
Optimization of Business Processes in Service Oriented Architecture

Andrzej Ratkowski, Krzysztof Sacha and Andrzej Zalewski
Warsaw University of Technology

Warszawa, Poland
{a.ratkowski, k.sacha, a.zalewski}@ia.pw.edu.pl

Abstract—This paper describes a method for the
implementation and optimization of business processes in a
service oriented architecture (SOA). A process specification is
created by business people, and expressed in Business Process
Modeling Notation (BPMN). The specification is then
translated into Business Process Execution Language (BPEL),
and used by technical people as a reference process, which is
subject to a series of transformations that change the internal
process structure in order to improve the quality of the process
execution. The behavior of each transformed process is verified
automatically against the behavior of the reference process.
The verification mechanism is based on a mapping from BPEL
to Language of Temporal Ordering Specification (LOTOS),
followed by a comparison of the trace set that is generated
using a program dependence graph of the reference process
and the trace set of the transformed one. When the design
goals have been reached, the transformed BPEL process can be
executed on a target SOA environment using a BPEL engine.

Keywords-Business Process, BPEL, Service Oriented
Architecture, Program Dependence Graph, LOTOS

I. INTRODUCTION AND RELATED WORK
A business process is a set of partially ordered activities,

which produce a specific product or service that adds value
for a customer. The specification of a business process can
be expressed graphically using an appropriate notation, such
as the Business Process Modeling Notation [1] or UML
activity diagrams [2]. The structure of the specified business
process and the arrangement of activities reflect business
decisions made by business people. The implementation of a
business process on a computer system is expected to exhibit
the defined behavior at a satisfactory level of quality.
Reaching such a level of quality may require restructuring of
the initial process, according to a series of technical
decisions, which have to be made by technical people.

This paper describes a transformational method for the
implementation and optimization of business processes in
Service Oriented Architecture [3-5]. The starting point of the
method is a process specification, defined by business people
using BPMN. The specification is translated by an open
source tool into a reference process expressed in Business
Process Execution Language [6-8]. The reference process is
subject to a series of transformations, which change the
internal structure of the process and make it closer to the
implementation. The transformations are selected manually
by human designers (technical people) and performed

automatically by a software tool. Each transformation
changes the ordering of activities within the process in order
to improve the quality of the process implementation, e.g. by
benefiting from the parallel structure of services, but
preserves the reference process behavior. When the design
goals have been reached, the transformed BPEL process can
be executed on a target SOA environment. The evaluation of
the process quality can be guided by metrics, which are
similar to metrics discussed in the literature [9-11].

A critical part of the method is the verification of
behavior that the process exhibits before and after a
transformation. One possible verification mechanism could
be based on trace semantics of processes. To use this
principle, we could define a trace of the reference process
execution, and request that the trace of a process after a
transformation was the same. Unfortunately, the identity of
traces is not an appropriate criterion, because it eliminates
such transformations, which reorder the process activities
without changing the results of the process execution.

Therefore, we have chosen another approach, which is
based on an original mapping from BPEL to Language of
Temporal Ordering Specification [12,13]. In the first step,
dataflow dependencies between the activities of the reference
process are analyzed using program slicing techniques
[14,15] and presented in the form of a program dependence
graph [16,17]. All the insignificant ordering constraints are
removed and the minimal dependence process is created and
mapped into a LOTOS expression. The labeled transition
system of this expression defines the set of all the traces that
define the behavior of the reference process, which is
considered acceptable from the application viewpoint.

In the second step, the reference process is subject to
transformations selected by a designer, and the transformed
process is mapped into a simple LOTOS expression. If all
the traces generated by the labeled transition system of this
expression are within the set of traces generated by the
labeled transition system of the minimal dependence process,
then the transformed process behavior is compliant with the
reference process behavior.

The rest of this paper is organized as follows. The
structure of a business process, BPMN notation and BPEL
language are described in Section II. LOTOS language and a
BPEL to LOTOS mapping are covered in Section III.
Transformations of a BPEL process are shown in Section IV.
The verification method is described in Section V. Quality
metrics are exemplified in Section VI. Conclusions and plans
for further research are given in Section VII.

