

1

ON THE SEMANTICS OF ARCHITECTURAL DECISIONS

KRZYSZTOF SACHA

Warsaw University of Technology
Nowowiejska 15/19, Warszawa, 00-665, Poland

k.sacha@ia.pw.edu.pl

The architecture of a software system results from decisions made by the developers throughout the software life cycle. Any

decision pertaining to software architecture is called an architectural decision. Architectural decision modelling captures the

dependencies that exist between the decisions and serves as a foundation for knowledge management and reuse. Several models

have been described in the literature, using natural language to explain the basic notions and class diagrams to show relations

between them. However, a formal definition of an architectural decision is still missing. This paper analyzes existing architectural

decision models and provides a formal background for the basic notions that all the models have consensus on. The major

contribution of this paper is twofold: to propose a set-theoretic definition of the semantics of architectural decisions; and to show

an explicit interpretation of basic relationships that exist in the architectural knowledge. The formalization can help in

understanding the meaning of architectural decisions and the meaning of relations that exist between the decision elements. UML-

based metamodel for architectural design decisions is also presented.

Keywords: Architectural decision; architectural knowledge; decision semantics; model; SOA.

1. Introduction

IEEE 1471 defines software architecture as the fundamental organization of a software system embodied in its

components, their relationships to each other and to the environment, and the principles guiding its design and

evolution [1]; a similar definition is given in ISO/IEC/IEEE 42010 [2]. The architecture of software can be

presented using UML diagrams, and described in an architectural description document, which captures and

communicates the results of the design process. A broad scope architecture description can be organized into a

set of views, each of which is a collection of models that represent one aspect of the entire system. A well-

known example of such a partitioning of the architectural description is the 4+1 views model [3]. Other aspects

of software, like the choreography of services in Service Oriented Architecture (SOA) can also be added.

Creating software architecture is not a single activity, but rather a long sequence of decisions made by the

developers and other stakeholders throughout the software life cycle. Any decision pertaining to software

architecture is called an architectural decision. No formal definition of this notion exists. The subject of

architectural decisions is usually related to non-functional concerns such as performance, security or

transactionality of services. However, functionality of software can also be taken into account, particularly in

software evolution projects where the cost of changes to the existing systems may compromise the requirements.

Several models of architectural decisions have been described in the literature [4-12], illustrated by class

diagrams to show basic notions and relations. Those models look similar but have some significant differences,

as pointed out in Section 2. Because a formal – i.e., based on solid mathematical foundations – definition of an

architectural decision is missing, several properties of the model elements cannot formally be decided. In this

paper, we present a set-theoretic definition of the semantics of architectural decisions. The other contribution of

this paper is a demonstration of the meaning of basic relationships that exist in the architectural knowledge. The

formalization can help in deep understanding of the meaning of architectural decisions and of the relations that

exist between the decision elements. The last part of the paper contains a meta-model based on the formal

definitions, which bridges the gap between conceptual and practical aspects of the software architecture design

process.

The remaining part of the paper is organized as follows. Section 2 discusses related work on modelling

architectural decisions. The semantics of architectural decisions is defined in Section 3 and a formal architectural

decision model is described in Section 4. Metamodel for architectural design decisions is outlined in Section 5.

The conclusions and plans for further research are given in Section 6.

2

2. Related Work

Architectural decision modelling can be used to document decisions that have already been made. Text templates

of attributes and illustrating diagrams are used to capture this knowledge [4,8,12-14]. More elaborate approaches

focus on modelling architectural decisions and the relationships that exist between the decisions within the

decision making process [5,6,10,11,15,16]. Tools to support particular approaches have been implemented [7-

10,17-20]. A few surveys on methods and the existing tools are available in the literature [21-23].

An architectural decision model introduced in [6] classifies architectural decisions into several types, shows

the lifecycle of these decisions, and defines the attributes that have to be captured before a decision can be made.

The most important attributes are: scope (context) and rationale that stands behind the decision. An architectural

decision is treated as an entity, which comprises both: A design problem and the solution. Alternative solutions

to the design problem are modelled as alternative decisions, which can evolve along with the design process in a

manner described by a state machine. The states can be, e.g., idea, tentative, decided, approved and rejected. In

addition, a set of relationships between the decisions is defined, to express dependencies that exist in the

architectural knowledge domain. The semantics of the model elements is defined informally using textual

descriptions.

