
 Real-Time High-Dynamic Range Texture Compression Based on Local

Fractal Transform

Jerzy Stachera* Przemysław Rokita†

Warsaw University of Technology
Faculty of Electronics and Information Technology

The Institute of Computer Science

Warsaw University of Technology
Faculty of Electronics and Information Technology

The Institute of Computer Science

Abstract

In this paper we propose a new HDR texture compression
algorithm for real-time rendering. This algorithm is based
on our local fractal and wavelet transform for
chrominance and luminance encoding, respectively. The
proposed algorithm is a block based fixed length coding
algorithm and operates on a 4x4 blocks. The blocks are
compressed to 8bpp. As the absolute difference between
maximum and minimum value for most blocks fits into
the LDR range, we can map the HDR values into the
integer domain. Then, the block values are encoded by
the modified LDR algorithm. In the case of luminance, it
is required to store minimum and maximum value per
block and to remap the values in the last decompression
step.

CR Categories: I.3.7 [Computer Graphics]: Color,
shading, shadowing, and texture, I.4.2 [Compression
(Coding)]: Approximate methods

Keywords: Compression, Coding, Texture, High
Dynamic Range, Shading

1 Introduction

High dynamic range (HDR) textures are becoming
increasingly popular in the real-time computer graphics
[McTaggart et al. 2006]. This is especially seen in the
computer games where they are used for the realistic light
modeling. The HDR texture may store the luminance
levels acquired from the real environment. Thus, the
HDR texture require a bit depth which is usually twice
the one used for the low dynamic range (LDR) textures.
At the same time, the demands for storage and memory
bandwidth for HDR textures are increased accordingly.
Moreover, the application of texture filtering rise the
demands for efficient memory handling even further.

With the hardware support for HDR texture
processing, it becomes possible to rise the level of
realism of real-time computer graphics. Up to that
moment only LDR textures were available. Low dynamic
range textures are represented by 8-bit RGB format. This
format can only accurately represent the diffuse surfaces
and is not sufficient for storing the luminance range
presented in the real environments. To tackle the problem
of limited range a number of lossless HDR formats was
introduced [Reinhard et al. 2005, chapter 3]. Basically,
the HDR format may require 16-bits per component. In
this case, the uncompressed RGB texture needs 48bpp.
This format requires twice the memory space and
bandwidth as compared to LDR textures.
--
*e-mail: J.Stachera@ii.pw.edu.pl
†e-mail: P.Rokita@ii.pw.edu.pl

A general trend in computer graphics architectures is that
the computing power growth is much faster than the
corresponding improvement in memory technologies
[Owens 2005][Buck 2006]. Recent experimental studies
of game workload revealed that the memory bandwidth is
mostly occupied by access to texture data and z-buffer
[Roca et al. 2006]. Thus, the memory is the main
bottleneck in the real-time rasterization based graphics
hardware and should be used with great care. The
problem with HDR textures is that they drastically
consume memory bandwidth and in the end may lead to
severe reduction in the rendering performance. This
problem is even more critical in the context of filtering
methods, where one filtered texture sample requires
several access to memory.

One of the solutions to the problem of texture
memory bandwidth and space is hardware texture
compression introduced by Beers [Beers et al. 1996],
Knittel [Knittel et al. 1996] and Torborg [Torborg et al.
1996]. Generally, the idea is to apply lossy compression
for the textures and store the compressed representation
of textures in memory. When the rendering engine access
the texture, the texture is transferred in compressed form
over the bus and decompressed on-the-fly as needed.
Thus, texture bandwidth and memory can be significantly
reduced. Additionally, if the texture decompression is
done just before filtering, then the texture data can be
stored in the cache in compressed form. It means better
cache utilization [Hakura and Gupta 1997][Igehy et al.
1999]. At the same time the texture cache can be made
smaller by the factor comparable to the texture
compression ratio, therefore leaving space for more
processing units.

