
R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 586–602, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Trust Management Languages and Complexity

Krzysztof Sacha

Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland
k.sacha@ia.pw.edu.pl

Abstract. Trust management is a concept of automatic verification of access
rights against distributed security policies. A policy is described by a set of cre-
dentials that define membership of roles and delegation of authority over a re-
source between the members of roles. Making an access control decision is
equivalent to resolving a credential chain between the requester and the role,
which members are authorized to use a resource. A credential is an electronic
document, formulated using a trust management language. This way, trust man-
agement languages are a tool for describing credentials and specifying access
control policies in a flexible and modifiable way. This paper discusses the ex-
pressive power of trust management languages, describes a new extension to
Role-based Trust Managements language RTT, and evaluates the complexity of
algorithm that is used for answering security queries.

Keywords: Access control, trust management, role-based trust management
language, credential graph, credential chain.

1 Introduction

The traditional access control mechanism assigns to each protected resource an access
control list (ACL), which enumerates the entities that have permissions to access the
resource [1]. A decision on whether to allow or to deny access to a resource is based
on a verification of identity of the requester. If the number of entities is big and many
entities may have the same access rights with respect to resources, then assigning
access rights to roles, i.e. sets of entities, rather than to individual entities, can help in
reducing the size of the access control problem [2]. Such a schema can easily be im-
plemented in such a system, in which the identity of entities that can make requests
for resources is known in advance, e.g. in the form of user accounts that are created
before the access to resources is really requested.

Quite another approach to access control is needed in open environments, in which
the identity of potential users is not known in advance. For example, the users are
identified by public keys and no user accounts are required. Trust management is a
concept of decentralized access control, in which the decisions are based on creden-
tials presented by the requesters, regardless of their identity. A credential is an elec-
tronic document, which describes a delegation of access rights from one entity (the
issuer) to another entity or a group of entities. Such an approach separates a symbolic
representation of trust (credentials) from the identity of users.

 Trust Management Languages and Complexity 587

A set of credentials describes a security policy in terms of roles, role membership
and delegation of authority between the members of roles. A security policy can be
decentralized, if the members of particular roles may issue the credentials locally.
Making an access control decision is equivalent to resolving a credential chain be-
tween the requester and the role, which is authorized to use the resource. This way,
trust management becomes a concept of automatic verification of access rights against
security policies [3]. The policies are created externally to the applications, and can be
modified without the need to modify the executable program code of the application.

Credentials are implemented as electronic documents, composed of statements in a
trust management language. Several languages to describe credentials and security
policies have been developed and described in the literature. The goal of this research
is to look at syntax, semantics and the expressive power of these languages, make
some extensions to a Role-based Trust Managements language RTT, and evaluate the
complexity of an algorithm that is used for answering security queries.

The remaining part of the paper is organized as follows. Related work is described
in Section 2. Trust management languages are summarized in Section 3. A motivating
example of a policy-based access control system in an open SOA environment is pre-
sented in Section 4. Possible system architecture is discussed in Section 5, and an
extension to RTT is described in Section 6. An algorithm for resolving a set of RTT
credentials that define a policy and an evaluation of computational complexity are
given in Section 7. The conclusions and plans for further research are in Section 8.

2 Related Work

There can be many independent entities in distributed computing environments, such
as SOA systems, with authority to control access to a variety of system resources.
Moreover, there can be a need of multiple entities to have input to the access control
policy for a single resource. A secure implementation of such a distributed access
control mechanism can be based on credentials that convey authorization to use a
resource from one entity to another. A credential is a digitally signed certificate,
which provides a copy of the public key of the issuer, the receiver and a description of
the authority that is delegated from the issuer to the receiver of this credential.

A few such distributed authorization environments have been implemented and de-
scribed in the literature. Examples are PolicyMaker [3], KeyNote [4], SPKI/SDSI [5]
and Akenti [6]. All those systems use languages that allow assigning privileges to
entities and use credentials to delegate permissions from their issuers to subjects.

In SPKI/SDSI (Simple Public Key Infrastructure/Simple Distributed Security In-
frastructure) a concept of distributed name space was introduced, according to which
an entity could define a local name, related to certain privileges with respect to system
resources, and then define members of the local name space or delegate responsibility
for the name space membership to another entities. The definition of names and dele-
gation of responsibility was expressed by means of credentials. An algorithm for
building the semantics of a given set of credentials was defined with efficiency of
order O(n3l), where n was the number of certificates and l was the length of ‘hops’ in
the longest responsibility delegation chain [5].

588 K. Sacha

The concept of distributed name space was moved at a higher level of abstraction
by the introduction of roles and Role-based Trust management languages [7-9].

There is a family of RT languages, with varying expressive power and complexity.
The basic language RT0 allows describing roles and role membership, delegation of
authority over roles and role intersection. The issuers as well as the members of roles
are entities, and no means for expressing complex security policies, such as threshold
policy, exists in this language.

RTT extends the expressive power of RT0 significantly, by adding manifold roles
and providing extensions to express threshold and separation of duties policies. A
manifold role is a role that can be satisfied only by a group of cooperating entities. A
threshold policy requires a specified minimum number of entities to agree before
access is granted. Separation of duties policy requires that different entities must hold
the conflicting roles. If a cooperation of these roles is required before access is
granted, then a set of entities is needed, each of which fulfils only one of these con-
flicting roles. Both of these two policies mean that some roles cannot be fulfilled by a
single entity and a group of entities must cooperate in order to satisfy these roles.

