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Abstract 
 
In this paper we propose a new HDR texture compression 
algorithm for real-time rendering. This algorithm is based 
on our local fractal and wavelet transform for 
chrominance and luminance encoding, respectively. The 
proposed algorithm is a block based fixed length coding 
algorithm and operates on a 4x4 blocks. The blocks are 
compressed to 8bpp. As the absolute difference between 
maximum and minimum value for most blocks fits into 
the LDR range, we can map the HDR values into the 
integer domain. Then, the block values are encoded by 
the modified LDR algorithm. In the case of luminance, it 
is required to store minimum and maximum value per 
block and to remap the values in the last decompression 
step.  

 
CR Categories: I.3.7 [Computer Graphics]: Color, 
shading, shadowing, and texture, I.4.2 [Compression 
(Coding)]: Approximate methods 
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1 Introduction 

 
High dynamic range (HDR) textures are becoming 
increasingly popular in the real-time computer graphics 
[McTaggart et al. 2006]. This is especially seen in the 
computer games where they are used for the realistic light 
modeling. The HDR texture may store the luminance 
levels acquired from the real environment. Thus, the 
HDR texture require a bit depth which is usually twice 
the one used for the low dynamic range (LDR) textures. 
At the same time, the demands for storage and memory 
bandwidth for HDR textures are increased accordingly. 
Moreover, the application of texture filtering rise the 
demands for efficient memory handling even further.  

With the hardware support for HDR texture 
processing, it becomes possible to rise the level of 
realism of real-time computer graphics. Up to that 
moment only LDR textures were available. Low dynamic 
range textures are represented by 8-bit RGB format. This 
format can only accurately represent the diffuse surfaces 
and is not sufficient for storing the luminance range 
presented in the real environments. To tackle the problem 
of limited range a number of lossless HDR formats was 
introduced [Reinhard et al. 2005, chapter 3]. Basically, 
the HDR format may require 16-bits per component. In 
this case, the uncompressed RGB texture needs 48bpp. 
This format requires twice the memory space and 
bandwidth as compared to LDR textures.  
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A general trend in computer graphics architectures is that 
the computing power growth is much faster than the 
corresponding improvement in memory technologies 
[Owens 2005][Buck 2006]. Recent experimental studies 
of game workload revealed that the memory bandwidth is 
mostly occupied by access to texture data and z-buffer 
[Roca et al. 2006]. Thus, the memory is the main 
bottleneck in the real-time rasterization based graphics 
hardware and should be used with great care. The 
problem with HDR textures is that they drastically 
consume memory bandwidth and in the end may lead to 
severe reduction in the rendering performance. This 
problem is even more critical in the context of filtering 
methods, where one filtered texture sample requires 
several access to memory. 

One of the solutions to the problem of texture 
memory bandwidth and space is hardware texture 
compression introduced by Beers [Beers et al. 1996], 
Knittel [Knittel et al. 1996] and Torborg [Torborg et al. 
1996]. Generally, the idea is to apply lossy compression 
for the textures and store the compressed representation 
of textures in memory. When the rendering engine access 
the texture, the texture is transferred in compressed form 
over the bus and decompressed on-the-fly as needed. 
Thus, texture bandwidth and memory can be significantly 
reduced. Additionally, if the texture decompression is 
done just before filtering, then the texture data can be 
stored in the cache in compressed form. It means better 
cache utilization [Hakura and Gupta 1997][Igehy et al. 
1999]. At the same time the texture cache can be made 
smaller by the factor comparable to the texture 
compression ratio, therefore leaving space for more 
processing units. 
 