2 Problem definition

Although a texture can be regarded as a digital image,
most of the classical image compression algorithms
cannot be applied to textures. According to Beers [Beers
et al. 1996] and others [Fenney 2003][Ström and Möller
2005] when designing a texture compression algorithm
the following aspects must be taken into account:
Decoding speed. The access to the data is critical in
texture mapping application. Therefore, the
decompression speed is of paramount importance. The
decompression algorithm should be of low complexity to
enable hardware implementation. If some sort of filtering
is required then a number of parallel decompression units
are needed to process single texel [Fenney 2003], e.g. to
deliver a single texel per clock in trilinear filtering it is
required to have eight decompression units.
Random access. Since the texture mapping procedure
introduces discontinuous texture access in texture space,
it is difficult to know in advance how the texture will be

accessed. Thus, the algorithms which are considered for
fast random access are based on fixed length codes.
Compression rate and visual quality. The difference
between textures and images is that images are viewed on
their own in static content, while the texture are the part
of the scene which usually changes dynamically.
Moreover, textures are subject to filtering, blending and
lighting calculations which change the way they are
perceived. In contrast to LDR textures, when rendering
from HDR texture, it is not possible to know in advance
which part of the dynamic range will be used. Thus, the
compression algorithm must deliver the same quality for
wide range of luminance levels.
Encoding speed. Texture compression is an asymmetric
process, in which the decompression speed is crucial and
the encoding speed is useful for some application as for
example real-time compression of dynamically generated
environment maps but in most cases is done off-line.

3 Previous work

The lossless representation of HDR images has been
actively researched for some time with radiance RGBE
being one of the first HDR formats [Ward 1992]. This
format uses 24-bits for RGB data and 8-bits for exponent
which is shared by all three components. The format bit
allocation is considered as not being compact due to the
typically unused wide dynamic range. The LogLuv
format represents an improved encoding with separated
luminance and chrominance components [Ward 1998].
The logarithm of luminance is stored in 16-bits, while the
chrominance occupies another 16-bits for 32bpp
compression ratio. The LogLuv format has also a variant
which is characterized by 24bpp compression ratio.
Another improvement upon RGBE is OpenEXR format
[Kainz et al. 2003]. This format encodes the image in 16-
bit floating-point RGB pixels for a total of 48bpp. This
representation is directly supported by many graphics
cards vendors. The lossy HDR compression algorithms
appeared recently with the introduction of Ward
backward compatible HDR JPEG algorithm [Ward and
Maryann 2005]. In this algorithm HDR image is
represented as a tone-mapped image and luminance ratio
image. There are two possible scenarios in the
decompression stage depending on the decoder type. In
the case of unaware decoder, the ratio image is ignored
and only the tone-mapped image is decompressed. For
HDR decoder, both images are decompressed in order to
reconstruct high dynamic range image. Another JPEG-
based algorithm is proposed by Xu et al. [2005]. This
algorithm uses a pre-processing step to compress the
HDR image by utilizing the JPEG 2000 algorithm. In the
pre-processing step, the HDR RGB data is subject to
logarithm function and then is converted to the integer
representation which is fed to JPEG 2000 encoder. This,
allows to achieve high compression ratios while retaining
high visual quality. Another group of algorithms
constitutes tone-mapping operators [Reinhard et al. 2005,
chapter 6, 7]. Since, the tone-mapping reduces the
dynamic range to displayable range it is not possible to
restore the lost values. Thus, tone mapping has different
goal and is not directly applicable in textures
compression.

Generally, HDR image formats were designed with
the aim of providing high image quality and compact
storage. None of them fulfils the requirements for texture

compression enumerated in section 2. The RGBE,
LogLuv and OpenEXR format do not use compression,
therefore they are expensive in terms of memory storage
and bandwidth. The JPEG formats are characterized by
the variable length coding, thus they do not support
random access to individual texels.