Apart of an informal interpretation, a formal definition of the language semantics,
which gives meaning to a set of credentials in the application domain, has been pro-
vided. In [8], constraint DATALOG was used as the semantic foundation for the RT
language family. According to this approach, credentials in RT were translated into
DATALOG rules. This way, the semantics was defined in an algorithmically tractable
way. A strict, set theoretic semantics of RT0 was defined in [9] and of RTT in [10,11].
An important difference between the two (RT0 and RTT) is such that RT0 supports
singleton roles only, and the meaning of a role is a set of entities, each of which can
fulfill this role, while RTT supports manifold roles, and the meaning of a role is a set
of groups of entities that fulfill the role.

Security queries can be resolved with respect to a set of credentials that define the
security policy within a system, by means of a credential graph, which is described in
Section 7. The nodes of this graph are roles and groups of entities, which define the
meaning of roles. Making a decision on the membership of a group of entities in a
given role is equivalent to checking whether a path from this group to the role exists
in the graph. An algorithm to construct a credential graph of a set of RT0 credentials
was introduced in [8]. An early version of the algorithm to construct a credential
graph of RTT credentials was described in [11], however, without an estimation of
computational complexity. An improved algorithm to construct a credential graph of
extended RTT is presented in Section 7, together with an evaluation of complexity.

3 Trust Management Languages

All RT languages are built upon a set of three basic notions: Entities, role names and
roles. An entity is someone who can participate in issuing certificates, making re-
quests to access a resource, or both. An entity can, e.g., be a person or a program
identified by a public key within a computer system. A role name represents access
rights with respect to system resources, similar to Admin, Guest or Simple user in
Windows operating system, granted by an entity. A role represents groups of entities

 Trust Management Languages and Complexity 589

(may be singletons) that have access rights related to a certain role name and granted
by the role issuer. Credentials are statements in a RT language, which are used for
describing access control policies, assigning entities to roles and delegating authority
to the members of other roles.

In this paper, we use nouns beginning with a capital letter or just capital letters, e.g.
A, B, C, to denote groups of entities. Role names are denoted as identifiers beginning
with a small letter or just small letters, e.g. r, s, t. Roles take the form of a group of
entities (role issuer) followed by a role name separated by a dot, e.g. A.r. A credential
consists of a role, left arrow symbol and a valid role expression, e.g. A.r ← B.s.

BNF specification of the RTT syntax can be written as follows.

<credential> ::= <role> ← <role-expression>
<role> ::= <entity-set> . <role-name>
<role-expression> ::= <entity-set>

| <role>
| <role> . <role-name>
| <role> ∩ <role
| <role> ⊕ <role>
| <role> ⊗ <role>

There are six types of role expressions, according to this specification, and six types
of credentials in RTT, which are interpreted in the following way:

A.r ← B – simple membership: a group of entities B can satisfy role A.r.

A.r ← B.s – simple inclusion: role A.r includes all members of role B.s. This is
a delegation of authority over r from A to B, as B may cause new
groups of entities to become members of role A.r by issuing cre-
dentials that define B.s.

A.r ← B.s.t – linking inclusion: role A.r includes role C.t for each C, which is a
member of role B.s. This is a delegation of authority over r from A
to all the members of role B.s.

A.r ← B.s ∩ C.t – intersection inclusion: role A.r includes all the groups of entities
that are members of both roles B.s as well as C.t. This is a partial
delegation from A to B and C.

A.r ← B.s ⊕ C.t – role product: A.r is a manifold role that can be satisfied by a union
set of one member of role B.s and one member of role C.t. How-
ever, the same person can play both of these roles.

A.r ← B.s ⊗ C.t – disjoint role product: A.r is a manifold role that can be satisfied by
a union set of one member of role B.s and one member of role C.t,
where both members are disjoint.

This allows expressing separation of duties policy, in which
different entities must hold the conflicting roles B.s and C.t.

In case when the roles are identical, e.g. A.r ← B.s ⊗ B.s, the
credential can express threshold policy in which two (or more, if
we use more credentials) members of B.s can jointly fulfill A.r.

590 K. Sacha

The syntax of a language describes the rules for constructing language expressions,
such as credentials in RTT. The semantics of a language describes the meaning of
expressions in the application domain. Such a definition consists of two parts [12]: A
definition of a semantic domain, which gives meaning to the language expressions,
and a semantic mapping from the syntax to the semantic domain. A set theoretic se-
mantics is the one that takes sets or power sets of entities as the semantic domain. If
singleton roles are considered, the meaning of a role can be a set of entities that fulfill
this role. If manifold roles are taken into account, the meaning of a role is a set of
groups (sets) of entities that fulfill the role.

Let E be a set of entities and R be a set of role names. Denote the power set of enti-
ties by F = 2E. Each element in F is a set of entities from E. Each element in 2F is a
set, composed of sets of entities from E. The semantic mapping can now be described
as a function:

Ŝ : 2E × R → 2F

that maps each role from 2E × R to a set of all such sets of entities, which are members
of this role. Such a mapping from the set of RTT roles to the power set of entities can
be defined formally in the language of first-order logic as shown in Table 1, where A,
B, C, X, Y are groups of entities, r, s, t are role names, A.r, B.s, C.t are roles, and
Ŝ (A.r) denotes the semantics of role A.r.