A distinction between an architectural problem (a decision to make with many options open) and its solution

(a decision made) has been introduced in [5]. The separation of problems and solutions allows modelling the

alternative solutions and the decisions made over time in a more clear way. However, the relationships that exist

between different problems and different solutions are not defined in an explicit way. The semantics of

architectural decisions and their relationships is defined informally using text and figures. Little effort is made

towards reusability of architectural decision knowledge accumulated in the model.

A rich model described in [11] makes a clear distinction between an architectural problem (referred to as an

issue), a set of possible alternative solutions (referred to as alternatives) and the solution selected (referred to as

an outcome). Closely related issues can be grouped together into a hierarchy of topic groups. Topic groups,

issues and the related alternatives are organized into levels of abstraction (conceptual, technology and vendor

asset) and into layers corresponding to a SOA architecture model (process, service and integration).

Relationships between alternatives, alternatives and issues, and issues alone are defined across the entire model.

The resulting graph structure can show partial decision order. Metamodel describing concepts and their relations

is defined as an UML class diagram [11,16]. Formal semantics of the model elements has not been provided. A

significant effort towards reusability has been made, which resulted in a definition of Reusable Architectural

Decision Model for SOA.

To summarize, the basic concepts of architectural design issue (a problem), an alternative (a possible

solution), a rationale and the outcome (decision made on the problem) have consensus in all architectural

decision models.

3. The Meaning of Architectural Decisions

The architecture of software is shaped by decisions, which are made to solve problems encountered in the

software design process. For example, SOA systems can invoke services using synchronous or asynchronous

programming styles. Which style to use is a problem, which has at least two solution options, each of which

determines an architectural feature of the designed software system. Such an architectural option is called a

decision with the status of tentative in [6], a solution in [5] and an architectural decision alternative in [11]. The

problem itself is called a problem (solved by decisions) in [5] and an architectural decision issue (which

contains architectural decision alternatives) in [11]. However, it is not defined explicitly in [6]; instead, a relation

IsAnAlternativeTo between the decisions is used in order to group the options related to the same architectural

feature.

To put things in order, we present in this section a set-theoretic semantics of architectural decisions. The

formalization can help in deep understanding of the meaning of architectural decisions and of the relation

between architectural decisions and the architecture of software.

Designing a software system is a decision process of finding an acceptable solution, which fulfils the

requirements. Making a design decision is equivalent to excluding a group of systems, which do not comply with

the decision, and narrowing the solution space down to those systems that match the decision. Having this in

mind we can adopt the following set of basic definitions.

3

Let X be the set of all software systems, which can be implemented. The set is huge and unknown; however,

it exists and is finite (the number of atoms in the universe is finite; hence, the number of computer memory states

is also finite). We do not give any precise definition of software systems (set X); however, we believe that

software developers can agree on what a software system is. In other words, X is a primitive notion motivated

only informally, by an appeal to intuition and everyday experience. The other primitive notions are architectural

decision issues and architectural decision alternatives. We borrow the notation from [11] and denote the set of

architectural decision issues by ADIssue and the set of architectural decision alternatives by ADAlternative.

Let p  ADIssue be an architectural decision issue. The set of all possible solutions (alternatives) to issue p is

denoted A (p) where A (p)  ADAlternative. Making an architectural decision on issue p means selecting an

alternative a from A (p). The selected alternative becomes the outcome of the decision on issue p. Thus, the set

of all architectural decision outcomes is a subset of the set of alternatives, ADOutcome  ADAlternative.

An example of an architectural decision issue p can be the architectural pattern of a software system. The set

A (p) of possible solutions to issue p comprises layers, pipe and filter architecture, service component

architecture, etc. Each of those solutions is an alternative of a decision on issue p. Another example of an issue is

the protocol used in communication between the major system components. The set of possible solutions to this

issue comprises REST, SOAP and some other protocols. If we select REST, then the meaning of this selection is

the set of all software systems that use REST at the component level. If we select another alternative, e.g.,

SOAP, then we look at quite another set of systems. A taxonomy of architectural decision issues that refer to

SOA systems has been defined in [11].