2012 IEEE 16th International Enterprise Distributed Object Computing Conference Workshops

978-0-7695-4786-2/12 $26.00 © 2012 IEEE

DOI 10.1109/EDOCW.2012.16

42

II. THE STRUCTURE OF A BUSINESS PROCESS
A business process is a set of related activities, which

produce a service or product for a customer. Part of these
activities can be implemented on-site by locally executed
functions, while others can be implemented externally, by
services offered by a service-oriented environment. The
services can be viewed from the process perspective as the
main business data processing functions.

The specification of a business process can be defined
textually, or with a flowchart, as a sequential or parallel set
of activities with interleaving decision points. Business
Process Modeling Notation is a graphical representation used
frequently by business people for specifying business
processes in their organizations. An example BPMN process
is shown in Fig. 1. The process starts after receiving an
invocation from a remote client (another process). Then, it
invokes two services in parallel and when the invocations are
finished, i.e. the results are received; it performs the first
piece of a local computation. Next, it checks a condition and
decides to perform one out of two other pieces of
computation. Finally, the process replies to the client. This
way, a business process in SOA environment can be
implemented as a service, which is composed of services and
which can be invoked by another service.

BPMN specification of a business process is created by a
business analyst, who defines functioning of an organization.
The specification can be automatically translated into a
BPEL program, which can be used by technicians for semi-
automatic implementation. The translation from BPMN to
BPEL is subject to a research effort [7,8], which is not
covered in this paper. An open-source tool can be found at
http://code.google.com/p/bpmn2bpel/.

BPEL syntax is composed of a set of instructions, called
activities, which are XML elements indicated in the
document by explicit markup. The activities can be classified
as simple, which define elementary pieces of computation,
and structured, which comprise another activities. The set of
BPEL activities is rich, however, we focus in this paper on a
limited subset of activities for defining flow of control,
service invocation and basic data handling.

The body of a BPEL process consists of simple activities,
which are elementary pieces of computation, and structured
elements, which comprise other simple or structured
activities, nested in each other to an arbitrary depth. Simple
activities are <assign>, which implements substitution,
<invoke>, which invokes an external service, and <receive>,
<reply> pair, which receives and replies to an invocation.

Structured activities are <sequence> element to describe
sequential execution, <flow> element to describe parallel
execution and <if> alternative branching. An example BPEL
program, which implements the business process in Fig. 1, is
shown in Fig. 2. We use roman letters for the language tags
and attributes (terminal symbols), and italics for nonterminal
symbols. Name attribute will be used to refer to particular
activities of the program in the subsequent figures.

The first executable activity of the program is <receive>,
which waits for a message that invokes the process execution
and conveys a value of the input argument. The last activity
of the process is <reply>, which responds to the invocation
by sending a message that returns the result. The activities
between <receive> and <reply> execute a business process,
which invokes other services and transforms the input into
the output. This is a typical construction of a BPEL process,
which itself can be viewed as a service invoked and used by
other services.

SOA services are assumed stateless [3]. This means that
the behavior of a service, observed by another services,
depends only on values passed to the service by means of
messages. An impact of services on the real world will be
discussed in Section V. On the other hand, the behavior of a
service depends on the type, number and order of activities,
which constitute the program body. The activities and the
order of their execution can formally be described by a
LOTOS expression, which captures a trace, or a set of traces,
of the program execution. Services composed of the same set
of activities and characterized by the same set of execution
traces, return the same results for given arguments,
regardless of their internal structure.

<sequence>
 <receive name="rcv" … > </receive>
 <flow>
 <invoke name="inv1" … > </invoke>
 <invoke name="inv2" … > </invoke>
 </flow>
 <assign name="ass1" > … </assign>
 <if name="alt">
 <condition> … </condition>
 <assign name="ass2" > … </assign>
 <else>
 <assign name="ass3" > … </assign>
 </if>
 <reply name="rpl" … > </reply>
</sequence>

Figure 2. BPEL program of the business process in Fig. 1

Figure 1. BPMN specification of a business process

Receive
invocation Invoke service 2

Invoke service 1

Compute 1

Compute 3

Compute 2

Reply to the
invocation

43

III. THE LANGUAGE LOTOS
Language of Temporal Ordering Specification (LOTOS)

is one of the formal description techniques developed within
ISO [12] for the specification of open distributed systems.
The semantics of LOTOS is based on algebraic concepts and
is defined by a labeled transition system (LTS), which can be
built for each LOTOS expression.