Table 1. The interpretation of first-order formulas in RTT

RTT credential Meaning of the credential

A.r ← B B ∈ Ŝ(A.r)

A.r ← B.s (∀x) (x ∈ Ŝ(B.s) ⇒ x ∈ Ŝ(A.r))

A.r ← B.s.t (∀x) (∀y) (y ∈ Ŝ(B.s) ∧ x ∈ Ŝ(y.t) ⇒ x ∈ Ŝ(A.r))

A.r ← B.s ∩ C.t (∀x) (x ∈ Ŝ(B.s) ∧ x ∈ Ŝ(C.t) ⇒ x ∈ Ŝ(A.r))

A.r ← B.s ⊕ C.t (∀x) (∀y) (x ∈ Ŝ(B.s) ∧ y ∈ Ŝ(C.t) ⇒ x∪y ∈ Ŝ(A.r))

A.r ← B.s ⊗ C.t (∀x) (∀y) (x ∈ Ŝ(B.s) ∧ y ∈ Ŝ(C.t) ∧ x∩y=φ ⇒ x∪y ∈ Ŝ(A.r))

SPKI/SDSI allows the first three types of credentials only. However, linking inclu-

sion of arbitrary length is allowed. This does not increase the expressive power of the
language, because a linking inclusion of arbitrary length, e.g. A.r ← B.s…t.u, can
always be substituted by a pair of credentials C.v ← B.s…t and A.r ← C.v.u. This way
linking inclusion of length l can always be substituted by a set of l credentials with
linking inclusions of length 2. Therefore, the complexity O(n3l) of the algorithm for
building the semantics of a given set of SPKI/SDSI credentials can, in fact, be consi-
dered as equal to O(n4) in terms of the number n of RT credentials.

The language RT0 allows the first four types of credentials, and supports singleton
roles only. The language RTT allows all six types of credentials and supports manifold
roles. The use of manifold roles is inevitable, because the members of roles defined
by the last two credentials are always groups rather than single entities.

 Trust Management Languages and Complexity 591

4 Motivating Example

Consider a student management system of a university composed of a set of nearly
independent faculties. The system offers a set of services for the university and for the
faculties, according to the concept of service-oriented architecture (SOA). The facul-
ties administer particular instances of each service separately. No centralized security
policy for the system exists. Instead, the service owner defines a security policy for
each service independently.

The university, the library, each faculty and each student has a public key and is an
entity, which can participate in issuing credentials and requesting services from the
system. The university defined a role that reflected the university structure and issued
the following set of credentials:

{University}.faculty ← {IT} // faculty of Information Technology
{University}.faculty ← {Chemistry} // faculty of Chemistry
............ // other faculties of the university

Each faculty of the university defined a set of roles that reflected the main actors of
the didactic process and issued a set of credentials:

{IT}.student ← {A} // A is an IT student
{IT}.teacher ← {X} // X is an IT staff member
{IT}.supervisor ← {X} // staff X can supervise students
............ // other entities within IT faculty

The following types of services were identified for the first release of this system.

1. Library Service. Offered full on-line access to the library resources. The owner of
the service was the university, which applied the following security policy: Access
was granted to all the students and teachers of all faculties of this university. The
access control list for the service contained a role {University}.library. Security poli-
cy was described by a set of two credentials:

{University}.library ← {University}.faculty.student
{University}.library ← {University}.faculty.teacher

2. Grade Book. A complex service with two separate entry points: For students – to
read the grades, and for teachers – to add new grades. Particular faculties of the uni-
versity owned separate instances of this service.

(a) The service offered the requesting student read access to all the grades for the
requester. Security policy for each instance of the service was defined by each owner.
Chemistry decided that access was granted to the students only, and no delegation of
the access rights was allowed. The access control list for the service contained a role
{Chemistry}.gradeVisitor. Security policy was described by a single credential:

{Chemistry}.gradeVisitor ← {Chemistry}.student

592 K. Sacha

IT faculty selected another policy. Access was granted to students, who could dele-
gate permission to another people, and these people could pass the delegation again.
Such a policy was described by the following credentials:

{IT}. gradeVisitor ← {IT}.student
{IT}. gradeVisitor ← {IT}. gradeVisitor.friend

IT student A could now delegate permission to read his or her grades to another per-
son, e.g. B, by issuing a new credential:

{A}.friend ← {B}

Because a member of role {A}.friend became also a member of {IT}.gradeVisitor,
then B could pass the delegation again to C:

{B}.friend ← {C}

It is important to note that the permission for delegation of access rights was an indi-
vidual decision of IT faculty, and other faculties could decide differently. Such a deci-
sion can be changed at any time by simply changing the set of existing credentials –
in this case, by removing the credential:

{IT}. gradeVisitor ← {IT}. gradeVisitor.friend.

If IT faculty removes this credential, then it will implement the same policy as Che-
mistry. No need for removing all the student’s “friend” credentials exists.

(b) Teacher’s entry point represented in fact a set of services to manipulate grades
received by students in particular courses. Only the teachers (one or more) assigned to
a course could add or change a grade. Therefore, there was a separate access control
list maintained for each course, which was identified by a course number NN.