The proposed semantics of the architectural decision model defines the meaning of architectural decision

alternatives, the meaning of outcomes of architectural decisions and the relations between issues and alternatives

in the set X of software systems.

Let p  ADIssue be an architectural decision issue. The outcome of issue p in system x, i.e., the alternative

selected and implemented in system x, is denoted x (p).

Definition 1. Systems x1, x2  X are architecturally equivalent with respect to issue p if and only if

x1 (p)  x2 (p).

Architectural equivalence introduced in Definition 1 is a relation archp  X  X, such that

(x1, x2  archp)  [x1 (p)  x2 (p)]

Lemma 1. Architectural equivalence archp of software systems with respect to issue p is an equivalence relation.

Proof. The thesis is true, because the identity relation () used to compare the alternatives of issue p in

Definition 1 is an equivalence relation on ADAlternative. □

The set of equivalence classes of relation archp forms a partition of X. Any two software systems of an

equivalence class are architecturally equivalent with respect to issue p. Therefore, we can identify an equivalence

class of relation archp with software architecture, and the quotient set Archp  X / archp with the set of all

software architectures, with respect to issue p. The equivalence class of a system x with respect to issue p is

denoted [x]p.

Definition 2. The semantics of an alternative a  A (p) is a set S (a)  X such that x (p)  a for each system

x  S (a).

Lemma 2. Semantics S (a) of alternative a is an equivalence class of relation archp on X.

Proof. Let x  X be a system such that x (p)  a. We will show that S (a)  [x]p. Assume x1  S (a). Then,

x1 (p) = a according to Definition 2. Hence, x1, x  archp according to Definition 1 and x1  [x]p. Now, assume

x1  [x]p. If this is the case, then x1 (p) = a according to Definition 1 and x1  S (a) according to Definition 2.

 □

The relation of architectural equivalence of software systems with respect to an issue p can easily be

extended into a relation with respect to a set of issues.

Let ap  ADIssues be a set of architectural decision issues.

4

Definition 3. Systems x1, x2  X are architecturally equivalent with respect to a set of issues ap if and only if

x1, x2  archp for each p  ap.

Architectural equivalence introduced in Definition 3 is a relation archap  X  X such that (x1, x2  archap)

 ( p  ap) [x1, x2  archp]

Lemma 3. Architectural equivalence archap  X  X of systems with respect to a set of issues ap is an

equivalence relation.

Proof. The thesis is true, because the relation archp used to compare software systems in Definition 3 is an

equivalence relation on X. □

The set of equivalence classes of relation archap forms a partition of X. Any two software systems of an

archap equivalence class are architecturally equivalent with respect to all issues of the set ap. Therefore, we can

look at an equivalence class of relation archap as a software architecture with respect to a set of issues ap. The

quotient set Archap  X / archap is the set of software architectures, which are different with respect to

architectural decision issues of ap. The equivalence class of a system x with respect to a set of issues ap is

denoted [x]ap.

Software design process comprises a set of architectural decisions, each of which narrows the set of feasible

software systems down. At the beginning, before the first decision has been made, the solution space is equal to

set X of all software systems. When the first decision ap1 on issue p1 is made, the solution space reduces to

S (ap1). The next issue p2 is considered within the scope of S (ap1). When the design continues and decision ap2

on issue p2 is made, the solution space reduces down to S (ap1)  S (ap2). This way, the designer decides among

alternatives of subsequent issues and the outcomes of those decisions constitute the design.

Definition 4. A design is a partial function d: ADIssue  ADAlternative, which defines the outcomes of

architectural decision issues.

Function d is partial, because not all issues of ADIssue need to be resolved. For example, if the

implementation method in Figure 1 is Java, then the issue of BPEL version need not be considered. The domain

of function d is denoted Dom (d), and the range is denoted Ran (d) where Dom (d)  ADIssue and Ran (d)

 ADAlternative.

Definition 5. The semantics of a design d: ADIssue  ADAlternative is a set S (d) of software systems such that

S (d)  ∩pDom(d) S (d (p)).

Example 1. To exemplify the definition of design d, consider a process of defining a high level architecture of a

software system. The process can start with issue p1 of choosing the general architectural pattern of the system.