A process, or a set of processes, is modeled in LOTOS as
a behavior expression, composed of actions, operators and
parenthesis. Actions correspond to activities, which
constitute the process body. Operators describe the ordering
of actions during the process execution. The list of operators,
together with an informal explanation of their meaning is
given in Table I. We use μ to denote an arbitrary action and
δ to denote a special action of a successful termination of an
expression or sub-expression.

LOTOS expression can be executed, generating a
sequence of actions, which is called the execution trace. An
expression which contains parallel elements can generate
many traces, each of which describes an acceptable ordering
of actions. Not all of the actions that are syntactic elements
of an expression are directly visible within the execution
trace. These actions are called observable actions and are
denoted by alphanumeric identifiers, e.g. g1, g2 etc. Only
observable actions are counted as members of an execution
trace of the expression. Other actions cannot be identified
when observing the trace. These actions are called
unobservable actions. Unobservable actions are denoted by
letter i and are not counted as members of an execution trace.

Formally, unobservable actions are those that are listed
within the hide clause of LOTOS. In this paper, we omit this
clause to help keeping the expressions simple.

The operational semantics of LOTOS provides a means
to derive the actions that an expression may perform from
the structure of the expression itself. Formally, the semantics
of an expression B is a labeled transition system < S, A,→, I >

where:

S – is a set of states (LOTOS expressions),
A – is a set of actions,
→ – is a transition relation, → ⊆ S × A × S,
B – is the initial state (the given expression).

The transition relation is usually written as B →
μ

 B’. For
example, the semantics of expression (g; B1) can be
described by a labeled transition:

g; B1 →
g

 B1
This means that expression (g; B1) is capable of performing
action g and transforming into expression B1.

The semantics of a complex expression consists of a
directed graph (a tree) of labeled transitions, which root is
the expression itself, and which edges are the labeled
transitions. Each path from the root node to a leaf node of the
graph defines a sequence of actions, which is an execution
trace of the expression.

LOTOS expression can serve as a tool for modeling the
set of traces of execution of a BPEL process. To use the tool,
we can model BPEL activities as observable actions in
LOTOS, and describe the ordering of activities during the
process execution by means of a LOTOS expression.

Simple activities of BPEL are mapped to observable
actions of LOTOS, followed by exit symbol. For example:

<assign name="ass"> is mapped to ass; exit
<invoke name="inv"> is mapped to inv; exit

Structured activities of BPEL are translated into LOTOS
expressions according to the following rules:

• <sequence> element is mapped into sequential
composition (>>),

• <flow> element is mapped to parallel execution (|||),
• <if> element is mapped to alternative choice ([]).
Consider, for example, BPEL process in Fig. 2. If we

map the process activities according to the above rules, then
the resulting LOTOS expression looks as follows:

rcv;exit >> (inv1;exit ||| inv2;exit) >> ass1;exit >>
(ass2;exit [] ass3;exit) >> rpl;exit

The trace set generated by the labeled transition system
of this expression consists of four traces composed of the
following observable actions:

rcv; inv1; inv2; ass1; ass2; rpl
rcv; inv1; inv2; ass1; ass3; rpl
rcv; inv2; inv1; ass1; ass2; rpl
rcv; inv2; inv1; ass1; ass3; rpl

The semantics of parallelism in LOTOS is interleaved.
Parallel execution of the two <invoke> activities that are
nested within <flow> element of the BPEL process is
modeled by the possibility of executing the corresponding
LOTOS actions inv1 and inv2 in an arbitrary order. The
semantics of choice is exclusive. When one branch of <if>
element begins execution, then the other branch disappears.
Special action δ generated by exit is not counted in the
execution traces because it is an unobservable action.