IT faculty decided that an assigned teacher could delegate access to another teacher
(an assistant), but the delegates could not pass the permissions again. Such a policy
was implemented at IT for a course NN by an access control list that contained a role
{IT}.grade_NN and the following set of credentials:

{IT}.grade_01 ← {IT}.teacher_01
{IT}.grade_01 ← {IT}.teacher_01.assistant ∩ {IT}.teacher
{IT}.teacher_01 ← {X}
............ // the same for courses 02, 03,…

IT teacher X assigned to a course number 01 could now delegate permission to mani-
pulate grades in the course to another person, e.g. Y, by issuing a new credential:

{X}.assistant ← {Y}

The delegation was effective only when the delegate was an IT teacher. The delegate
could not pass the permission to another person.

3. Supervisor Assignment. The service allowed registering assignment of a student
to the selected supervisor. Separate instances of this service were owned by particular
faculties of the university. Security policy for each instance of the service was defined

 Trust Management Languages and Complexity 593

by the owner. IT faculty decided that the assignment was registered if the student as
well as the teacher agreed on this fact. The access control list for the service contained
a manifold role {IT}.assignment. Security policy was described by a single credential:

{IT}.assignment ← {IT}.student ⊗ {IT}.supervizor

Successful registration of student A to supervisor X resulted in adding the pair of enti-
ties {A, X} to role {IT}.superStudent, which was done by issuing a new credential by
the service:

{IT}.superStudent ← {A, X}

4. Course Registration. The service allowed a student to register for optional pro-
gram. The owner of the service was a faculty, which defined the security policy for
the service: The registration was valid when it was signed jointly by a supervisor and
the assigned student. The access control list for the service contained manifold role
{IT}.superStudent issued by the previous service (Supervisor assignment).

5 System Architecture

An SOA system consists of a number of services that can be located within multiple
separate systems from several business and administration domains, interconnected
by a computer network. For example, particular instances of the services described in
the previous section can be deployed to local servers, and administered by particular
faculties of the university. Service clients, i.e. students and teachers, can invoke the
services from remote, e.g. personal, computers.

Access rights to services established by the service owners can vary from one ser-
vice instance to another. If the access rights are expressed through policies and de-
scribed by sets of credentials, then those credentials must be stored somewhere in the
network and presented for verification, at each invocation of a service. The verifica-
tion of the access rights requires finding a credential chain, which confirms the mem-
bership of the requester in the role placed in the access control list of the service. This
is a complex process, which can be performed by a special service, called trust man-
agement (TM) service, and invoked as part of the client’s invocation. A general archi-
tecture of the system is shown in Fig. 1.

An important decision to make is to find the right place to store credentials. In
practice, credentials can be stored by requesters, by issuers or in a known place in the
network. SPKI/SDSI [5] as well as Akenti [6] assumes that credentials are presented
by the application, i.e. by the invoked service in Fig. 1. One another possibility is to

Fig. 1. Services and trust management servers in a SOA system

TM_service Client Service_1 Service_N

invocation access

…

control query

594 K. Sacha

store at least part of credentials by a TM-service located in the administration domain.
For example, each faculty can have a TM-service, which stores credentials issued by
this faculty. However, credentials acting as personal certificates that define the
attributes of particular entities can be stored by those entities, e.g., a credential:

{IT}.student ← {A}

can function as a student card, which is owned by the student. Credentials issued by
particular entities, i.e. students and teachers in our example, to delegate permissions,
can be stored by the subject entities.

After logging to a service, the client presents all the credentials, which are in his or
her possession, and the service passes those credentials to the TM-service and asks for
permission. TM-service builds the credential graph and resolves the query, using the
presented credentials as well as the credentials stored in a local memory. TM-service
can also look through the network in order to find other credentials.

Decentralized storage of credentials looks attractive, because it fits nicely into the
general ideas of distribution and loose coupling that stand behind service-oriented
architecture. However, the lack of control over the set of certificates exposes the sys-
tem on a danger of inconsistency and raises the questions of certificate revocation,
validity periods, etc. Neither of these questions can be answered by an analysis of the

credential graph. Therefore, the validity of certificates need to be assessed externally
to the authorization logic [13]. Such a solution splits the process of resolving security
queries into two separate layers, shown in Fig. 2, of the authorization logic, which
performs a credential graph analysis, and the certificate validation, which searches
through certificate revocation lists and verifies the validity periods with respect to the
local time. This way, TM-service plays a part of a local certification authority, with
the authority to decide, which credentials are taken into account, and which are not.

Single Sign-On. Consider another example adapted from [14]. There is a set of coo-
perating services (web sites), e.g. airline ticket reservation, car rental and hotel reser-
vation. The users are identified on these sites by means of user accounts that contain
access control data, such as user name and password, and other data, e.g. credit card

Remote Certificates

Local Certificates

Authorization Query

Credential graph Validation

Decision

TM service

Fig. 2. The structure of a trust management (TM) service

 Trust Management Languages and Complexity 595

numbers. When a user requests access to more than one service, the authentication of
his or her identity can be done separately on each site, or on one site that asserts the
user status to the other services. The latter possibility, which permits the user to enter
one name and password in order to use multiple services, is called a single sign-on
property of the access control system. It is convenient to the user, who need not repeat
a login procedure many times in sequence. The implementation of a single sign-on is
among the main goals of Security Assertion Markup Language (SAML 2.0), an
OASIS standard [14], which defines a language and a protocol to create, request and
pass the identity assertions between the interrelated services.