Assume that the selected alternative ap1 is service component architecture. This decision reduces the solution

space to set S (ap1) of systems that comply with service component architectural pattern. Now, one can decide on

issue p2 of choosing the implementation technology. Decision ap2 to select Java (Figure 1), reduces the solution

space to service component architecture implemented in Java. Then, issue p3 of selecting the communication

protocol can be considered. Assume that the outcome ap3 of this decision is to select SOAP. The resulting design

d is a function from design issues ADIssue to possible solutions ADAlternative such that:

 d (architectural pattern) = service component architecture

 d (implementation technology) = Java

 d (communication protocol) = SOAP

The semantics of design d is a set of software systems that comply with service component architecture, are

implemented in Java and use SOAP for the component communication.

Design d defines a set of issues related to the organization of software components, together with a set of

solutions recommended to those issues. The semantics of design d is the set of software systems that solve the

5

issues of Dom (d) in the same way, i.e., the set of systems that have the same architecture with respect to issues

of Dom (d).

Let d: ADIssue  ADAlternative be an arbitrary design.

Theorem 1. Semantics S (d) of a design d is an equivalence class of relation archDom(d) on X.

Proof. Let x  X be a software system such that x (p)  d (p) for each p  Dom (d). We will show that

S (d)  [x]Dom(d). Assume x1  S (d). Then, x1  S (d (p)) for each p  Dom (d), according to Definition 5, and

x1 (p) = d (p) for each p  Dom (d), according to Definition 2. Hence, x1, x  archp for each p  Dom (d),

according to Definition 1, and x1, x  archDom(d) according to Definition 3. Now, assume x1  [x]Dom(d). If this is

the case, then x1, x  archp for each p  Dom (d), according to Definition 3, x1 (p) = x (p)  d (p) for each

p  Dom (d), according to Definition 1, and x1  S (d) according to Definition 5. □

4. Architectural Decision Model

The architectural alternatives define pieces of the software architecture, which have been designed to solve a

variety of architectural decision issues. Some of those pieces can work together, while the others cannot. Some

of those pieces must be applied together. The ability to work together is expressed by a set of relations:

isCompatibleWith, isIncompatibleWith and forces, which are defined between architectural decision alternatives

in [11]. A conceptually similar, yet different, set of relations: Constrains, Forbids and ConflictsWith are defined

between decisions in [6]. No such or similar relations are defined in [5].

Architectural alternatives and the outcomes of architectural decisions influence the set of architectural

decision issues, which have to be solved in the future. The influence is partially captured by relations Enables

and Comprises in [6], Depends on and Refines in [5], and triggers and decomposesInto in [11]. The relations

defined by different authors are conceptually similar, but a precise comparison of their meaning is difficult,

because of the lack of formally defined semantics. In all cases, however, these relations introduce partial

ordering of architectural decisions that are made in a software design process.

The model of architectural decisions is a graph, the nodes of which are issues and alternatives, and edges are

relations defined on issues and alternatives. An example graph showing a subset of issues that must be resolved

when implementing components in Service Component Architecture (SCA) is shown in Fig. 1. The meaning of

the architectural decision model is defined in [5,6,11] only informally by textual explanations and illustrating

diagrams. In this Section we propose a formal definition of the model semantics, which includes architectural

issues, alternatives and a set of relations.

Fig. 1. Sample architectural decision model for a service component implementation. Issues: Implementation method, Scope (of a Java

module), BPEL version (for a BPEL implementation), Communication protocol. Alternatives: all the other circles.

BPEL

IMPL.
METHOD

PROCESS

C++

JAVA

COMM.
PROTO-

COL

REST

SOAP

TRIGGERS

T
E

C
H

N
O

L
O

G
Y

SERVICE

STATE-
LESS

SESSION

SCOPE

BPEL
VERSION

BPEL
4PEOPLE

WS-
BPEL V

E
N

D
O

R
 A

S
S

E
T

TRIGGERS

ISCOMPATIBLEWITH

ISCOMPATIBLEWITH

6

4.1. Logical Relations between Alternatives

Let p1, p2  ADlssue be arbitrary architectural decision issues and a1, a2  ADAlternative be arbitrary

alternatives in those issues, such that a1  A (p1), a2  A (p2). The following relations between the alternatives

are defined.