2 Problem definition 

 

Although a texture can be regarded as a digital image, 
most of the classical image compression algorithms 
cannot be applied to textures. According to Beers [Beers 
et al. 1996] and others [Fenney 2003][Ström and Möller 
2005] when designing a texture compression algorithm 
the following aspects must be taken into account: 
Decoding speed. The access to the data is critical in 
texture mapping application. Therefore, the 
decompression speed is of paramount importance. The 
decompression algorithm should be of low complexity to 
enable hardware implementation. If some sort of filtering 
is required then a number of parallel decompression units 
are needed to process single texel [Fenney 2003], e.g. to 
deliver a single texel per clock in trilinear filtering it is 
required to have eight decompression units.  
Random access. Since the texture mapping procedure 
introduces discontinuous texture access in texture space, 
it is difficult to know in advance how the texture will be 



accessed. Thus, the algorithms which are considered for 
fast random access are based on fixed length codes. 
Compression rate and visual quality. The difference 
between textures and images is that images are viewed on 
their own in static content, while the texture are the part 
of the scene which usually changes dynamically. 
Moreover, textures are subject to filtering, blending and 
lighting calculations which change the way they are 
perceived. In contrast to LDR textures, when rendering 
from HDR texture, it is not possible to know in advance 
which part of the dynamic range will be used. Thus, the 
compression algorithm must deliver the same quality for 
wide range of luminance levels. 
Encoding speed. Texture compression is an asymmetric 
process, in which the decompression speed is crucial and 
the encoding speed is useful for some application as for 
example real-time compression of dynamically generated 
environment maps but in most cases is done off-line. 
 

 

3 Previous work 
 
The lossless representation of HDR images has been 
actively researched for some time with radiance RGBE 
being one of the first HDR formats [Ward 1992]. This 
format uses 24-bits for RGB data and 8-bits for exponent 
which is shared by all three components. The format bit 
allocation is considered as not being compact due to the 
typically unused wide dynamic range. The LogLuv 
format represents an improved encoding with separated 
luminance and chrominance components [Ward 1998]. 
The logarithm of luminance is stored in 16-bits, while the 
chrominance occupies another 16-bits for 32bpp 
compression ratio. The LogLuv format has also a variant 
which is characterized by 24bpp compression ratio. 
Another improvement upon RGBE is OpenEXR format 
[Kainz et al. 2003]. This format encodes the image in 16-
bit floating-point RGB pixels for a total of 48bpp. This 
representation is directly supported by many graphics 
cards vendors. The lossy HDR compression algorithms 
appeared recently with the introduction of Ward 
backward compatible HDR JPEG algorithm [Ward and 
Maryann 2005]. In this algorithm HDR image is 
represented as a tone-mapped image and luminance ratio 
image. There are two possible scenarios in the 
decompression stage depending on the decoder type. In 
the case of unaware decoder, the ratio image is ignored 
and only the tone-mapped image is decompressed. For 
HDR decoder, both images are decompressed in order to 
reconstruct high dynamic range image. Another JPEG-
based algorithm  is proposed by Xu et al. [2005]. This 
algorithm uses a pre-processing step to compress the 
HDR image by utilizing the JPEG 2000 algorithm. In the 
pre-processing step, the HDR RGB data is subject to 
logarithm function and then is converted to the integer 
representation which is fed to JPEG 2000 encoder. This, 
allows to achieve high compression ratios while retaining 
high visual quality. Another group of algorithms 
constitutes tone-mapping operators [Reinhard et al. 2005, 
chapter 6, 7]. Since, the tone-mapping reduces the 
dynamic range to displayable range it is not possible to 
restore the lost values. Thus, tone mapping has different 
goal and is not directly applicable in textures 
compression. 

Generally, HDR image formats were designed with 
the aim of providing high image quality and compact 
storage. None of them fulfils the requirements for texture 

compression enumerated in section 2. The RGBE, 
LogLuv and OpenEXR format do not use compression, 
therefore they are expensive in terms of memory storage 
and bandwidth. The JPEG formats are characterized by 
the variable length coding, thus they do not support 
random access to individual texels.  