Trust management is quite another concept, in which the access control data is dis-
tributed among credentials, and no user accounts and no login procedure are used.
Instead, a user must present a set of credentials when invoking a service. Single sign-
on can mean in this case, that the user is not forced to resend the same certificates
many times in sequence, when invoking more than one service. The existence of a
trust management service can help in solving this problem. When a user accesses the
first service, the necessary certificates are sent to TM service. The certificates and the
credential graph that is built in the memory of TM service are valid for a predefined
period of time, and can be used within this period to resolve queries issued by another
services. For example, a teacher at IT, in the previous example, who gained access to
the grade book, need not resend {IT}.teacher ← {X} credential to access the library.

6 Local Certification Authority

Supervisor Assignment service, described in Section 4, acts as a centralized issuer of
the membership credentials for role {IT}.superStudent, which controls access to
Course Registration service. Each member of this role is a pair composed of a student
and the assigned supervisor. A decentralized approach to supervisor assignment could
relay on credentials issued by supervisors to students, without any contribution of the
faculty. For example, if supervisor X agrees to supervise students A and B, then he or
she may issue the following credentials to confirm the assignment:

{X}.myStudent ← {A}
{X}.myStudent ← {B}

The faculty may also decentralize decision-making on who can deputize X, if X is
temporarily unable to perform supervisory duties. To do this, new role {X}.supervisor
can be introduced, with the membership defined by means of credentials, like:

{X}.supervisor ← {X}
{X}.supervisor ← {Y}

If a faculty accepts such a decentralized approach to supervisor assignment, then Su-
pervisor Assignment service becomes useless, and role {IT}.superStudent, which
controls access to Course Registration service, can be defined by a credential:

{IT}.superStudent ← {IT}.supervisor.(supervisor ⊗ myStudent)

596 K. Sacha

Table 2. The meaning of new credentials in extended RTT

Extensions to RTT Meaning of the credential

A.r ← B.s(t ⊕ u) (∀x) (∀y) (∀z) (x ∈ Ŝ(B.s) ∧ y ∈ Ŝ(x.t) ∧ z ∈ Ŝ(x.u)
⇒ y∪z ∈ Ŝ(A.r))

A.r ← B.s(t ⊗ u) (∀x) (∀y) (∀z) (x ∈ Ŝ(B.s) ∧ y ∈ Ŝ(x.t) ∧ z ∈ Ŝ(x.u) ∧ y∩z=φ ⇒ y∪z
∈ Ŝ(A.r))

A.r ← B.s(t ∩ u) (∀x) (∀y) (x ∈ Ŝ(B.s) ∧ y ∈ Ŝ(x.t) ∧ y ∈ Ŝ(x.u) ⇒ y ∈ Ŝ(A.r))

Credentials of this type, which join linking inclusion with other operators in a sin-
gle role expression, do not exist in RTT or any other Role based Trust management
language. However, they can easily be added to the language with the semantics given
by first-order formulae shown in Table 2.

The new types of credentials do not increase the expressive power of the language,
however, they can help in reducing the number of roles and the number of credentials
that are necessary to define a security policy. An equivalent definition of role
{IT}.superStudent in RTT requires introduction of a new role and two credentials:

{X}superStudent ← {X}.supervisor ⊗ {X}.myStudent
{IT}.superStudent ← {IT}.supervisor.superStudent
Decentralized approach to supervisor assignment raises a practical problem of re-

solving a conflict between two different teachers, say X and Y, who can independently
agree to supervise a student, e.g. A, and issue credentials:

{X}.myStudent ← {A}
{Y}.myStudent ← {A}

Who of the two: X or Y is in this case responsible for signing course registration for
student A? The problem can be solved if the supervisor assignment credentials are
stored by TM-service (Fig. 1), which decides on the validity of credentials. Layered
architecture of the access control mechanism resembles slightly a layered framework
for modeling software and security policies introduced in [15].

7 Credential Graph

The semantics of a set P of credentials that define the security policy within a system
can be represented by a credential graph. The nodes of this graph are role expressions,
which are present in credentials, and the directed edges reflect inclusion of sets of
groups of entities, which define the meaning of those expressions. Making a decision
on the membership of a group X of entities in role A.r is equivalent to checking
whether a path from X to A.r exists in the graph.

Let P be a set of extended RTT credentials over a set E of entities and a set R of
role names. A credential graph of P is defined in the following way.

Definition (Extended RTT Credential Graph). Credential graph of a set P of ex-
tended RTT credentials is a pair GP = (NP , EP) comprising a set NP of nodes, which
are role expressions that appear in credentials from P and groups of entities from E,

 Trust Management Languages and Complexity 597

and a set EP of directed edges, which are ordered pairs of nodes from NP. The sets NP
and EP are the smallest sets that are closed with respect to the following properties:

1) If A.r ← e, where e is a role expression, belongs to P, then the nodes A.r and e
belong to NP and a credential edge (e, A.r) belongs to EP.

2) If role expressions B.s.t and B.s belong to NP, then for each X ⊆ E, such that X.t
belongs to NP and a path from X to B.s exists in GP, a derived edge (X.t, B.s.t) be-
longs to EP.

3) If role expressions B.s ∩ C.t, B.s, and C.t belong to NP, then for each X ⊆ E, such
that paths from X to B.s and from X to C.t exist in GP, a derived edge
(X, B.s ∩ C.t) belongs to EP.

