
Verification and Implementation of Dependable Controllers

Krzysztof Sacha
Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland

e-mail: k.sacha@ia.pw.edu.pl

Abstract
A method is described for modeling, verification and automatic generation of code for PLC

controllers. The modeling of requirements and the implementation of code are based on a
definition of a finite state time machine. The verification process uses UPPAAL, a model
checking tool for the networks of timed automata. A conversion between both models is done
automatically. The method starts from modeling the desired behavior of the controller by means
of an UML-based state machine diagram, and ends-up with a complete program in one of the
IEC 1131 languages.

1. Introduction

The goal of our research is to find a method for automatic programming of PLC controllers,
which are used in industry for solving time- and safety-critical problems, like traffic or process
control. The starting point of our method is UML state machine diagram, which provides a
means for writing a specification at a suitable high level of abstraction. Such an abstract
specification can be validated by the user, verified against safety requirements and translated
automatically into a program code of a guaranteed correctness and safety of the implementation.
Such a development process requires a formal method for defining the semantics of the
specification, the means for safety validation, and the rules for automatic code generation.

Many methods and techniques have been developed for specifying real-time safety critical
systems in a formal way. Those methods
are based on mathematical theories, such
as algebra [1], temporal logic[2], finite
state machines [3-6] or Petri nets [7]. One
of the methods within this scope relies on
a model of timed automata, defined and
described in [3,4]. The properties of timed
automata can be verified using an open
source model-checker UPPAAL [8].

Modeling in Rational Rose

State diagram in .mdl

Conversion to FSTM

Finite state time machine

Code generation (STEP 7)

Program code for a PLC

Conversion to UPPAAL

Environment modeling

Verification

Timed automata allow for modeling a
system composed of the controller and the
controlled objects at a very high level of
abstraction, and for verification of the
properties of the compound system. A
disadvantage of this approach is that the
model is far from the implementation of
the controller, which raises the question of
correctness of the program code. Figure 1. The development process

 1

The approach presented in this paper relies on modeling the controller as a reactive system
equipped with input and output signals. The desired behavior of the controller, i.e. the value of
the output signals with respect to the inputs, is modeled using UML state machine diagram. The
semantics of UML state machine, with hierarchy of states and timed transitions, are formally
defined by means of finite state time machine, described in detail in [9,10]. The model is formal
and can automatically be converted into an IEC 1131 program for a PLC controller [11].

The verification of the controller model with respect to the requirements can be done using
UPPAAL tool [8]. To do this, the requirements specification must be expressed in a language of
CTL formulae [12] over a network of timed automata that model the controller together with the
controlled plant. A conversion of the controller model from a finite state time machine into a
timed automaton can be done automatically. The model of the environment must be built
manually as a separate task (Figure 1).

2. Finite State Time Machine

Finite state machine is a tool for defining the algorithms of processing the enumerative sets of
events. The graphical models are formal and understandable to engineers and computer
programmers. What is missing is the ability to model time. In this section we define a model of a
finite state time machine [9,10], which adds time to the classical Moore automaton.

Definition 1. A finite state time machine is a tuple A = (S, Σ, Γ, τ , δ, s0 , ε, Ω, ω), where
S is a finite set of states,
Σ is a finite set of input symbols,
Ω is a finite set of output symbols,
Γ is a finite set of variables called timer symbols,
τ : Γ → 2S × N+ is an injective function, called timer function (with two projections τS: Γ → 2S

and τR: Γ → N+, respectively),
δ : S × Σ × 2Γ → S is a partial function, called transition function, such that:

[(s, a, T)∈Dom(δ)] ⇔ (∀ t∈ T)[s∈ τS (t)]
s0 ∈ S is the initial state,
ε ∈ N+ is the granularity of time,
ω : S → Ω is an output function.

Notation: N+ is the set of positive integers, R+ is the set of positive real numbers, Dom(δ) is the
domain of function δ. Cardinality of a set X is denoted card(X), an empty set is denoted φ.

It can be noted that a finite state time machine is finite, and looks much like a Moore
automaton with three additional elements: Γ, τ , ε. Those elements add to the model the
dimension of time. Each timer symbol t∈Γ is a variable, which takes values from the set R+.
The current value of a variable t is interpreted as the duration of a period of time. Timer function
τ assigns to each timer a group of states and a constant value. The meaning of those elements is
such that timer t is enabled, i.e. counts time, as long as the automaton resides in one of the states
from τS (t) and it expires when the current value of t exceeds τR (t).