Real-time HDR texture compression was introduced 
by Munkberg et al. [2006] and Roimela et al. [2006] and 
later work in this field was carried by Wang et al. [2007]. 
All the algorithms have some common steps: conversion 
to custom luminance/chrominance color space, 
independent encoding of 4x4 blocks to fixed length code. 
In Munkberg algorithm [2006][2007], the luminance is 
represented by minimum and maximum block values and 
additionally fourteen in-between values are found. Two 
quantization modes are proposed with uniform and non-
uniform quantization steps. The chrominance is sub-
sampled either horizontally or vertically. To encode 
resulting chrominance values they use a set of shapes 
each with four points for better fit to chrominance 
distribution. The compression ratio of Munkberg 
algorithm is 8bpp. Completely different approach was 
taken by Roimela et al. [2006]. They make use of 16-bit 
floating point integer bit pattern to represent the 
luminance data more compactly. The chrominance data is 
sub-sampled two times in each direction and the values 
are quantized to seven bits. The compression ratio of 
Roimela algorithm is 8bpp. Wang et al. propose an 
algorithm targeted for DirectX [Blythe 2006] platform 
which utilize DXTC compression and native filtering. 
The luminance data is divided into two ranges which are 
stored in alpha component of two RGBA textures. 
Remaining RGB components in both textures store 
chrominance and luminance residual values which are the 
difference between original and reconstructed luminance. 
These two textures are encoded by DXT5 resulting in 
16bpp. 

 

4 New algorithm 
 

The new algorithm was designed with the texture 
compression requirements outlined in section 2 taken into 
account. It is a block based fixed length coding 
compression algorithm. Each block of size 4x4 texels is 
compressed to 8bpp. Our aim was to support the same 
dynamic range as OpenEXR which is equal to 109. The 
whole scheme representing compression process of our 
algorithm is depicted on figure 1. We decided to use 
color space conversion to separate luminance and 
chrominance. The conversion outcome is HDR 
luminance and LDR chrominance component 
respectively. To compress the luminance component we 
employ our local fractal transform [Stachera and Rokita 
2006]. For chrominance we use Pereberin approach based 
on Haar wavelet transform [1999]. Since, the human 
visual system response to wide range of illumination is 
close to logarithmic function, therefore in our algorithm 
the compression is applied to logarithmic luminance. 
Further, to reduce the luminance dynamic range and thus 
to better fit the quantization levels, we store minimum 
and maximum value for each block. Those values are use 
for luminance float-integer mapping. The logarithmic 
transform and float-integer mapping are similar to HDR 
JPEG 2000 algorithm proposed by Xu et al. [2005]. But 
as opposed to this algorithm we utilize 
luminance/chrominance representation and we store per-
block scaling factors to reduce the dynamic range. The 



next sections discuss the design process of our algorithm 
which is related to successive compression steps               
(Figure 1). 

 
 

 
 

Figure 1. Compression scheme of proposed algorithm. 
 

Color space conversion. 
 

The RGB representation is not optimal for encoding, 
since each component requires the same accuracy. As 
most of the HDR algorithms, our aim was to concentrate 
all the HDR information into one component. It is 
possible by converting the RGB values to color space 
with separate luminance and chrominance components. 
Thus, the problem of HDR encoding is restricted to the 
luminance component. The chrominance component has 
low dynamic range. Moreover, low sensitivity of human 
visual system to the chrominance as compared to the 
luminance allows for coarse representation of the 
chrominance component. 

With the introduction of real-time HDR texture 
compression, there were proposed different color spaces. 
Generally, they represent the data by the luminance and 
chrominance. Munkberg logYuv [2006] color space 
transform computes the logarithmic luminance from RGB 
components using weights (0.299, 0.587, 0.114) as 
according to Rec. 601 [Poynton 2003]. Roimela 
simplifies the color transform with the goal of efficient 
decoding and to compute the luminance he uses hardware 
friendly weights (0.25, 0.5, 0.25). Wang [2007] employs 
four component color space called LUVW. In this space 
the luminance component L is computed as euclidian 
distance of RGB components. The chrominance 
components UVW are computed from RGB components 
by division by L, (R/L, G/L, B/L). The exception to the 
separate luminance coding is log[RGB] color space being 
a part of HDR JPEG 2000 algorithm proposed by Xu 
[2005]. In this space the logarithm function is applied to 
the RGB components.  