4) If role expressions B.s ⊕ C.t, B.s and C.t belong to NP, then for each X, Y ⊆ E, such
that paths from X to B.s and from Y to C.t exist in GP, a derived node X∪Y belongs
to NP and a derived edge (X∪Y, B.s ⊕ C.t) belongs to EP.

5) If role expressions B.s ⊗ C.t, B.s and C.t belong to NP, then for each X, Y ⊆ E, such
that X∩Y=φ and paths from X to B.s and from Y to C.t exist in GP, a derived node
X∪Y belongs to NP and a derived edge (X∪Y, B.s ⊗ C.t) belongs to EP.

6) If role expressions B.s.(t ⊕ u) and B.s belong to NP, then for each X ⊆ E, such that
X.t and X.u belong to NP, node X.t ⊕ X.u belongs to NP. If a path from X to B.s ex-
ists in GP, then a derived edge (X.t ⊕ X.u, B.s.(t ⊕ u)) belongs to EP.

7) If role expressions B.s.(t ⊗ u) and B.s belong to NP, then for each X ⊆ E, such that
X.t and X.u belong to NP, node X.t ⊗ X.u belongs to NP. If a path from X to B.s ex-
ists in GP, and a derived edge (X.t ⊗ X.u, B.s.(t ⊗ u)) belongs to EP.

8) If role expressions B.s.(t ∩ u) and B.s belong to NP, then for each X ⊆ E, such that
X.t and X.u belong to NP, node X.t ∩ X.u belongs to NP. If a path from X to B.s ex-
ists in GP, then a derived edge (X.t ∩ X.u, B.s.(t ∩ u)) belongs to EP.

Credential graph GP of a set P of credentials consists of nodes and edges. Part of the
nodes can be defined by a static analysis of credentials from P. These nodes, called
static nodes, are roles, which stand at the left hand side of symbol ←, and role expres-
sions, which appear in credentials at the right hand side of symbol ←. Nodes that are
added according to properties 6 through 8 are counted as static nodes. Other nodes are
created dynamically in the process of building the graph, by repetitive scanning
through the set of credentials and executing role expressions with operators ⊕ and ⊗.
These additional nodes are union sets of entities, added to the graph according to
properties 4 and 5. Credential edges (property 1) are defined statically, while derived
edges (properties 2 through 8) are added dynamically.

One can note that dynamically added nodes can be connected directly only to role
expressions of type B.s ⊕ C.t, B.s ⊗ C.t and B.s ∩ C.t. In order to enhance the effi-
ciency of the graph building algorithm, the necessary search for paths within the
graph will be restricted to a subgraph composed of static nodes and all the edges be-
tween these nodes. If a path from a node of type B.s ⊕ C.t, B.s ⊗ C.t or B.s ∩ C.t to a

598 K. Sacha

certain node N is found, then paths from all groups of entities that are direct predeces-
sors of this node to N are also considered.

Example. To observe the construction of a credential graph, assume that the creden-
tials listed in Sections 4, excluding those related to Supervisor Assignment service,
and the credentials listed in Section 6 have been issued, and an IT student A tries to
register for an optional program.

To do this, A invokes Course Registration service of IT and presents a request
signed jointly by A and Y. The access control list of the service contains a manifold
role {IT}.superStudent, hence, the membership of pair {A, Y} in this role must be
verified. The service calls TM-server, which looks through the accessible credentials
and finds the following ones that are significant for resolving the query:

{IT}.superStudent ← {IT}.supervisor.superStudent
{IT}.supervisor ← {X}
{X}.supervisor ← {Y}
{X}.myStudent ← {A}

The authorization logic of the server builds a credential graph shown in Fig. 3. Small
circled numbers placed near the edges of the graph refer to the numbers of properties
in the definition of credential graph given above. After building the graph, TM-
service verifies that a path from {A, Y} to {IT}.superStudent exists, and confirms
authorization of A for registering for an optional course.

The complexity of the algorithm for building the credential graph of a set P of ex-
tended RTT credentials can be evaluated with respect to the number of credentials in P
(the cardinality of P), which is considered the input size of the problem. The method
of evaluation is by assessing the complexity of each step of the algorithm and then
counting the number of repetitions of particular steps. We assume that Dijkstra’s algo-

Fig. 3. Credential graph of the Course Registration service

{IT}.superStudent

{IT}.supervisor {IT}.supervisor.(supervisor ⊗ myStudent)

1

{X}

{A, Y}

IT Course Registration service

{X}.supervisor {Y}

{X}.myStudent {A}

{X}.supervisor ⊗ {X}.myStudent)

1

1

1

7

5

 Trust Management Languages and Complexity 599

rithm is used for finding paths between two nodes in the graph [16]. The complexity
of this algorithm is O(v2), where v is the number of nodes.

Let n be the number of credentials in P and m be the number of role expressions
other than roles and groups of entities in credentials in P. Obviously m ≤ n. Moreover,
let A, B, C, D, E, X, Y denote groups of entities from E.

The Algorithm (Creation of the Credential Graph)

1) For each credential A.r ← e in P, add nodes A.r and e to NP and add an edge
(e, A.r) to EP.

Remark. There are 2n nodes in the graph that has been built in step 1. The complexity
of step 1 is of order O(n).

2) For each node B.s(t ⊕ u), B.s(t ⊗ u) and B.s.(t ∩ u) in NP, if there exist a pair of
nodes X.t and X.u in NP, where X is an arbitrary group of entities, then add node
X.t ⊕ X.u, X.t ⊗ X.u or X.t ∩ X.u, respectively, to NP.