Timer symbols in Γ can be set in an arbitrary order described as a function:

t: { 1...n }→ Γ where n=card(Γ)

Particular timers from Γ are now denoted t1... tn. The current valuation ŧ of timer symbols can be
described as a vector of values:

ŧ: { 1...n }→ R+ where n=card(Γ)

The current value of a timer ti is denoted ŧi.

 2

The execution of a finite state time machine starts in state s0 with the values of all timers
equal to 0. For a given state sk and a valuation of timers ŧk there exists a set of expired timers:

Θ (sk , ŧk) = { ti∈Γ: sk∈τS (ti
) and ŧik ≥ τR (ti

) }

The machine executes in state sk with the valuation of timers ŧk, k= 0,1..... , by taking an input
symbol ak and moving to the next state sk+1 defined by the transition function:

sk+1=δ (sk ,ak ,Θ (sk , ŧk))

When the machine enters a state sk+1 time advances and the values of timers change reflecting
the elapsed time interval ε:

ŧik+1 = ε if ⎧
⎨ otherwise

 ŧik+ sk+1∈τS (ti
) and sk ∈τS (ti

)
0⎩

When the valuation of timers ŧ changes, the set Θ of expired timers may change as well. This
way a finite state time machine can respond to the flow of time, even if sk+1 = sk and ak+1 = ak .
Please note that the last argument of δ is a set of all timers expired in a given state and time,
hence, no conflict exists if several timers expire at the same time instant.

Each state sk of the automaton corresponds to an output symbol qk= ω (sk). By that means the
automaton responds to an input sequence a1…ak… with an output sequence q1…qk….

3. Model-checking in UPPAAL

A timed automaton, as used in UPPAAL, is a finite state machine extended with clock
variables that evaluate to positive real numbers and state variables that evaluate to discrete
values. State variables are part of the state. All the clock variables progress simultaneously. An
automaton may fire a transition between two states in response to an action, which can be
thought of as an input symbol, or to a time action related to the expiration of a clock condition.
A set of clock variables can be reset to zero at a transition.

Definition 2. A timed automaton is a tuple TA = (S, s0 , C, A, E, I) , where
S is a finite set of states (called also locations),
C is a finite set of clock variables (called also clocks),
A is a finite set of actions,
E⊆ S × A × B (C) × 2C × S is a set of transitions between states; each transition has an action, a

guard and a set of clocks to be reset (a transition relation),
s0 ∈ S is the initial state,
I : S → B (C) is a function, which assigns invariants to states.

Notation: B(C) is a set of conjunctions over simple clock conditions built of a clock, a constant
and an operator <, ≤, =, ≥, >, e.g. t < c or t > c. A valuation of clocks is a function ŧ: C→ R+. An
expression g∈B(C) defines a set of clock valuations that satisfy expression g; we will write ŧ∈g
to mean that ŧ satisfies g.

The execution of an automaton TA starts in state s0 with the valuation ŧ0 , such that all clock
variables equal to 0. The machine executes in state s with the valuation of clocks ŧ by performing
an action:

(s, ŧ) → (s’, ŧ’) if there exists e= (s, a, g, r, s’)∈ E such that ŧ∈g and ŧ∈ I (s); the new
valuation of clocks ŧ’= ŧ over C − r and ŧ’(t)= 0 for t∈ r;

or a time action:

(s, ŧ) → (s, ŧ+ d) if ∀d’:(0 ≤ d’≤ d) ⇒ (ŧ+ d’)∈I (s)

 3

The semantics of a timed automaton is a labeled graph consisting of nodes and edges. Each
node defines a compound state of the automaton and is a pair z= (s, ŧ) composed of a state and a
valuation of all the clock variables. The set of all nodes Z ⊆ S × RC, and the initial state
(s0 , ŧ0)∈Z. The edges in the graph are transitions, which fulfill the conditions defined above.

A set of timed automata can be composed into a network over a common sets of clocks and
actions. This way a model of a controller and a controlled plant can be established, such that an
action of one automaton can trigger a transition in another one. The cooperation between two
automata is described in UPPAAL using a convention that an action, which name ends in one
automaton with a suffix ‘!’, triggers an action in another automaton, which has the same name
with a suffix ‘?’.