Real-time HDR texture compression was introduced
by Munkberg et al. [2006] and Roimela et al. [2006] and
later work in this field was carried by Wang et al. [2007].
All the algorithms have some common steps: conversion
to custom luminance/chrominance color space,
independent encoding of 4x4 blocks to fixed length code.
In Munkberg algorithm [2006][2007], the luminance is
represented by minimum and maximum block values and
additionally fourteen in-between values are found. Two
quantization modes are proposed with uniform and non-
uniform quantization steps. The chrominance is sub-
sampled either horizontally or vertically. To encode
resulting chrominance values they use a set of shapes
each with four points for better fit to chrominance
distribution. The compression ratio of Munkberg
algorithm is 8bpp. Completely different approach was
taken by Roimela et al. [2006]. They make use of 16-bit
floating point integer bit pattern to represent the
luminance data more compactly. The chrominance data is
sub-sampled two times in each direction and the values
are quantized to seven bits. The compression ratio of
Roimela algorithm is 8bpp. Wang et al. propose an
algorithm targeted for DirectX [Blythe 2006] platform
which utilize DXTC compression and native filtering.
The luminance data is divided into two ranges which are
stored in alpha component of two RGBA textures.
Remaining RGB components in both textures store
chrominance and luminance residual values which are the
difference between original and reconstructed luminance.
These two textures are encoded by DXT5 resulting in
16bpp.

4 New algorithm

The new algorithm was designed with the texture
compression requirements outlined in section 2 taken into
account. It is a block based fixed length coding
compression algorithm. Each block of size 4x4 texels is
compressed to 8bpp. Our aim was to support the same
dynamic range as OpenEXR which is equal to 109. The
whole scheme representing compression process of our
algorithm is depicted on figure 1. We decided to use
color space conversion to separate luminance and
chrominance. The conversion outcome is HDR
luminance and LDR chrominance component
respectively. To compress the luminance component we
employ our local fractal transform [Stachera and Rokita
2006]. For chrominance we use Pereberin approach based
on Haar wavelet transform [1999]. Since, the human
visual system response to wide range of illumination is
close to logarithmic function, therefore in our algorithm
the compression is applied to logarithmic luminance.
Further, to reduce the luminance dynamic range and thus
to better fit the quantization levels, we store minimum
and maximum value for each block. Those values are use
for luminance float-integer mapping. The logarithmic
transform and float-integer mapping are similar to HDR
JPEG 2000 algorithm proposed by Xu et al. [2005]. But
as opposed to this algorithm we utilize
luminance/chrominance representation and we store per-
block scaling factors to reduce the dynamic range. The

next sections discuss the design process of our algorithm
which is related to successive compression steps
(Figure 1).

Figure 1. Compression scheme of proposed algorithm.

Color space conversion.

The RGB representation is not optimal for encoding,
since each component requires the same accuracy. As
most of the HDR algorithms, our aim was to concentrate
all the HDR information into one component. It is
possible by converting the RGB values to color space
with separate luminance and chrominance components.
Thus, the problem of HDR encoding is restricted to the
luminance component. The chrominance component has
low dynamic range. Moreover, low sensitivity of human
visual system to the chrominance as compared to the
luminance allows for coarse representation of the
chrominance component.

With the introduction of real-time HDR texture
compression, there were proposed different color spaces.
Generally, they represent the data by the luminance and
chrominance. Munkberg logYuv [2006] color space
transform computes the logarithmic luminance from RGB
components using weights (0.299, 0.587, 0.114) as
according to Rec. 601 [Poynton 2003]. Roimela
simplifies the color transform with the goal of efficient
decoding and to compute the luminance he uses hardware
friendly weights (0.25, 0.5, 0.25). Wang [2007] employs
four component color space called LUVW. In this space
the luminance component L is computed as euclidian
distance of RGB components. The chrominance
components UVW are computed from RGB components
by division by L, (R/L, G/L, B/L). The exception to the
separate luminance coding is log[RGB] color space being
a part of HDR JPEG 2000 algorithm proposed by Xu
[2005]. In this space the logarithm function is applied to
the RGB components.

Munkberg logYuv color space is not optimal for
hardware implementation due to the luminance weights.
Wang uses four component LUVW color space which is
most advantageous in case of his algorithm, but generally
more compact representations are based on three
components. Xu log[RGB] color space has potential
disadvantage of representing all three RGB channels with
the same accuracy. We chose Roimela color space
transform for our algorithm. We found that it provides
better decorrelation as compared to Munkberg logYuv for
chosen HDR test image set (Figure 5) and at the same
time it provides simplified hardware implementation.
Additionally, in our algorithm we apply logarithmic
function to the luminance. The forward and backward
transform for modified Roimela color space are shown
below:

4/)2(

)4),1(2,4(2),,(

)4/,4/),(log(),,(

BGRY

vvuuBGR

YBYRYvuY
Y

++=

−−=

=

Float-integer mapping

In our algorithm we introduced an additional step called
float-integer mapping to reduce the luminance block
dynamic range and to make use of our local fractal
transform [Stachera and Rokita 2006]. The motivation for
using this mapping is that for most 4x4 HDR image
blocks the difference between maximum and minimum
value fits into the low dynamic range. This can be seen
on figure 2 which represents the differences for HDR test
image set (Figure 5). In this case around 99% of the
blocks fits into the low dynamic range and can be
represented on 8-bits. The rest of blocks fits into 9-bits
precision and above.

After applying the color space transform, the
logarithmic luminance log(Y) values are in the range
[-16, 16], and the chrominance values (u, v) are in the
range [0,1]. For the luminance data, the mapping is
preceded by finding the minimum and maximum value in
the block as follows:

))max(log()),min(log(maxmin YxYx ==

These values are stored in the block code on 5-bits as
1-bit sign and 4-bits module, where module represents
the absolute value. Those values are used during the
decompression process for inverse mapping.

The logarithmic luminance block values are
uniformly quantized to b-bits using the following
equation:

[])12(*)/()(minmaxmin −−− bxxxx

The inverse mapping is done as follows:

[]minminmax)(*)12/(xxxx b +−−

Since, the chrominance values are in the range [0,1] we
do not have to store the minimum and maximum value.
Therefore, the chrominance data are directly mapped to
the range [0, 255]. The resulting luminance and
chrominance values are subject to local fractal and
wavelet transform respectively.

0 2 4 6 8 10 12
0

2000

4000

6000

8000

10000

12000

14000

16000

max(log2(Y))-min(log2(Y))

Figure 2. Histogram of differences between maximum

and minimum value for logarithmic luminance for all 4x4
blocks from the HDR test image set (Figure 5).

Local fractal transform

For luminance compression we employ the local fractal
transform which details can be found in [Stachera and
Rokita 2006]. The introduction to the fractal compression
is presented in [Lu 1997] and in [Fisher 1995]. The local
fractal transform is based on modified local IFS (Iterated
Function System) [Lu 1997]. The transform approximates
the block by its rescaled version (Figure 3). Formally, the
block is uniformly divided into non-overlapping blocks
which are called range blocks R (2x2). Additionally, there
is defined a domain block D (4x4) which constitutes the
whole block. The relation between the domain block and
the range blocks is as follows:

3210 RRRRD ∪∪∪=

(Figure 3a). Thus, the domain block D is the union of
range blocks R. For each range block R there is defined a
contractive transform w which maps on it domain block
D: RDw →: . Due to the compact representation the
contractive transform is of the form:

rdDsDw +−=)()(ϕ , where: d is the domain block

mean, s is scaling factor, r is the range mean and ϕ is

the geometric function. This transform uses domain block
normalization as opposed to the one presented in
[Stachera and Rokita 2006]. In compression process for
each range block R we are computing the optimal
parameters of the transform w [Fisher 1995]. Thus, the
block luminance fractal code is represented by
contractive transform parameters for each of four range
blocks R: { }3 0,, =iiii rs ϕ . We use the following bit

allocation for transform parameters: scale factor – 6-bits,
range mean – 11-bits, iso – 3-bits. Iso parameter
represents the geometric function ϕ and as will be

explained later, it essentially represents one of eight
isometric operations.

Applying the transform w (where

rdDsDw +−=)()(ϕ - inverse local fractal transform)

for given range block R can be done in two phases. In the
first phase, the domain block D is scaled to the size of
range block R usually by averaging texel values. Since,
the rescaled values of domain block are part of the fractal
code in the form of range block means r , this step is
omitted (Figure 3b). Then, the resulting values are

normalized by subtracting the domain mean d , where

4/)(321 rrrrd o +++= (Figure 3b). Finally, they are

subject to geometric function which maps them on range
block. The mapping can be done in eight different ways
which comprise isometric operations such as rotations
and reflections [Lu 1997]. In second phase, the resulting
values are linearly processed on the basis of scaling
factor s and range mean r .

a)

b)

Figure 3. Local fractal transform.