Remark. The number of nodes B.s(t ⊕ u), B.s(t ⊗ u), B.s.(t ∩ u) is not greater than m.
Hence, a search through NP in order to find pairs of nodes X.t and X.u is repeated at
most m times. The complexity of step 2 is of order O(n2).

The number of static nodes in NP is not greater than 3n.
Loop through the steps 3 through 6:

3) For each node B.s.t find all the reverse paths (i.e. paths that start in B.s and move
along edges in the backward direction) from B.s to the other nodes of the graph.
- If a reverse path exists from B.s to X and role X.t belongs to NP, then add an

edge (X.t, B.s.t) to EP.
- If a reverse path exists from B.s to e, where e equals D.u ⊕ E.v, D.u ⊗ E.y or

D.u ∩ E.v, then for each group X of entities, such that X is a direct predecessor
of e and role X.t belongs to NP, add an edge (X.t, B.s.t) to EP.

Remark. The number of nodes B.s, which are the initial nodes in searching for paths,
is not greater than the number m of role expressions B.s.t. Hence, the search for paths
is repeated at most m times.

4) For each node B.s ∩ C.t find all the reverse paths from B.s and from C.t to the other
nodes of the graph.
- If a reverse path exists from B.s to X and from C.t to X, then add an edge

(X, B.s ∩ C.t) to EP.
- If a reverse paths exist from B.s to e1 and from C.t to e2, where e1 as well as e2

are or role expressions of type D.u ⊕ E.v, D.u ⊗ E.v or D.u ∩ E.v, then select all
groups of entities X that are direct predecessors of e1 as well as of e2 and add an
edge (X, B.s ∩ C.t) to EP.

Remark. The number of nodes B.s and C.t, which are the initial nodes in searching for
paths, is not greater than 2m, hence, the search is repeated not more than 2m times.

5) For each node B.s ⊕ C.t and B.s ⊗ C.t find all the reverse paths from B.s and from
C.t to the other nodes of the graph. Select all the pairs of nodes e1, e2, such that

600 K. Sacha

paths from B.s to e1 and from C.t to e2 exist, and e1 as well as e2 are groups of enti-
ties or role expressions of type D.u ⊕ E.v, D.u ⊗ E.v or D.u ∩ E.v.

In case of expression B.s ⊗ C.t, in the following three points take into account
only those pairs X, Y, for which X ∩ Y = φ.

- If both nodes e1 and e2 are groups X and Y of entities, then add node X∪Y to NP
and add an edge (X∪Y, B.s ⊕ C.t) or (X∪Y, B.s ⊗ C.t), respectively, to EP.

- If one node, e1 or e2, is a group X of entities, while the other node is an expres-
sion e, where e equals D.u ⊕ E.v, D.u ⊗ E.v or D.u ∩ E.v, then select all the di-
rect predecessors of e that are groups of entities. For each such group Y add
node X∪Y to NP and add an edge (X∪Y, B.s ⊕ C.t) or (X∪Y, B.s ⊗ C.t), respec-
tively, to EP.

- If both nodes e1 and e2 are expressions of type D.u ⊕ E.v, D.u ⊗ E.v or
D.u ∩ E.v, then select all pairs X, Y of the direct predecessors: X of e1 and Y of
e2, which are groups of entities. For each of such pair add node X∪Y to NP and
add an edge (X∪Y, B.s ⊕ C.t) or (X∪Y, B.s ⊗ C.t), respectively, to EP.

Remark. The number of nodes B.s and C.t, which are the initial nodes in searching for
paths, is not greater than 2m, hence, the search is repeated not more than 2m times.

6) For each node B.s.(t ⊕ u) and B.s.(t ⊗ u) find all the reverse paths from B.s to the
other nodes of the graph.
- If a reverse path exists from B.s to X and roles X.t and X.u exist in NP, then add

an edge (X.t ⊕ X.u, B.s.(t ⊕ u)) or (X.t ⊗ X.u, B.s.(t ⊗ u)), respectively, to EP.
- If a reverse path exists from B.s to e, where e equals D.u ⊕ E.v, D.u ⊗ E.y or

D.u ∩ E.v, then for each group X of entities, such that X is a direct predecessor
of e and roles X.t and X.u exist in NP, add an edge (X.t ⊕ X.u, B.s.(t ⊕ u)) or
(X.t ⊗ X.u, B.s.(t ⊗ u)), respectively, to EP.

Remark. The number of nodes B.s, which are the initial nodes in searching for paths,
is not greater than m, hence, the search is repeated not more than m times.

The number of static nodes is not greater than 3n in a graph that is searched for paths
in steps 3 through 6 of the above algorithm. Therefore, the complexity of finding the
paths that begin in a given node is of order O(n2). The total number of nodes, which
are the initial nodes in searching for paths in steps 3 through 6 is also not greater than
2n. Hence, the search is repeated not more than 2n times, and the complexity of a
single pass through the loop (steps 3 through 6) is of order O(n3).

A single pass through the loop corresponds to a single search through the set of n
credentials. Each pass adds edges to the static part of the graph. The possibility of
adding an edge depends on the existence of certain paths in the graph, which means
that it depends on the sequence in which the credentials are processed. Repeating the
loop n times guaranties that all the possible sequences of credentials have been exer-
cised. Therefore, the complexity of the entire algorithm is of order O(n4).