The actions are considered atomic, which means that time flows when the automata reside in
their states. However, there are also special states, called committed states, in which delay is not
allowed – such a state must be left immediately. Committed states are routinely used to separate
a ?-action and !-action, in order to express causality relation between the two.

A compound state of a network of timed automata is a pair composed of a vector of states of
the component automata and a valuation of all the clock variables. The semantics of the network
is a graph composed of nodes, which are compound states, and edges, which are transitions in
component automata. Pairs of matching actions in two component automata are performed
simultaneously. The set of all nodes Z ⊆ S1 × ... × Sn × RC, and the initial state (s0

1,..., s0
n, ŧ0)∈Z.

The main purpose of UPPAAL is to verify the model with respect to a requirements
specification, which must be expressed in a formal language. UPPAAL uses a version of CTL,
and the query language consists of state formulae and path formulae.

A state formula is an expression that can be evaluated for a particular state in order to check a
property (e.g. a deadlock). Path formulae quantify over paths of execution and ask whether a
given state formula ϕ can be satisfied in any or all the states along any or all the paths.

Path formulae can be classified into three types of properties:

Reachability – will ϕ be satisfied in a state of a path? – E<>ϕ.
Safety – will ϕ be satisfied in all the states along a single or along all paths? – E[]ϕ and A[]ϕ.
Liveness – will ϕ eventually be satisfied? will ϕ respond to ψ? – A<>ϕ and ψ -->ϕ.

UPPAAL model-checker enables verification of the model by evaluating path formulae over
the reachability graph of a network of timed automata.

4. Conversion of FSTM into UPPAAL

Finite state time machine uses a discrete time model with an explicit granularity ε. UPPAAL

uses continuous time model, in which transitions can fire in arbitrary points in time, within the
boundaries defined explicitly by transition guards and state invariants. This means that the
properties verified for a compound UPPAAL system does not depend on the relative speed of
the component automata. Hence, they are true also for a synchronous finite state time machine.

Let A = (S, Σ, Γ, τ , δ, s0 , ε, Ω, ω) be a finite state time machine. The transition function δ : S

× Σ × 2Γ → S is equivalent to a relation δ ⊆ S × Σ × 2Γ × S such that:

δ = { (s, a, T, s’): s’= δ (s, a, T) }

For a given state s∈S there exists a set of timers T (s) = { t∈Γ: s∈τS (t) } that are active in s.
Any subset T = { t1,…tn } ⊆ T (s) defines an expression gT over simple time conditions:

ŧ1≥τR (t1) … ŧn≥τR (tn) & ŧn+1<τR (tn+1) … ŧm<τR (tm)

which must be satisfied by a valuation ŧ in order to enable the transition (s, a, T, s’)∈δ.

 4

Timed automaton TA = (S, s0 , C, A, E, I), which is equivalent to a given finite state time
machine A = (S, Σ, Γ, τ , δ, s0 , ε, Ω, ω) can be constructed in the following way:

S = S ∪ SC (SC is a set of committed-states)
s0 = s0

C = Γ
A = Σ ∪ Ω (?-actions in Σ and !-actions in Ω)
I = φ

The set of committed states SC and the transition relation E are created in the following way:

1. SC = φ
For each (s, a, T, s’)∈δ such that ω (s) = ω (s’) a transition (s, a, gT, Γ \ T (s) , s’)∈E.

2. For each (s, a, T, s’)∈δ such that ω (s) ≠ ω (s’) a new committed state sC is created and added
to SC , a pair: (s, a?, gT, φ , sC), (sC, ω (s’)!, φ,Γ \ T (s) , s’) of transitions is added to E.

5. Case Study

A railroad crossing is controlled by a computer system. There are two railway tracks within

the crossing, and two trains can approach the crossing simultaneously. The movement of trains
is controlled by a set of semaphores that can be red or green. The road traffic is controlled by a
gate that can be open or closed. A semaphore can be operated by a controller to display green
light, when a train approaches, but not earlier than after the gate has been closed. Opening and
closing states of the gate are confirmed to the controller by two input signals: up and down,
respectively. The semaphore is red and the gate is up in the initial state of the crossing.

A train cannot be stopped instantly. When a train is detected, a controller has 30 seconds to
close the gate and display a green signal, which allows the train to continue its course. After
these 30 seconds, it takes further 20 seconds to reach the crossing. Otherwise, if the green signal
is not displayed within these 30 seconds, the train must break in order to stop safely before the
crossing. Closing the gate must last less than 20 seconds, or else an alarm must sound. The gate
can be opened when a leave signal has been sent after the last train has left the crossing.