Local wavelet transform

For the chrominance compression we utilize two levels of
Haar wavelet decomposition as proposed by Pereberin
[1999]. This transform was chosen due to its compact
representation and low computational complexity. The
low resolution level is represented by one mean value for
each chrominance component. The medium resolution
level is approximated by one detail coefficient d which is
multiplied by one of eight refining matrices RM
[Pereberin 1999]. In the decompression process the mean
m value is added to the detail coefficient multiplied by
the refine matrix: m+d*RM[i] (inverse local wavelet
transform), where i is the refine matrix index. The mean
value m and the detail coefficient d are stored on 8-bits
respectively [Pereberin 1999]. Three bits are used for the
refine matrix index i. Thus, one chrominance component
is represented by 19-bits.

Decompression

The decompression process is depicted on figure 4. For
luminance data we first apply the inverse local fractal
transform (section 4.3). Then we expand the compressed
range on the basis of block minimum and maximum
value to the range [-16, 16] (section 4.2). For the
chrominance component we apply the inverse local
wavelet transform (section 4.4). The resulting values are
divided by 255 resulting in the range [0,1]. Next, the
floating point component data is subject to color space
conversion (section 4.1) to obtain HDR RGB data. The
decompression process is done on per-texel basis giving
access to individual block texels.

Figure 4. Decompression scheme of proposed algorithm.

5 Experimental results

We chose twelve HDR images for our textures test set
(Figure 5). The set is consisted of real photographs
(Figure 5a-j) and computer generated images (Figure 5k,
5l). The dynamic range for the set spans the values from
2 to 9 in log10 domain (Figure 6). The problem with
evaluation of HDR texture compression algorithms is that
it is not possible to predict which part of the dynamic
range will be used during rendering. Therefore, the
compression algorithm must deliver the same quality for
wide range of luminance levels. Using LDR image
metrics for evaluation of HDR algorithms may be
inappropriate. Thus, we adopted Log[RGB] RMSE [Xu
et al. 2005] and mPSNR [Munkberg et al. 2006] metrics.

The mPSNR metric is computed on the basis of tone
mapped images. As a tone mapping operator, it is used a
gamma-adjustment after exposure compensation:

255
0

/1])2(255[)(γIIT c=

Where I is the HDR image, c is the exposure
compensation in f-stops, γ is the display gamma and

255
0][⋅ indicates clamping to integer interval [0,255]. For

a set of exposures covering the HDR image range there is
computed MSE error. The values of all MSE errors are
averaged and used for PSNR error computation
[Munkberg et al. 2006]. We used simplified version of
this metric by separately computing PSNR values for
chosen set of exposures. This means that after applying
the tone mapping operator we calculate the standard
PSNR error as used for RGB LDR images. The results
with reconstructed images in full resolution (electronic
version only) are shown on figure 9. Additionally, the
error image for memorial and dani belgium (Figure 5i,
5d) is shown on figure 10.

The log[RGB] RMSE metrics [Xu et al. 2005] is
computed according to the following formula:

∑

+

+

2

2

2

2

2

2

ˆ
log

ˆ
log

ˆ
log

1

b

b

g

g

r

r

N

The values),,(bgr are from the original texture and the

values)ˆ,ˆ,ˆ(bgr are from the reconstructed texture, where

N is the number of texels in the texture. The motivation
of measuring the error in logarithmic domain is that the
values in this domain are more perceptually uniform.

To better show the performance of our algorithm for
different range of luminance levels, we computed the
mean log[RGB] RMSE values for sets of blocks having
the same dynamic range (Figure 7). The dynamic range
for a block is computed as a difference between the
maximum and minimum value in the block in log2
domain (see section 4.2). The values from the chart on
figure 7 should be evaluated along with the histogram on
figure 2 which shows the blocks distribution depending
on theirs dynamic range.