Munkberg logYuv color space is not optimal for 
hardware implementation due to the luminance weights. 
Wang uses four component LUVW color space which is 
most advantageous in case of his algorithm, but generally 
more compact representations are based on three 
components. Xu log[RGB] color space has potential 
disadvantage of representing all three RGB channels with 
the same accuracy. We chose Roimela color space 
transform for our algorithm. We found that it provides 
better decorrelation as compared to Munkberg logYuv for 
chosen HDR test image set (Figure 5) and at the same 
time it provides simplified hardware implementation. 
Additionally, in our algorithm we apply logarithmic 
function to the luminance. The forward and backward 
transform for modified Roimela color space are shown 
below: 
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Float-integer mapping 

 

In our algorithm we introduced an additional step called 
float-integer mapping to reduce the luminance block 
dynamic range and to make use of our local fractal 
transform [Stachera and Rokita 2006]. The motivation for 
using this mapping is that for most 4x4 HDR image 
blocks the difference between maximum and minimum 
value fits into the low dynamic range. This can be seen 
on figure 2 which represents the differences for HDR test 
image set (Figure 5). In this case around 99% of the 
blocks fits into the low dynamic range and can be 
represented on 8-bits. The rest of blocks fits into 9-bits 
precision and above. 

After applying the color space transform, the 
logarithmic luminance log(Y) values are in the range               
[-16, 16], and the chrominance values (u, v) are in the 
range [0,1]. For the luminance data, the mapping is 
preceded by finding the minimum and maximum value in 
the block as follows: 

 
 ))max(log()),min(log( maxmin YxYx ==  

 
These values are stored in the block code on 5-bits as               
1-bit sign and 4-bits module, where module represents 
the absolute value. Those values are used during the 
decompression process for inverse mapping.  

The logarithmic luminance block values are 
uniformly quantized to b-bits using the following 
equation: 
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The inverse mapping is done as follows: 
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Since, the chrominance values are in the range [0,1] we 
do not have to store the minimum and maximum value. 
Therefore, the chrominance data are directly mapped to 
the range [0, 255]. The resulting luminance and 
chrominance values are subject to local fractal and 
wavelet transform respectively.  
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Figure 2. Histogram of differences between maximum 

and minimum value for logarithmic luminance for all 4x4 
blocks from the HDR test image set (Figure 5). 
 

Local fractal transform 
 
For luminance compression we employ the local fractal 
transform which details can be found in [Stachera and 
Rokita 2006]. The introduction to the fractal compression 
is presented in [Lu 1997] and in [Fisher 1995]. The local 
fractal transform is based on modified local IFS (Iterated 
Function System) [Lu 1997]. The transform approximates 
the block by its rescaled version (Figure 3). Formally, the 
block is uniformly divided into non-overlapping blocks 
which are called range blocks R (2x2). Additionally, there 
is defined a domain block D (4x4) which constitutes the 
whole block. The relation between the domain block and 
the range blocks is as follows: 

3210 RRRRD ∪∪∪=  

(Figure 3a). Thus, the domain block D is the union of 
range blocks R. For each range block R there is defined a 
contractive transform w which maps on it domain block 
D: RDw →: . Due to the compact representation the 
contractive transform is of the form: 

rdDsDw +−= )()( ϕ , where: d  is the domain block 

mean, s is scaling factor, r  is the range mean and ϕ  is 

the geometric function. This transform uses domain block 
normalization as opposed to the one presented in 
[Stachera and Rokita 2006]. In compression process for 
each range block R we are computing the optimal 
parameters of the transform w [Fisher 1995]. Thus, the 
block luminance fractal code is represented by 
contractive transform parameters for each of four range 
blocks R: { }3 0,, =iiii rs ϕ . We use the following bit 

allocation for transform parameters: scale factor – 6-bits, 
range mean – 11-bits, iso – 3-bits. Iso parameter 
represents the geometric function ϕ  and as will be 

explained later, it essentially represents one of eight 
isometric operations. 