 An algorithm for the controller, which can be a part of a broader control system, can be
defined using UML tools as a state machine diagram, converted into a finite state time machine,
verified using UPPAAL model checker and used for automatic generation of code for a PLC.

Outside
(red1,red2,open)

approach1

Entering1
(red1,red2,close)

approach2

Entering2
(red1,red2,close)

EnteringBoth
(red1,red2,close) approach2 approach1

Alarm1
(red1,red2,close,sound)

Alarm2
(red1,red2,close,sound)

t

Inside1
(green1,red2,close)

Inside2
(red1,green2,close)

InsideBoth
(green1,green2,close)

down

down

down

t t

down

down

Leaving2
(red1,red2,open)

leave2
Leaving1

(red1,red2,open)

leave1 leave1 leave2

approach1 approach2

approach1 approach2

up

AlarmBoth
(red1,red2,close,sound)

down

up

Figure 2. A model of the railroad crossing controller

 5

up?up?
Outside

EnteringBoth

AlarmBoth

InsideBoth

Entering2Entering1

Alarm2Alarm1

Inside2Inside1Leaving1

C C

C

approach1? approach2?
close!
t:=0

close!
t:=0

approach2? approach1?

t >30
sound!

t >30
sound!

t >30
sound!

down?

down?

green1!

C down?

down?

C down?

down?

green1!
green2!

green2!

approach1?

leave2? leave1?C
leave1?red1!

open! Cleave2?

Leaving1

red2!
open!

approach2?

Figure 3. UPPAAL model of the railroad crossing controller

5.1. The controller

A graphical representation of a finite state time machine, which defines the controller, is

shown in Figure 2. Output symbols assigned to states are shown in italics in the second line
within the boxes. The transitions between states are labeled with input symbols or a timer
symbol t. Timer t is active in states from the set τS (t)= {Entering1, EnteringBoth, Entering2},
and expires after the time period τR (t)=30. The initial state, called Outside, corresponds to such
a state of the crossing, in which no train approaches. The gate is open in this state, and the
semaphores display red in order to prevent trains from entering the crossing.

UPPAAL model of the controller (Figure 3) has the same states as the finite state time
machine, plus a set of committed states. Basically, the transitions between states are in both
models the same, with exception to transitions between states that differ in the finite state time
machine on output symbols. Those transitions are split in UPPAAL model into two consecutive
transitions separated by an added committed state.

Actions, which names bear the suffix ‘?’, act like input symbols, which enable the associated
transitions. Actions, which names bear the suffix ‘!’, act like output symbols that are passed to
other automata in order to trigger the respective input symbols (identified by name). This way
the execution of one automaton can control the execution of a cooperating automaton.

5.2. Verification

The environment of the controller consists of two trains and a gate. A model of a train is

shown in Figure 4. Time invariant t≤30 of state Approaches enforces a transition after 30
seconds have passed since the train has entered the state. This reflects the necessity of breaking
the train if green has not been displayed within 30 seconds. Time condition t>20 assigned to the
transition from On crossing to Faraway reflects the minimum time of passing the crossing by a
fast train. Time invariant t≤40 of state On crossing reflects the maximum time of passing the
crossing by a slow train.

A model of the second train is identical except for the names of actions, which are:
approach2!, leave2! and green2?, respectively. A model of the gate is shown in Figure 5. Time
invariants t ≤ 20 assigned to states Closing and Opening enforces a transition after 20 seconds
have passed , and reflect time that it takes to close or to open the gate.

 6

t ≤ 40

t ≤ 30

t ≤ 25 t ≤ 30

t ≥ 30

Faraway

Approaches

approach1!
t:=0

On crossing

green1?
t:=0

t >20
leave1!

Starting

Stop green1?
t:=0

t >10
t:=0

Open

Closed

OpeningClosing

down!

open?

close?

up!
t ≤ 20 t ≤ 20

Figure 5. UPPAAL model of the gate

Figure 4. UPPAAL model of a train

The simple reachability properties can check if a given state is reachable, e.g.:

• E<> train1.On crossing: This checks if train 1 can pass the crossing (a similar property can
be checked for train 2).