The result of comparison of our algorithm with the
state of the art algorithms can be found in table 1. In this
case, the log[RGB] RMSE metric is computed for whole
image. Our algorithms shows better results as compared
to Romeila [2006] and Wang [2007] on Desk image. This
may be due to the high variation of chrominance in this
image, which is better capture by our algorithm. Visual
evaluation was not possible due to the lack of publicly
available encoders.

a) MtTamWest b) atrium night c) big fog map

d) dani belgium e) dani cathedral f) dani synagogue

g) desk h) display 1000 i) memorial

j) montreal k) rend 05 l) rend 08

Figure 5. HDR test image set.

Figure 6. HDR test image set (Figure 5) dynamic rage.

Figure 7. Average Log[RGB] RMSE for block dynamic

ranges (Figure 5).

Images Our Wang* Romeila* Munkberg*

big Fog Map 0,14 0,14 0,1 0,06

memorial 0,34 0,69 0,26 0,14

desk 0,51 2,92 1,14 0,25

atrium night 0,32 - - -

dani belgium 0,25 - - -

dani cathedral 0,36 - - -

dani synagogue 0,12 - - -

display1000 0,4 - - -

montreal 0,12 - - -

MtTamWest 0,26 - - -

rend05 0,12 - - -

rend08 0,22 - - -

Table 1. Log[RGB] RMSE error for test image set

(Figure 5). (*) The first three results for Wang [2007],
Roimela [2006] and Munkberg [2006] are available in

[Munkberg et al. 2007].

6 Conclusion

We have presented a new HDR texture compression
algorithm. Our algorithm is able to effectively reduce the
dynamic range. We prove that it is possible due to the
low variation of block values. This allow us to compress
the dynamic range by storing maximum and minimum
value per block and applying the float to integer mapping.

Thus, in most the cases the problem of HDR encoding
can be simplified to LDR encoding. In the present
algorithm we use our local fractal transform, but we plan
to investigate other low complexity transform as well.
Comparison with the state of the art methods shows that
our algorithm gives comparable and better results to
recent algorithms. Further improvement of image quality
would be carried with more investigation into the local
fractal transform parameters coding. At the moment we
use uniform quantization but other form of non-uniform
quantization can be useful for high dynamic range blocks.

References

BEERS, A. C., AGRAWALA, M., CHADDHA, N. 1996.
Rendering from compressed textures, In
Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques,
July 1996, 373 – 378.

BLYTHE, D. 2006. The Direct3D 10 system,
ACM SIGGRAPH 2006 Papers, 724 – 734.

BUCK, I. 2006. Stream Computing on Graphics
Hardware, Ph.D. Thesis, Stanford University,
September 2006.

FENNEY, S. 2003. Texture Compression using Low-
Frequency Signal Modulation. In Graphics
Hardware (2003), ACM Press, 84 – 91.

FISHER, Y. (ed) 1995. Fractal Image Compression:
Theory and Application, Springer Verlag, New
York.

HAKURA, Z. S., GUPTA, A. 1997. The Design and
Analysis of a Cache Architecture for Texture
Mapping, In 24th International Symposium of
Computer Architecture (June 1997),
ACM/IEEE, 108 – 120.

IGEHY, H., ELDRIDGE, M., HANRAHAN, P. 1999.
Parallel Texture Caching, In Graphics
Hardware (1999), ACM Press, 95 – 106.

KAINZ, F.,, BOGART, R., HESS, D. 2003. The
OpenEXR image file format, SIGGRAPH 2003
Technical Sketches.

KNITTEL, G., SCHILLING, A., KUGLER A.,
STRASSER, W. 1996. Hardware for Superior
Texture Performance. Computers & Graphics
20, 4 (July 1996), 475 – 481.

LU, N. 1997. Fractal Imaging, Academic Press.

MCTAGGART, G., GREEN, C., MITCHELL, J. 2006.

High dynamic range rendering in valve's source
engine, July 2006, Siggraph 2006: ACM
SIGGRAPH 2006 Courses.

MUNKBERG, J., CLARBERG, P., HASSELGREN, J.,
AKENINE-MÖLLER, T. 2006. High Dynamic
Range Texure Compression For Graphics
Hardware, ACM Transactions on Graphics,
(Proceedings of ACM SIGGRAPH 2006), vol.
25, no. 3, 698 – 706.

MUNKBERG, J., CLARBERG, P., HASSELGREN, J.,

AKENINE-MÖLLER, T. 2007. Practical HDR
Texture Compression, Technical Report, ISSN
1404-1200, Report 92, August 2007 - Submitted
to CGF.

