip-map: 4x4, 2x2, 1x1). The compared
compression algorithms are characterized by compression
ratios 1:6=RC (DXTC[INH99], FXT1[3df99],
PVRTC[Fen03]), the only difference is PVRTC2 which has

1:12=RC . The reconstruction results of our method are
comparable to block compression methods. The advantage
of our method can be seen in higher compression ratio as
opposed to DXTC, FXT1 and PVRTC4. The reconstruction
quality is better than PVRTC2 which gives compression
ratio 1:12=RC .

5. Conclusion.

We have presented a new algorithm for texture
compression on GPU. The major advantage of our fractal
block-based approach is a hierarchical representation,
which allows for:
- direct decompression of three levels of mip-map pyramid,
- low computational complexity,
- compact block representation, which allows for fast
 random access to texture data.
The overhead related to access the levels of mip-map
pyramid is greatly reduced in our method, since HiTCg
block represents three levels of mip-map pyramid. Thus, in
terms of the number of accesses in trilinear filtering modes,
the HiTCg method reduces it by one third as compared to
state of the art block texture compression methods such as
S3TC [INH99], PVRTC [Fen03]. Thus, it constitutes better
alternative to S3TC in hardware architectures where the
filtering and the memory bandwidth are of paramount
importance. The texture quality requires further research.

When compared to hierarchical methods based on
wavelets, the texture access in our method does not require
any tree walk procedures. The computational complexity
was reduced to minimum with the aim of real-time
application. Moreover, all the requirements outlined earlier
in section 1 are fulfilled, thus making it superior for high
performance rendering architectures (Table 3).

Our GPU implementation is strictly based on one
structure in the form of the HiTCg compressed texture and
we do not use any external structures, such as lookup tables
in the form of additional textures. Thus, our method can
preserve the memory bandwidth as opposed to previously
proposed GPU-based methods [KE02][Sch03][TZQB05][CDH05],
which require intensive memory communication.

We have evaluated two decompression modes on the
GPU with nearest neighbor filtering and 3 level mip-
mapping. The raw decompression speed of our algorithms
meets the real-time requirements for GPU
implementations. Current GPU hardware designs, as can be
seen in section 3.2 - are not adjusted to the implementation
of filtering modes. We hope that our work will also suggest
changes in GPU designs.

Luminance

25

27

29

31

33

35

37

Lenna Lilia Brick Wood Peppers Baboon

Images

PS
N

R
 [d

B
]

PSNR - Block texture methods (Lenna image)

25

27

29

31

33

35

37

DXTC FXT1 PVRTC4 PVRTC2 HiTC*

Methods

PS
N

R
 [d

B
]

a) b)
Figure 5: Reconstruction error, PSNR for luminance
component [SE02], a) HiTCg, b) TC methods comparison

Brick

Lilia

Lenna

Lenna error

Wood

Peppers

Baboon

Baboon error
Figure 6: Test and error images.

References
[BA83] Burt P.J., Adelson E.H.: The Laplacian pyramid as a compact
image code, IEEE TOC, 1983
[BAC96] Beers A. C., Agrawala M., Chaddha N.: Rendering from
compressed textures, Siggraph 1996, July 1996.
[CDH05] Candussi N., DiVerdi S., Hollerer T.: Real-time Rendering
with Wavelet-Compressed Multi-Dimensional Textures on the GPU,
Computer Science Technical Report 2005-05, University of California,
Santa Barbara
[CL02] Chen C.-H., Lee C.-Y.: A JPEG-like texture compression with
adaptive quantization for 3D graphics application. The Visual
Computer, v. 18, 2002
[DM79] Delp J., Mitchell R.: Image Compression Using Block
Truncation Coding, IEEE TOC, v. 27, n. 9, 1979
[Fen03] Fenney S.: Texture Compression using Low-Frequency Signal
Modulation, Graphics Hardware, ACM Press, 2003
[INH99] Iourcha K., Nayak K., Hong Z.: System and Method for
Fixed-Rate Block-based Image Compression with Inferred Pixels
Values. In US Patent 5,956,431, 1999
[KE02] Kraus M., Ertl T.: Adaptive texture maps, In Proc.
Siggraph/EG Graphics Hardware Workshop'02, 2002
[KPK00] Kwon Young-Su, Park In-Cheol, Kyung Chong-Min:
Pyramid Texture Compression and Decompression Using Interpolative
Vector Quantization, In Proc. of 2000 International Conference on
Image Processing, v. 2, Sep. 10-13, 2000.
[Nin97] Ning Lu: Fractal Imaging, Academic Press, 1997
[Per99] Pereberin A.V.: Hierarchical Approach for Texture
Compression, In Proc. of GraphiCon‘99, 1999
[SA05] Ström J. and Akenine-Möller T.: iPACKMAN: High-Quality,
Low-Complexity Texture Compression for Mobile Phones, Graphics
Hardware 2005, 2005
[Sch03] Schneider J.: Kompressions- und Darstellungsmethoden für
hochaufgelöste Volumendaten, Diploma Thesis (in English), RWTH
Aachen, Germany, 2003
[SE02] G. Sullivan, S. Estrop.: Video Rendering with 8-Bit YUV
Formats, Microsoft Developer Network
[SR06] Stachera J., Rokita P.: Hierarchical Texture Compression, In
Proc. of WSCG'06, 2006
[TK96] Torborg J., Kajiya J.: Talisman: Commodity Realtime 3D
Graphics for the PC, Siggraph 96, 1996
[TZQB05] Tang Ying, Zhang Hongxin, Qing Wang, Bao Hujun:
Importance-Driven Texture Encoding based on Samples, In Proc. of
Computer Graphics International 2005, New York, June, 2005
[Wil83] Williams L.: Pyramidal Parametrics. Computer Graphics, In
Proc. of Siggraph'83, July, 1983
[WWW06] Hierarchical Texture Compression:
http://staff.elka.pw.edu.pl/~jstacher/

Method Random
Access

Simple
decoding

Simple
hardware

implementation

Hierarchical
representation

Compression
Ratio

Image
quality

BTC Yes Yes Yes No Average Average
VQ Yes Yes No No High Average
DCT No No No No High High
DWT No No No Yes Highest Highest
Fractal No Yes No Yes Highest High
HiTCg Yes Yes Yes Yes Average Average

Table 3: Texture compression methods comparison