• E<> (train1.On crossing && train2.On crossing): This checks if both trains can move
through the crossing simultaneously.

The safety properties can check that unsafe states will never happen:

• A [] (train1.On crossing or train2.On crossing) imply gate.Closed: This ensures that each
time a train is passing the crossing, the gate is closed.

• A [] (gate.open imply (¬ train1.On crossing && ¬ train1.On crossing): This ensures that
each time the gate is open, a train is not on the crossing.

The liveness properties can check consequences of an event, e.g.:

• train1.Approaches --> train1.On crossing: This ensures that whenever train 1 approaches the
crossing, it will eventually pass it (a similar property can be checked for train 2).

All those properties can be verified by UPPAAL model-checker. In our example the liveness
condition is not satisfied: Assume that train 2 approaches when train 1 is leaving. The controller
does not react to approach2 in state Leaving1, hence, the transition to Outside appears without
displaying green2 for train 2. The train will stop and can never reach the crossing. To fix the
problem two additional transitions must be added to the model in Figure 2: One transition from
state Leaving1 to Entering2, and the other one from state Leaving2 to Entering1.

6. Program generation

PLC controller cooperates with its environment through a set of input and output signals. The
controller executes in a loop, which begins with polling the inputs and ends up with setting the
outputs, which can be observed from the outside. Cyclic execution of a controller can be
described in a pseudo-code, which creates a reference model for PLC execution:

state = initial_state();
loop_forever {
 input = poll_the_input();
 timers = set_timers(state,active_timers());
 state = next_state(state,timers,input);
 output = count_output(state);
 set_the_output(output);
}

 7

The operating system of a PLC controls the flow of time and executes the following actions:

• sets the initial state (initial_state),
• executes the loop (loop_forever),
• sets the output (set_the_output) and polls the input (poll_the_input) just between

the two consecutive loop cycles,
• sets the expired timers (set_timers).

What the programmer must do is to write a code for:

• selecting the active timers (active_timers),
• calculating the next state of the controller (next_state),
• calculating the output (count_output).

The semantics of a PLC program, i.e. the meaning within its application domain, is a relation
between a sequence of input signals and a sequence of output signals. If we establish a mapping
between the input signals of a PLC and the input symbols of a finite state time machine, and a
mapping between the output signals of a PLC and the output symbols of a machine, we can think
about a finite state time machine as of a model of a program for a PLC controller.

The behavior of a PLC program is defined formally within the reference model by the
semantics of its programming language, which may be one of the IEC 1131 languages [11], e.g.
ladder diagram or structured text. The behavior of a finite state time machine has also been
defined formally in Section 2. By that means a method for translating a high level abstract model
of finite state time machine (S, Σ, Γ, τ, δ, s0, ε, Ω, ω) into a PLC program can formally be
defined. The method consists of the following steps:

• mapping of the sets S, Γ, Σ, Ω into states, timers, input and output signals of a PLC,
• defining function active_timers consistently with function τ,
• defining function next_state consistently with function δ,
• defining function count_output consistently with function ω.

The mappings of sets S, Γ, Σ, Ω into states, timers, input and output signals of a PLC can be
arbitrary one-to-one mappings. There are twelve states at the diagram in Figure 2, six individual
input signals, seven output signals, and one timer. Each combination of the input signals creates
a single input symbol. Each combination of the output signals creates a single output symbol. A
ladder diagram [11], which implements the controller, stores the states of the machine as states
of its internal flip-flops. One coding for states and output signals of the railroad crossing
controller is shown in Table 1.

Timer symbols of a finite state
time machine are implemented
within a PLC controller by timer
blocks, each of which has one
input and one output. As long as
the input equals 0, the timer is
reset with the output equal to 0.
When the input changes to 1, the
timer is set and starts counting
time. The output changes to 1 as
soon as the input has continued
to be 1 for a predefined period of
time.