OWENS. J., 2005. Streaming Architectures and
Technology Trends, In GPU Gems 2, Matt
Pharr editor, chapter 29, 457 – 470. Addison
Wesley, March 2005.

PEREBERIN, A.V. 1999. Hierarchical Approach for
Texture Compression, Proceedings
of GraphiCon'99, 195 – 199.

POYNTON, C. A. 2003. Digital Video and HDTV:
Algorithms and Interfaces, Morgan–Kaufmann.

REINHARD, E., WARD, G., PATTANAIK, S.,
DEBEVEC, P. 2005. High Dynamic Range
Imaging: Acquisition, Display and Image-
Based Lighting. Morgan Kaufmann Publishers.
December 2005.

ROCA, J., MOYA, V., GONZÁLEZ, C., SOLIS, C.,
FERNÁNDEZ, A., ESPASA, R. 2006.
Workload Characterization of 3D Games, IEEE
International Symposium on Workload
Characterization (IISWC-2006), 17 – 26.

ROIMELA, K., AARNIO, T., IT, J., Efficient high
dynamic range texture compression,
Proceedings of the 2008 symposium on
Interactive 3D graphics and games, 2008,
ACM, 207 – 214.

ROIMELA, K., AARNIO, T., ITÄRANTA, J. 2006.
High Dynamic Range Texture Compression,
ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH 2006), vol. 25, no. 3,
707 – 712.

STACHERA, J., ROKITA, P. 2006. Fractal-based

hierarchical mip-pyramid texture compression.
International Conference on Computer Vision
and Graphics ICCVG 2006, Book of Abstracts,
September 25-27, 2006, Warsaw, Poland.

STRÖM, J., AKENINE-MÖLLER T. 2005.
iPACKMAN: High-Quality, Low-Complexity
Texture Compression for Mobile Phones,
Graphics Hardware 2005, 63 – 70.

TORBORG, J., KAJIYA, J. 1996. Talisman: Commodity
Realtime 3D Graphics for the PC, SIGGRAPH
'96, ACM, New York, NY, 1996, 353 – 363.

WANG, L., WANG, X., SLOAN, P., WEI, L., TONG,
X., GUO, B. 2007. Rendering from
Compressed High Dynamic Range Textures on
Programmable Graphics Hardware, SIGGRAPH
Symposium on Interactive 3D Graphics and
Games 2007, 17 – 24.

WARD, G. 1992. Real Pixels, Graphics Gems
II, Academic Press, 80 – 83.

WARD, G. L. 1998. LogLuv Encoding for Full-Gamut,

High-Dynamic Range Images, Journal of
Graphics Tools, volume 3, number 1, 15 – 31.

WARD, G., MARYANN S. 2005. JPEG-HDR: A

Backwards-Compatible, High Dynamic Range
Extension to JPEG, In Proceedings of the
Thirteenth Color Imaging Conference,
November 2005.

XU, R., PATTANAIK, S. N., HUGHES, C. E. 2005.
High-Dynamic-Range Still-Image Encoding in
JPEG 2000, IEEE Computer Graphics and
Applications, Volume 25 , Issue 6 (November
2005), 57 – 64.

c=-6 c=-3 c=-1 c=0 c=3

c=-6, PSNR=39.48dB c=-3, PSNR=36.70 dB c=-1, PSNR=35.04 dB c=0, PSNR=33.91 dB c=3, PSNR=31.77 dB

c=-6 c=-3 c=-1 c=0 c=3

c=-6, PSNR= 47.23dB c=-3, PSNR= 41.02dB c=-1, PSNR= 38.54dB c=0, PSNR= 37.98dB c=3, PSNR= 35.77dB

Figure 9. HDR compression result for proposed algorithm for images: memorial (Figure 5i) and dani belgium (Figure 5d).
The top row shows the original image while the bottom row shows our reconstruction with PSNR error. Each column
represent images tone-mapped based on exposure c (see section 5).

a) b)

Figure 10. Gamma corrected error images of square log differences: a) memorial (Figure 5i, 6), b) dani belgium (Figure 5d,
6).