Definition 6. Alternative a1 is compatible with a2, if their semantics are overlapping:

isCompatibleWith (a1, a2)  [S (a1)  S (a2)  ].

Definition 7. Alternative a1 is incompatible with a2, if their semantics are disjoint:

isIncompatibleWith (a1, a2)  [S (a1)  S (a2)  ].

Definition 8. Assume that p1  p2 and a1  a2. Alternative a1 forces a2, if a1 is compatible with a2 and is

incompatible with any other alternative in p2:

forces (a1, a2) 

[isCompatibleWith (a1, a2)  (aiA(p2): ai  a2) isIncompatibleWith (a1, ai)].

It can easily be seen that relation isCompatibleWith is symmetric and reflexive, while isIncompatibleWith is

symmetric and irreflexive. The relations are complementary, i.e., any two alternatives are either compatible or

incompatible, but not both. An alternative can force only a compatible one.

Similar relations, with the same names: isCompatibleWith, isIncompatibleWith and forces have been

introduced in [11] at an intuitive level, without giving any formal semantics. This makes a comparison of those

definitions with the above ones difficult, yet not impossible. One difference is that the three relations are

assumed mutually exclusive and exhaustive in [11], while according to our definitions, only two relations

isCompatibleWith and isIncompatibleWith are complementary; relation forces is a subset of isCompatibleWith.

The reasoning behind our definitions is twofold. First, any two alternatives can either work together or not,

therefore the choice between isCompatibleWith and isIncompatibleWith is mutually exclusive and exhaustive.

Second, choosing an alternative can force to choose another alternative, only if both of them can work together.

Therefore, these alternatives must be compatible.

Another difference between the definitions relates to the properties of relation isCompatibleWith. It is

claimed in [11] that the relation is transitive. To verify this claim, let we look at an example.

Example 2. Figure 1 shows an architectural decision model for an SCA service component implementation. Java

components can implement SOAP protocol, hence, alternatives: Java and SOAP are compatible. BPEL

components can also implement SOAP, therefore, alternatives: WS-BPEL and SOAP are also compatible. But

either we implement the component in Java or in BPEL. Alternatives: Java and WS-BPEL are not compatible.

This shows that isCompatibleWith relation is not transitive.

Relation isCompatibleWith plays a role in the software design process. It is not transitive; hence, it is not an

equivalence relation and cannot be used to partition the model into equivalence classes. However, this relation

can be used to isolate consistent slices of a design, which are composed of alternatives that can all work together.

Let Alt  {a1,… an} be an arbitrary set of alternatives to a set of architectural decision issues {p1,… pn}, ai  A (

pi

). The semantics of Alt is set S (Alt) of software systems: S (Alt)  ∩aAlt S (a).

Definition 9. Set of alternatives Alt  ADAlternative is consistent, if S (Alt)  .

Lemma 4. If Alt  {a1,… an} is a consistent set of alternatives, then isCompatibleWith (ai, aj), for all i, j  n.

Proof. Assume isIncompatibleWith (ai, aj), i, j  n, for an arbitrary pair of alternatives from Alt. Then,

S (ai)  S (aj)   by definition 7, which leads to S (A)  . □

Design d is feasible, i.e., S (d)  , if Ran (d) is a consistent set of alternatives. This means, according to the

above lemma, that any two outcomes of a feasible design d (pi), d (pj) are compatible for each pi, pj  Dom (d).

7

4.2. Decision Dependencies

Architectural decisions made on design issues are the basic building blocks of a software design process. The set

of issues, which have to be solved, is not constant throughout the design, but new issues can be created by

decisions that have been made earlier. This dependency is covered by triggers relation between alternatives and

issues.

Definition 10. The domain of an architectural decision issue p  ADIssue is set S (p)  X, such that

S (p)  UaA(p) S (a).

Let p1, p2  ADlssue be arbitrary architectural decision issues, a  A (p1) be an alternative in issue p1, and

a1, …ak  A (p2) be the set of alternatives in issue p2.

Definition 11. Alternative a triggers issue p2, if the domain of p2 includes the semantics of a, and alternative a is

compatible with all the alternatives in p2:

triggers (a, p2)  [S (a)  S (p2)   ai  A (p2) isCompatibleWith (a, ai)].