M1
0
0
0
0
1
1
1
1
1
1
0
0

Table 1. Coding of states and output signals

M2 M3 M4 State red1 red2 green1 green2 close open
0 0 0 Outside 1 1 0 0 0 0
1 0 1 Entering1 1 1 0 0 1 0
1 1 0 Entering2 1 1 0 0 1 0
1 1 1 EnteringBoth 1 1 0 0 1 0
1 0 1 Alarm1 1 1 0 0 1 0
1 1 0 Alarm2 1 1 0 0 1 0
1 1 1 Alarm3 1 1 0 0 1 0
0 0 1 Inside1 0 1 1 0 0 0
0 1 0 Inside2 1 0 0 1 0 0
0 1 1 InsideBoth 0 0 1 1 0 0
0 0 1 Leaving1 1 1 0 0 0 1
0 1 0 Leaving2 1 1 0 0 0 1
8

The program is structured into a sequence of lines, each of which describes a Boolean
condition to set or reset a flip-flop, a timer or an output signal, according to the values of input
signals, states of flip-flops and timers. The Boolean conditions implement the transition
function, the output function and the timer function.

M14M4
M13M3
M12M2
M11M1

M4)(M3downM2M12
leave2)M4M3leave1M4M3(M2M1M11

approach1M4M3)M2M1(M14
approach2M3M4)M2M1(M13

approach1)M4approach2M3(M2M1M12
tdownM4M3M2M1M11

M4)(M3M2M1 t1

=
=
=
=

+⋅⋅=
⋅⋅+⋅⋅⋅⋅=

⋅⋅+⋅=
⋅⋅+⋅=

⋅+⋅⋅⋅=
+⋅+⋅⋅=

+⋅⋅=

 (c4)
(c3)

 Res
 Res

Set b4)
Set

 Set)2b
)()(Set

Set

(c2)
(c1)
(b6)
(b5)
(
(b3)
(
(b1)
(a1)

7. Conclusions

PLC controllers are used in many application areas in which a malfunction of the control

system can cause significant losses to the environment or endanger human life. The
systems which are used in such application areas are expected to exhibit always an
acceptable behavior. Those expectations have to be verified in a formal way.

This paper describes a method for the specification, verification and automatic generation
of code for PLC controllers. The method relies on a mathematical formalism based on finite
state time machine model. The advantages of the method are intuitive modeling and the
potential for automatic verification and implementation of the model.

A practical application of the method requires a set of tools which enable a developer for
automatic conversion of finite state time machine to UPPAAL and automatic generation of code
for a PLC controller. The work to implement such a toolbox is currently in progress.

8. References

[1] Milner R., “Operational and algebraic semantics of concurrent processes”, in: van Leeuwen, J. (ed.): Handbook of
Theoretical Computer Science, Elsevier, North-Holland, 1990, pp. 1201-1242.
[2] Manna Z., Pnueli A., Temporal Verification of Reactive Systems – Safety, Springer Verlag, Berlin, 1995.
[3] Alur R., Dill D.L.: “A theory of timed automata”, Theoretical Computer Science, Vol 126, 1994, pp. 183-235.
[4] Alur, R., Dill, D.L., “Automata-theoretic verification of real-time systems”, in: Formal Methods for Real-Time
Computing, Trends in Software Series, John Wiley & Sons, 1996, pp. 55-82.
[5] Dierks H., “PLC-Automata, A New Class of Implementable Real-Time Automata”, in: Bertran M., Rus T. (eds):
Transformation-Based Reactive Systems Development, LNCS 1231, Springer, Berlin, 1997, pp. 111-125.
[6] Kaynar, D.K, Lynch, N., Segala, R., Vaandrager, F., “The Theory of Timed I/O Automata”, Technical Report
MIT-LCS-TR-917a, MIT Lab. for Computer Science, 2004.
[7] Jensen, K., Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, Springer, Berlin, 1997.
[8] Behrmann G., David A., Larsen K.G, A Tutorial on Uppaal, Department of Computer Science, Aalborg
University, 2004.
[9] Sacha K., Automatic Code Generation for PLC Controllers, in: R. Winter, B. A. Gran, G. Dahll (eds.) Computer
Safety, Reliability and Security, LNCS 3688, Springer-Verlag, Berlin Heidelberg 2005, pp. 303-316.
[10] Sacha K., Translatable Finite State Time Machine, in: Gaudin E., Najm E., Reed R. (eds.): Sdl 2007: Design for
Dependable Systems, LNCS 4745, Springer-Verlag, Berlin Heidelberg, 2007, pp. 117-132.
[11] IEC 1131-3, Programmable controllers – part 3: Programming languages, IEC, 1993.
[12] Henzinger T.A., Nicollin X., Sifakis J., Yovine S., “Symbolic model checking for real-time systems”,
Information and Computation, vol 111, 1994, pp. 193-244.

 9