Applying the transform w (where 

rdDsDw +−= )()( ϕ  - inverse local fractal transform) 

for given range block R can be done in two phases. In the 
first phase, the domain block D is scaled to the size of 
range block R usually by averaging texel values. Since, 
the rescaled values of domain block are part of the fractal 
code in the form of range block means r , this step is 
omitted (Figure 3b). Then, the resulting values are 

normalized by subtracting the domain mean d , where 

4/)( 321 rrrrd o +++= ( Figure 3b). Finally, they are 

subject to geometric function which maps them on range 
block. The mapping can be done in eight different ways 
which comprise isometric operations such as rotations 
and reflections [Lu 1997]. In second phase, the resulting 
values are linearly processed on the basis of scaling 
factor s and range mean r . 
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Figure 3. Local fractal transform. 

 
 
Local wavelet transform 
 
For the chrominance compression we utilize two levels of 
Haar wavelet decomposition as proposed by Pereberin 
[1999]. This transform was chosen due to its compact 
representation and low computational complexity. The 
low resolution level is represented by one mean value for 
each chrominance component. The medium resolution 
level is approximated by one detail coefficient d which is 
multiplied by one of eight refining matrices RM 
[Pereberin 1999]. In the decompression process the mean 
m value is added to the detail coefficient multiplied by 
the refine matrix: m+d*RM[i] (inverse local wavelet 
transform), where i is the refine matrix index. The mean 
value m and the detail coefficient d are stored on 8-bits 
respectively [Pereberin 1999]. Three bits are used for the 
refine matrix index i. Thus, one chrominance component 
is represented by 19-bits.  
 
Decompression 
 
The decompression process is depicted on figure 4. For 
luminance data we first apply the inverse local fractal 
transform (section 4.3). Then we expand the compressed 
range on the basis of block minimum and maximum 
value to the range [-16, 16] (section 4.2). For the 
chrominance component we apply the inverse local 
wavelet transform (section 4.4). The resulting values are 
divided by 255 resulting in the range [0,1]. Next, the 
floating point component data is subject to color space 
conversion (section 4.1) to obtain HDR RGB data. The 
decompression process is done on per-texel basis giving 
access to individual block texels. 

 



 
 
Figure 4. Decompression scheme of proposed algorithm. 

 

5 Experimental results 
 
We chose twelve HDR images for our textures test set 
(Figure 5). The set is consisted of real photographs 
(Figure 5a-j) and computer generated images (Figure 5k, 
5l). The dynamic range for the set spans the values from 
2 to 9 in log10 domain (Figure 6). The problem with 
evaluation of HDR texture compression algorithms is that 
it is not possible to predict which part of the dynamic 
range will be used during rendering. Therefore, the 
compression algorithm must deliver the same quality for 
wide range of luminance levels. Using LDR image 
metrics for evaluation of HDR algorithms may be 
inappropriate. Thus, we adopted Log[RGB] RMSE [Xu 
et al. 2005] and mPSNR [Munkberg et al. 2006] metrics.  

The mPSNR metric is computed on the basis of tone 
mapped images. As a tone mapping operator, it is used a 
gamma-adjustment after exposure compensation: 
 

255
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Where I is the HDR image, c is the exposure 
compensation in f-stops, γ  is the display gamma and 

255
0][⋅ indicates clamping to integer interval [0,255]. For 

a set of exposures covering the HDR image range there is 
computed MSE error. The values of all MSE errors are 
averaged and used for PSNR error computation 
[Munkberg et al. 2006]. We used simplified version of 
this metric by separately computing PSNR values for 
chosen set of exposures. This means that after applying 
the tone mapping operator we calculate the standard 
PSNR error as used for RGB LDR images. The results 
with reconstructed images in full resolution (electronic 
version only) are shown on figure 9. Additionally, the 
error image for memorial and dani belgium (Figure 5i, 
5d) is shown on figure 10. 