TABLE I. EXPRESSIONS IN BASIC LOTOS

Syntax Explanation
stop inaction, lack of action
μ ; B action μ precedes execution of

expression B
B1 [] B2 alternative choice of expressions B1

and B2
B1 |[g1,…gn]| B2 parallel execution of B1 and B2

synchronized at actions g1,…,gn
B1 ||| B2 parallel execution with no

synchronization between B1 and B2
exit successful termination; generates a

special action δ
B1 >> B2 sequential composition: successful

execution of B1 enables B2
B1 [> B2 disabling: successful execution of B1

disables execution of B2
hide g1,…,gn in B hiding: actions g1,…,gn are

transformed into unobservable ones

44

IV. TRANSFORMATIONS
The body of a BPEL process consists of activities.

Simple activities invoke external services and perform local
data processing operations. Structured activities comprise
other activities and decide on the order, in which the
activities are executed. The results as well as the quality, e.g.
efficiency of execution, of the process depend on the set of
activities, which constitute the process body, and on the
process structure. The goal of a transformation is to change
the process structure in a way, which improves the process
quality without changing the results of the process execution.

A transformation applies to an element of a BPEL
process. It can consist in moving an activity from one place
to another in a BPEL program or in replacing one structured
activity, e.g. <sequence>, by another, e.g. <flow>, composed
of the same elements. If the results of the process execution
are not changed by the transformation, then this
transformation is considered safe for the user. It can easily be
seen that a sequence of safe transformations is also safe.

Several transformations can be defined. The basic ones
are the following: Displacement, parallelization of the
process operations, serialization, aggregation of processes
into a single entity and a split of a single process. The first
three of these transformations are described in detail below.

Transformation 1: Displacement.
Consider an arbitrary BPEL process, composed of

activities nested in each other in compliance with the rules of
BPEL syntax. Transformation 1 moves a selected activity,
either simple or structured, from its original location in the
program, into another place in the program structure.

Transformation 2: Parallelization.
Consider <sequence> element of a BPEL program,

which contains n arbitrary activities A1 through An.
Transformation 2 parallelizes the execution of activities by
replacing <sequence> element with <flow> element,
composed of the same activities.

Transformation 3: Serialization.
Consider <flow> element of a BPEL program, which

contains n arbitrary activities A1 through An. Transformation
3 serializes the execution of activities by replacing <flow>
element with <sequence> element, composed of the same
activities.

Transformations 1 through 3 can be composed in any
order, resulting in a complex transformation of a process
structure. Transformations 4 and 5 play an auxiliary role and
facilitate such a superposition. These transformations do not
change the process behavior, because they do not change the
order of execution of commands.

Transformation 4: Sequential structuring.
Transformation 4 adds a pair of tags <sequence>

</sequence> around a single activity A.

Transformation 5: Parallel structuring.
Transformation 5 adds a pair of tags <flow> </flow>

around a single activity A.

To illustrate optimization of a BPEL process and the use
of transformations, assume that ass1 activity in Fig. 2 uses
only a data value, which has been set by inv1 activity, and
that the structured <if> activity uses data values set by inv2
only. It is easy to see that according to these assumptions, the
activities ass1 and <if> are independent. Our goal is to
speed-up execution of the process in Fig. 2.

One way to reach the goal is by parallelizing the
execution of ass1 and <if> activities. To do this, we can
apply transformation 5 to add a pair of <flow> </flow> tags
around ass1, and then apply transformation 1 to move <if>
activity into the scope of the previously added <flow> tag.
The structure of the transformed process is shown in Fig. 3a.
The proof of safeness of this transformation sequence is
given in Section V.

Alternatively, we can restructure the process in such a
way that two branches are executed in parallel: One
composed of inv1 and ass1 activities, and the other one

<sequence>
 <receive name="rcv">
 <flow>
 <invoke name="inv1">
 <invoke name="inv2">
 </flow>
 <flow>
 <assign name="ass1">
 <if name="alt">
 <condition>
 <assign name="ass2">
 <else>
 <assign name="ass3">
 </if>
 </flow>
 <reply name="rpl">
</sequence>

<sequence>
 <receive name ="rcv">
 <flow>
 <sequence>
 <invoke name="inv1">
 <assign name="ass1">
 </sequence>
 <sequence>
 <invoke name="inv2">
 <if name="alt">
 <condition>
 <assign name'"ass2">
 <else>
 <assign name="ass3">
 </if>
 </sequence>
 </flow>
 <reply name="rpl">
</sequence>

(a) (b)

Figure 3. The process after transformations 5 (a), and after transformations 4 and 1 (b)

45

composed of inv2 and <if>. To do this, we can apply
transformation 4 twice, in order to add two pairs of
<sequence> </sequence> tags: Around inv1 and around inv2.
Then, we can use transformation 1 twice, to move ass1
activity into the scope of the first added <sequence>, and to
move <if> activity into the scope of the second added
<sequence>. The structure of the transformed process is
shown in Fig 3b. The proof of safeness of this transformation
sequence is given in Section V.