The rationale behind this definition is the following. Inclusion S (a)  S (p2) means that after selecting

alternative a, the design must be implemented within the domain of issue p2; if this was not the case, then the

system could be implemented without deciding on p2, within S (a) – S (p2). Compatibility condition means that

the set of software systems S (a) defined by alternative a can be partitioned into a family of smaller sets

S (a1),… S (ak).

A complex issue p can be decomposed into a set of simpler issues tha reside at the same architectural level,

i.e., conceptual, technology or vendor asset. Relation decomposesInto expresses functional aggregation of

concerns, and allows splitting a complex issue into a set of issues, each of which addresses a distinct aspect of

software [11]. The solution of the complex issue is an intersection of solutions to the aggregated issues.

Let p, p1,…pn  ADlssue be a set of architectural decision issues and let ap, ap1,…apn  ADOutcome be the

outcomes of decisions on those issues.

Definition 12. Issue p decomposes into issues p1,…pn, if the semantics of each alternative a in p is equal to the

semantics of a consistent set Alta of alternatives a1,…an in p1,…pn, respectively:

decomposes (p, p1,…pn) 

(aA(p)) (Alta{a1,…an}) [(i  n) (ai  A (pi))  (S (a)  ∩i  1..n S (ai)].

Lemma 5. Relation decomposesInto is transitive.

Proof. The relation is defined using set intersection, which is a transitive operation. □

The formula in Definition 12 is valid also for the outcomes. If one decides on issue p and selects the outcome

ap  A (p), then the set Altap  { ap1,…apn } defines the outcomes of issues p1,…pn, i.e.: S (ap)  ∩i  1..n S (api).

5. Metamodel for architectural design decisions

Software architecture is a result from decisions made throughout the long term process of software design and

evolution. This process consists of decisions that are made, and then potentially changed in response to changes

in the business environment. If we want to preserve the past experience, we should model not only the current

software architecture but also its change over time. This can be done by the appropriate software tools.

A domain metamodel for capturing architectural decisions is shown in Figure 2. It uses UML classes to

introduce the three basic entities defined in Section 3: ADIssue, ADAlternative and ADOutcome. The attributes

of those entities are similar to the ones introduced in [11]. An instance of ADIssue describes a single

architectural decision issue. The name attribute gives identity to each issue and scope identifies the design

models affected by the issue. The problemStatement attribute defines the issue itself. Additional explanatory

information on the issue is pointed to by backgroundReading. The decisionDrivers attribute captures forces that

influence the decision on the architectural design issue [15]. As the system evolves, new issues can arise and

new instances of ADIssue can be added. A modified issue is viewed as a new one; therefore no attributes of type

8

modified... are present. The status tells the architect whether the issue is open, i.e., has to be solved, solved, or

closed, i.e., withdrawn and perhaps substituted by a new one. The meaning of decomposesInto association is

given in Definition 12.

An instance of ADAlternative describes a single alternative in an architectural decision issue. The description

attribute defines the alternative, i.e., gives a possible solution to the architectural decision issue. References to

additional explanatory information on the alternative, points in favor and points against the alternative are listed

in backgroundReading, pros and cons, respectively. The links between an issue and the alternatives in this issue

are given by isAlternativeIn association. Each alternative is linked to exactly one issue, while an issue may have

many alternative solutions. The meaning of triggers association is given in Definition 11.

Instances of ADOutcome represent decisions on issues. Any such decision is linked to an issue by

isOutcomeOf association, and to the chosen alternative in this issue by chooses association. Multiplicities "many-

to-one " of both associations indicate that decisions may change over time in the course of the software evolution

process. When a new decision on an issue is made, a new instance of ADOutcome is added, but no instances are

removed. This way, all the past design knowledge and experience is preserved and can be reused if needed. If a

modification to the system architecture is considered, the designer can easily find all the previous decisions

related to the issue at hand, together with the justification of their choice or removal.

Fig. 2. UML metamodel for architectural decision modelling.