The log[RGB] RMSE metrics [Xu et al. 2005] is 
computed according to the following formula: 
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The values ),,( bgr  are from the original texture and the 

values )ˆ,ˆ,ˆ( bgr  are from the reconstructed texture, where 

N is the number of texels in the texture. The motivation 
of measuring the error in logarithmic domain is that the 
values in this domain are more perceptually uniform.  

To better show the performance of our algorithm for 
different range of luminance levels, we computed the 
mean log[RGB] RMSE values for sets of blocks having 
the same dynamic range (Figure 7). The dynamic range 
for a block is computed as a difference between the 
maximum and minimum value in the block in log2 
domain (see section 4.2). The values from the chart on 
figure 7 should be evaluated along with the histogram on 
figure 2 which shows the blocks distribution depending 
on theirs dynamic range.  

The result of comparison of our algorithm with the 
state of the art algorithms can be found in table 1. In this 
case, the log[RGB] RMSE metric is computed for whole 
image. Our algorithms shows better results as compared 
to Romeila [2006] and Wang [2007] on Desk image. This 
may be due to the high variation of chrominance in this 
image, which is better capture by our algorithm. Visual 
evaluation was not possible due to the lack of publicly 
available encoders.  
 

a) MtTamWest b) atrium night c) big fog map 

d) dani belgium e) dani cathedral f) dani synagogue 

g) desk h) display 1000 i) memorial 

j) montreal k) rend 05 l) rend 08 

 
Figure 5. HDR test image set. 

 



 
 
Figure 6. HDR test image set (Figure 5) dynamic rage. 

 
 

 
 
Figure 7. Average Log[RGB] RMSE for block dynamic 

ranges (Figure 5). 
 
Images Our Wang* Romeila* Munkberg* 

big Fog Map 0,14 0,14 0,1 0,06 

memorial 0,34 0,69 0,26 0,14 

desk 0,51 2,92 1,14 0,25 

atrium night 0,32 - - - 

dani belgium 0,25 - - - 

dani cathedral 0,36 - - - 

dani synagogue 0,12 - - - 

display1000 0,4 - - - 

montreal 0,12 - - - 

MtTamWest 0,26 - - - 

rend05 0,12 - - - 

rend08 0,22 - - - 

 
Table 1. Log[RGB] RMSE error for test image set 

(Figure 5). (*) The first three results for Wang [2007], 
Roimela [2006] and Munkberg [2006] are available in 

[Munkberg et al. 2007]. 
 

6 Conclusion 
 

We have presented a new HDR texture compression 
algorithm. Our algorithm is able to effectively reduce the 
dynamic range. We prove that it is possible due to the 
low variation of block values. This allow us to compress 
the dynamic range by storing maximum and minimum 
value per block and applying the float to integer mapping. 

Thus, in most the cases the problem of HDR encoding 
can be simplified to LDR encoding. In the present 
algorithm we use our local fractal transform, but we plan 
to investigate other low complexity transform as well. 
Comparison with the state of the art methods shows that 
our algorithm gives comparable and better results to 
recent algorithms. Further improvement of image quality 
would be carried with more investigation into the local 
fractal transform parameters coding. At the moment we 
use uniform quantization but other form of non-uniform 
quantization can be useful for high dynamic range blocks.  
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Figure 9. HDR compression result for proposed algorithm for images: memorial (Figure 5i) and dani belgium (Figure 5d). 
The top row shows the original image while the bottom row shows our reconstruction with PSNR error. Each column 
represent images tone-mapped based on exposure c (see section 5). 
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Figure 10. Gamma corrected error images of square log differences: a) memorial (Figure 5i, 6), b) dani belgium (Figure 5d, 
6). 