V. VERIFICATION
The reference process defines a behavior, which is

acceptable from the application viewpoint. In the
transformation phase, the structure of the process and the
flow of execution are changed, in order to improve the
performance characteristics. However, the externally
observable behavior of the process must remain unchanged.
The problem is how to define this behavior and how to verify
that it has not been changed.

The observable behavior of a process in a SOA
environment consists of values of the variables that are
visible to the outside world, i.e. variables, which are passed
as arguments when external services are being invoked, and
variables, which values are returned at the end of the process
execution. This is sufficient, because services are stateless
[3] and return the same results if invoked with the same
values of arguments. An impact of services on the real world
is taken into account, as described in the next subsection.

The verification follows a two-phase approach, illustrated
in Fig. 4 where B2L acronym stands for: BPEL-to-LOTOS
mapping. In the first phase, data dependencies between the
activities of the reference process are analyzed using the
Program Dependence Graph (PDG) and all the unnecessary
sequencing constraints on these activities are removed. The
resulting graph reflects all the dataflow dependencies
between the activities of the reference process and is free
from the initial process structuring. If we preserve the
dataflow dependencies during the process transformation,
then the values computed by all the activities remain
unchanged. In particular, the values that are passed between
the processes by means of the inter-process communication
activities: <invoke> in one process and <receive> <reply>
pair in the other one, remain also unchanged. Program
dependence graph is then transformed into a LOTOS

expression, which is called a Minimal Dependence Process
(MDP). The labeled transition system of the minimal
dependence process defines a set of traces that define the
behavior of all processes, which comply with dataflow
dependencies defined within the reference process. The first
phase is performed only once for a given reference process.

The second phase is performed repetitively during the
transformational implementation cycle. A transformed BPEL
process is mapped into a LOTOS expression, as described in
Section III. The set of traces generated by the labeled
transition system of this expression is compared with the set
of traces generated by the labeled transition system of the
minimal dependence process. If the trace set generated by the
expression is within the trace set of MDP, then the behavior
of the transformed BPEL process is safe in that it preserves
the behavior of the reference process.

A. Program Dependence Graph
To capture the behavior of a process, we use a technique

called program slicing [14,15], which allows finding all such
activities in a program, which influence the value of a
selected variable in a specific point of the program. For
example, the value of a variable used as an argument by a
service invocation activity or by the final <reply> activity of
the process. The conceptual tool for the analysis is program
dependence graph [16,17], which nodes are elements of a
BPEL program and edges are control and dataflow
dependencies between these elements.

The algorithm for constructing PDG of a BPEL program
consists of the following steps (Fig. 5):

1. Define nodes of the graph, which are activities at all
layers of nesting.

2. Define control edges (solid lines in Fig. 5b), which
follow the nested structure of the program, e.g. an edge
from <sequence> to <flow> means that <flow> activity
is nested within the <sequence> element.

3. Define dataflow edges (dashed lines in Fig 5b), which
show data dependencies between activities revealed
using program slicing techniques. For example, an edge
from rcv to inv1 means that the output value of rcv
activity is used as the input argument of inv1.

A dataflow edge between two nodes in a program
dependence graph implies that the result of the activity at the
end of the edge depends on the result of the activity at the
beginning of this edge. Therefore, the arrangement of
activities during the program execution, reflected by the
succession of activities in an execution trace, must comply
with the direction of dataflow edges. Any change to this
arrangement may lead to a change in the program behavior.