The current architecture of software is defined by the set of all the current outcomes of the architectural

decisions issues. The set of the current outcomes define the design function d introduced in Definition 4. The

domain of function d consists of issues linked by isOutcomeOf and the range of d consists of alternatives linked

by chooses association. The order of making architectural decisions in a software project should comply with the

direction of both relations triggers and decomposesInto.

The metamodel described in this section can be used as a basis for building the supporting software tools. In

fact, several such tools have already been built. For example, a tool [18] to visualize architectural design

decision model [6], Archium tool [19] to support the model introduced in [5], Architectural Decision Knowledge

Wiki [20] to present the model introduced in [11]. The tools mentioned above are capable to store, retain and

present the architectural knowledge during software design and evolution. The properties of the architectural

decision model proved in this paper can enable the next generation tools to verify the model consistency.

name: String
status: String
removeJustification: String
chooseJustification: String
assumptions: String
consequences: String
decidedBy: Role
decidedWhen: Timestamp
changedWhen: Timestamp

ADOutcome

*

chooses

1

*

triggers

1

isAlternativeIn

isOutcomeOf

*

1

decomposesInto

1 *

1

*

name: String
scope: String
problemStatement: String
backgroundReading: String
decisionDrivers: String
status: String
priority: String
phase: String
identifiedBy: Role
identifiedWhen: Timestamp

ADIssue

name: String
description: String
backgroundReading: String
pros: String
cons: String
knownUses: String
designedBy: Role
designedWhen: Timestamp

ADAlternative

9

6. Conclusions

In this paper, we presented an architectural decision model based on the work described by others in the

literature [5,6,10,11,15], and defined a formal semantics for the basic concepts and relationships that exist in the

architectural knowledge. The formalization can help in understanding the meaning of architectural decisions and

the relations that exist between the decision elements, i.e., issues, alternatives, and outcomes. The definition of

architectural decision semantics is general and does not relate to any particular type of the architecture, e.g.

layered or SOA.

The decision model introduced in Section 4 may serve as a basis for implementing a supporting software

tool. Aiming at this goal, we defined in Section 5 an UML-based metamodel, capable of capturing the currently

valid architectural decisions as well as the history of decision changes. The properties of the architectural

decision model proved in Sections 3 and 4 can be used by the tool as rules to follow in verifying the model

consistency.

Future work concerns aspects related to the evolution of SOA systems. Although issues located in different

architectural layers of a SOA system (business process, services and service components) influence each other,

the need for evolution originates in the business. A business processes can be specified using Business Process

Modelling and Notation (BPMN), and implemented as a network of communicating services. A need to change

the current business process may be compromised by the existing configuration of services. These constrains can

be expressed by additional relations. We are working on a transformational approach to business process

evolution and implementation in SOA [24].

References

[1] IEEE Recommended Practice for Architectural Description of Software-Intensive Systems, IEEE 1471, 2007.

[2] Systems and software engineering  Architecture description, ISO/IEC/IEEE 42010, 2011.

[3] P. Kruchten, Architectural Blueprints – The “4+1” View Model of Software Architecture, IEEE Software 12 (6) (1995)

42–50.

[4] J. Tyree and A. Akerman, Architecture decisions: Demistyfying architecture, IEEE Software 22 (2) (2005) 19–27.

[5] A. Jansen and J. Bosch, Software Architecture as a Set of Architectural Design Decisions, in Proc. 5th Working

IEEE/IFIP Conf. on Software Architecture, IEEE Computer Society, 2005, pp. 109–120.

[6] P. Kruchten, P. Lago and H. van Vliet, Building up and reasoning about architectural knowledge, in Proc. 2nd Int.

Conf. on the Quality of Software Architectures (QoSA 2006), LNCS 4214, Springer, Heidelberg, 2006, pp. 43–58.

[7] M.A. Babar, I. Gorton and B. Kitchenham, A framework for supporting architecture knowledge and rationale

management, in Rationale Management in Software Engineering, eds. A.H. Dutoit, R. McCall, I. Mistrik and B. Paech,

(Springer, 2006), pp. 237–254.

[8] R. Capilla, F. Nava and J.C. Dueñas, Modeling and Documenting the Evolution of Architectural Design Decisions, in

Proc. 2nd Workshop on Sharing and Reusing Architectural Knowledge – Architecture, Rationale, and Design Intent,

IEEEXplore, 2007.