 Trust Management Languages and Complexity 601

8 Conclusions

The main issue of public key infrastructure has been to provide secure means of au-
thentication entities, based on cryptographic methods and techniques. The next step in
developing an approach to the application security could be a research on politics and
procedures for authorizing the entities. Trust management is an attempt to define se-
curity policies in a decentralized way, based on a delegation of authority. This paper
describes a set of trust management languages, discusses their expressive power, sug-
gests an extension to Role-based Trust Managements language RTT and evaluates the
complexity of algorithm that is used for answering security queries in RTT.

Trust management languages SPKI/SDSI, RT0, RTT and extended RTT are built
upon the same set of basic operators for role membership, role inclusion, linking in-
clusion and role intersection. SPKI/SDSI allows linking inclusion of arbitrary length,
while the other languages allow linking inclusion of length two. This is not a signifi-
cant difference, because a credential with linking inclusion of length n can easily be
converted into n−1 credentials with the length of linking inclusion not greater than
two.

RTT and extended RTT support manifold roles and role product operators that are
not present in the other languages. This is a significant difference, because the added
features allow expressing threshold and separation of duties policies. Extended RTT
allows symmetrical superposition of the linking operator and the other operators of
role intersection and role product. This does not increase the expressive power of RTT
and is a ‘syntactic sugar’ that can help in reducing the number of credentials and thus
the size of the access control problem. The selected features of the four trust man-
agement languages are shown in Table 3.

Table 3. Roles and role expressions in the four trust management languages and SAML

Language Roles Manifold roles Symmetric linking

SPKI/SDSI no no no

RT0 yes no no

RTT yes yes no

Extended RTT yes yes yes

SAML 2.0 no no no

The security queries are resolved in trust management languages by building a cre-

dential graph and searching for a path within this graph. The complexity of building
the graph has been proved polynomial of order O(n4), with respect to the number n of
credentials at hand. It is interesting to observe that the order of complexity is the same
for extended RTT credential graph and for much simpler language used in SPKI/SDSI
environment.

Our plans for further research include implementation of a prototype of a trust
management service outlined in Section 5.

602 K. Sacha

Acknowledgments. This research was supported in part by the Ministry of Science
and Higher Education under the grant number 5321/B/T02/2010/39.

References

1. A guide to understanding discretionary access control in trusted systems. National Com-
puter Security Center, NCSC-TG-003, Maryland (1987)

2. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-Based Access Control Models.
IEEE Computer (2), 38–47 (1996)

3. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. In: 17th IEEE
Symposium on Security and Privacy, pp. 164–173. IEEE Computer Society Press (1996)

4. Blaze, M., Feigenbaum, J., Ioannidis, J.: The KeyNote Trust Management System Version
2. Internet Society, Network Working Group, RFC 2704 (1999)

5. Clarke, D., Elien, J.-E., Ellison, C., Fredette, M., Morcos, A., Rivest, R.L.: Certificate
chain discovery in SPKI/SDSI. J. Computer Security 9, 285–322 (2001)

6. Thompson, M.R., Essiari, A., Mudumbai, S.: Certificate-Based Authorization Policy in a
PKI Environment. ACM Trans. Information and System Security 6(4), 566–588 (2003)

7. Li, N., Mitchell, J.: RT: A Role-Based Trust-Management Framework. In: 3rd DARPA In-
formation Survivability Conference and Exposition, pp. 201–212. IEEE Computer Society
Press (2003)

8. Li, N., Winsborough, W., Mitchell, J.: Distributed Credential Chain Discovery in Trust
Management. J. Computer Security 1, 35–86 (2003)

9. Czenko, M., Etalle, S., Li, D., Winsborough, W.: An Introduction to the Role Based Trust
Management Framework RT. In: Aldini, A., Gorrieri, R. (eds.) FOSAD 2007. LNCS,
vol. 4677, pp. 246–281. Springer, Heidelberg (2007)

10. Felkner, A., Sacha, K.: The Semantics of Role-Based Trust Management Languages. In:
4th IFIP Central and East European Conference on Software Engineering Techniques, pp.
195–206 (2009)

11. Sacha, K.: Credential Chain Discovery in RTT Trust Management Language. In: Kotenko,
I., Skormin, V. (eds.) MMM-ACNS 2010. LNCS, vol. 6258, pp. 195–208. Springer, Hei-
delberg (2010)

12. Harel, D., Rumpe, B.: Modeling Languages: Syntax, Semantics and All That Stuff, Part I:
The Basic Stuff. Weizmann Science Press of Israel, Jerusalem (2000)

13. Chapin, P., Skalka, C., Wang, X.: Authorization in Trust Management: Features and
Foundations. ACM Comput. Survey 3, 1–48 (2008)

14. Ragouzis N. et al. (eds.) Security Assertion Markup Language (SAML) V2.0 Technical
Overview. OASIS Committee Draft, March 2008. Document ID sstc-saml-tech-overview-
2.0-cd-02 (2008),
http://www.oasis-open.org/committees/download.php/27819/

15. Reith, M., Niu, J., Winsborough, W.: Engineering Trust Management into Software Mod-
els. In: International Workshop on Modeling in Software Engineering. IEEE Computer
Society (2007)

16. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT
Press and McGraw-Hill (2001)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