Structured nodes <sequence> and <flow>, as well as
control edges connected to these nodes reflect the structure
and the flow of control within the reference process. Both of
the two can be changed during the process transformation.
Therefore, structured nodes <sequence> and <flow> are
removed from the program dependence graph. Control
edges, which output a removed node, are redirected to the
direct predecessor node, if one exists, or are removed as
well. On the other hand, structured node <if> and the control

BPEL
reference
process

Program
Dependence

Graph

Minimal
Dependence

Process

Transformations

Transformed
BPEL

process

B2L LTS

LTS

Result

B2L

⊆
?? LOTOS

expression
LTS

Figure 4. Verification of a process behavior

46

edges, which output this node, are not removed from the
graph, because they reflect the logic of conditional
branching. The reduced program dependence graph of the
reference process in Fig. 5 is shown in Fig. 6.

The services invoked by a process can have an impact on
the real world. If this is the case, a specific ordering of these
services can be required. A designer can reflect this
requirement adding appropriate edges to the reduced
program dependence graph.

Let GP = (NP, EP) be a reduced program dependence
graph of a BPEL process P. It can be proved from the above
algorithm that graph GP is acyclic. We say that node ni
precedes node nj, denoted ni < nj, if there exists a path from ni
to nj in the program dependence graph. Precedence relation
is a strict partial order in NP.

B. Minimal Dependence Process
An execution of a BPEL program can be modeled as a

process of traversing through the program dependence graph,
starting at the initial node and moving along the directed
arcs. The process stops when the last node of the graph is
reached. Because the ordering of nodes is only partial, then
the succession of visited nodes and arcs may vary. For
example, the first node in Fig. 6 is rcv. After visiting this
node, data can be passed along the arc to inv1 or along the
arc to inv2. If the former is true, then in the next step node
inv1 can be visited or data can be passed along the arc to
inv2. However, node inv2 could not be visited in that step.

Nodes and arcs of a program dependence graph can be
mapped to LOTOS actions in such a way that a visit to a
node is mapped to an observable action, while moving along
an arc is mapped to an unobservable action. A sequence of
execution steps is mapped to a sequence of LOTOS actions.
An example mapping of nodes and arcs is shown in Fig. 7.

A visit to a node enables visiting all the succeeding
nodes. However, the way of reaching this node (described by
an expression B1) has no influence on the other part of
execution after visiting the node (described by an expression
B2), and vice versa. This means that actions performed
before the visit (within B1) and actions performed after the
visit (within B2) are independent. However, finishing the
visit and passing data along the output arcs of the visited
node make a synchronization point between the two. This
informal description can be expressed formally in LOTOS
using the operator of parallel execution of B1 and B2
synchronized at action assigned to the output arc.

Minimal dependence process is a LOTOS expression that
defines the set of traces, which are compliant with dataflow
dependencies described by the program dependence graph.
This way, minimal dependence process defines the semantics
of a BPEL reference process. The algorithm for building
MDP searches through the reduced program dependence
graph, starting at the initial node. LOTOS expression is
constructed iteratively, by appending a new sub-expression
to the existing part of MDP in each visited node.

For example, the first action in the graph in Fig 7 is rcv,
followed by one of the actions a or b. Hence, the appropriate
LOTOS expression begins with:

rcv; (a|||b) …

Passing data along one of the output arcs enables
traversing through the other parts of the graph. Action a
enables inv2, while action b enables inv1; ass1. Both of the
enabled groups of actions are independent and can be
executed in parallel. Hence, the next part of the LOTOS
expression is:

((rcv; (a||b)) |[a]| a; inv2;…) |[b]| b; inv1;ass1;…

rcv
inv1

rpl

inv2 ass2 <if>

ass1 ass3

Figure 6. The reduced program dependence graph of the process in Fig. 5

<sequence>
 <receive name="rcv">
 <flow>
 <invoke name="inv1">
 <invoke name="inv2">
 </flow>
 <assign name="ass1">
 <if name="alt">
 <condition>
 <assign name="ass1">
 <else>
 <assign name="ass2">
 </if>
 <reply name="rpl">
</sequence>

(a) (b)

rcv rpl

inv2 ass2

<if>

ass1

<flow>

ass3

<sequence>

inv1

Figure 5. A nested BPEL process: Process body (a) and program dependence graph (b)

47

Formally, the algorithm for constructing MDP of a BPEL
program described by a reduced program dependence graph
consists of the following steps:

1. Assign an observable LOTOS action to each node of the
reduced program dependence graph, except of <if>
nodes. The action is identified by the name attribute of
the node (nodes in PDG are BPEL activities).