[9] A. Tang, Y. Jin and J. Han, A rationale-based architecture model for design traceability and reasoning, J. Syst. Software

80 (6) (2007) 918–934.

[10] R.C. de Boer, R. Farenhorst, P. Lago, H. van Vliet, V. Clerc and A. Jansen, Architectural Knowledge: Getting to the

Core, in Proc. 3rd Int. Conf. on the Quality of Software Architectures (QoSA 2007), LNCS 4880, Springer, Heidelberg,

2008, pp. 197–214.

[11] O. Zimmermann, J. Koehler, F. Leymann, R. Polley and N. Schuster, Managing architectural decision models with

dependency relations, integrity constraints, and production rules, J. Syst. Software 82 (8) (2009) 1249–1267.

[12] A. Jansen, P. Avgeriou and J. van der Ven, Enriching Software Architecture Documentation, J. Syst. Software 82 (8)

(2009) 1232–1248.

[13] N.B. Harrison, P. Avgeriou and U. Zdun, Using Patterns to Capture Architectural Decisions, IEEE Software 24 (4)

(2007) pp. 38–45.

[14] M.A. Babar, T. Dingsoyr, P. Lago and H. van Vliet (eds.), Software Architecture Knowledge Management: Theory and

Practice (Springer, Berlin, 2009.

[15] U. van Heesch, P. Avgeriou and R. Hilliard, Forces on Architecture Decisions – A Viewpoint, in Proc. Joint 10th

Working IEEE/IFIP Conf. on Software Architecture & 6th European Conf. on Software Architecture, IEEE Computer

Society, 2012, pp. 101–110.

[16] R. Capilla, O. Zimmermann, U. Zdun, P. Avgeriou and J.M. Küster, An Enhanced Architectural Knowledge

Metamodel Linking Architectural Design Decisions to other Artifacts in the Software Engineering Lifecycle, in Proc.

5th European Conf. on Software Architecture (ECSA 2011), LNCS 6903, Springer, Heidelberg, 2011, pp. 303–318.

[17] A. Zalewski, S. Kijas and D. Sokołowska, Capturing Architecture Evolution with Maps of Architectural Decisions 2.0,

in Proc. 5th European Conf. on Software Architecture (ECSA 2011), LNCS 6903, Springer, Heidelberg, 2011, pp. 83–

96.

10

[18] L. Lee and P. Kruchten, A Tool to Visualize Architectural Design Decisions, in Proc. 4th International Conference on

Quality of Software-Architectures: Models and Architectures (QoSA 2008), LNCS 5281, Springer, Heidelberg, 2008,

pp. 359-362.

[19] A. Jansen, J.S. van der Ven, P. Avgeriou and D.K. Hammer, Tool Support for Architectural Decisions, in Proc. 6th

IEEE/IFIP Working Conference on Software Architecture (WICSA 2007), IEEE Computer Society, 2007, pp. 44-53.

[20] N. Schuster and O. Zimmermann, Architectural Decision Knowledge Wiki, IBM alphaWorks, March 2008,

http://www.alphaworks.ibm.com/tech/adkwik.

[21] M. Shahin, P. Liang and M.R. Khayyambashi, Architectural Design Decision: Existing Models and Tools, in Proc.

Joint 8th Working IEEE/IFIP Conf. on Software Architecture & 3rd European Conf. on Software Architecture, IEEE

Computer Society, 2009, pp. 293–296.

[22] A. Tang, P. Avgeriou, A. Jansen, R. Capilla and M.A. Babar, A comparative study of architecture knowledge

management tools, J. Syst. Software 83 (3) (2010) 352–370.

[23] R. Weinreich and I. Groher, A Fresh Look at Codification Approaches for SAKM: A Systematic Literature Review, in

Proc. 8th European Conference on Software Architecture (ECSA 2014), LNCS 8627, Springer, Heidelberg, 2014, pp.

1–16.

[24] A. Ratkowski, K. Sacha and A. Zalewski, Optimization of Business Processes in Service Oriented Architecture, in

Proc. 2012 IEEE Enterprise Distributed Object Computing Conf. Workshops, IEEE Computer Society, 2012, pp. 42–

50.

http://www.alphaworks.ibm.com/tech/adkwik