2. Find paths in the reduced program dependence graph,
such that the first node of a path has one output edge, the
last node has one input edge and each other node has one
input and one output edge. Substitute each path with a
single node, and assign to this node LOTOS expression
composed of actions, which were assigned to the
removed nodes, separated by semicolons.

3. Assign an unobservable LOTOS action to each edge of
the graph. The actions should be distinct, except of the
edges, which output the alternative nodes of an <if>
activity and input the same node. These actions should be
equal.

4. Initiate graph search from the initial node. Create
LOTOS expression, denoted MDP', composed of:
• the expression assigned to the initial node,
• semicolon and parallel composition of actions

assigned to the output edges.
5. Search through the nodes of the reduced program

dependence graph in a sequence complying with the
precedence relation (ni is visited before nj, if ni < nj). For
each node, place parentheses around the MDP' and
append the following expressions:
• parallel composition synchronized on actions

assigned to the input edges,
• a sequence of actions assigned to the input edges,

separated by semicolons,
• semicolon and LOTOS expression assigned to the

node (empty for <if> node),
• semicolon, and parallel composition of actions

assigned to the output dataflow edges or an
alternative selection of actions assigned to the output
control edges (the case of <if> activity).

6. When the algorithm stops, after visiting the last node,
MDP' becomes the minimal dependence process MDP.

For example, consider the reduced program dependence
graph in Fig.6. The steps of assigning LOTOS expressions to
nodes (step 1), removing paths (step 2) and assigning
unobservable actions to edges (step 3) change the graph as
shown in Fig. 7.

The minimal dependence process, derived from the graph
in Fig. 7, takes the form of the following LOTOS expression:

(((((rcv;(a|||b)) |[a]| a;inv2;(y[]n)) |[b]| b;inv1;ass1;c)
|[y]| y;ass2;d) |[n]| n;ass3;d) |[c,d]| c;d;rpl

The labeled transition system of this expression generates
a set of 12 traces, each of which is a sequence of observable
actions:

{ rcv; inv1; ass1; inv2; ass2; rpl ,
 rcv; inv1; ass1; inv2; ass3; rpl ,
 rcv; inv1; inv2; ass1; ass2; rpl ,

 rcv; inv1; inv2; ass1; ass3; rpl ,
 rcv; inv1; inv2; ass2; ass1; rpl ,
 rcv; inv1; inv2; ass3; ass1; rpl ,
 rcv; inv2; ass2; inv1; ass1; rpl ,
 rcv; inv2; ass3; inv1; ass1; rpl ,
 rcv; inv2; inv1; ass2; ass1; rpl ,
 rcv; inv2; inv1; ass3; ass1; rpl ,
 rcv; inv2; inv1; ass1; ass2; rpl ,
 rcv; inv2; inv1; ass1; ass3; rpl }

The trace set of the reference process in Fig. 2 consists of
4 traces:

{ rcv; inv1; inv2; ass1; ass2; rpl ,
 rcv; inv1; inv2; ass1; ass3; rpl ,
 rcv; inv2; inv1; ass1; ass2; rpl ,
 rcv; inv2; inv1; ass1; ass3; rpl }

The trace set of the first transformed process in Fig. 3a
consists of 8 traces:

{ rcv; inv1; inv2; ass1; ass2; rpl ,
 rcv; inv1; inv2; ass1; ass3; rpl ,
 rcv; inv1; inv2; ass2; ass1; rpl ,
 rcv; inv1; inv2; ass3; ass1; rpl ,
 rcv; inv2; inv1; ass1; ass2; rpl ,
 rcv; inv2; inv1; ass1; ass3; rpl ,
 rcv; inv2; inv1; ass2; ass1; rpl ,
 rcv; inv2; inv1; ass3; ass1; rpl }

The trace set of the second transformed process in Fig. 3b
consists of 12 traces, and is identical to the trace set of MDP.
Obviously, the trace set of MDP includes the trace sets of the
reference process as well as of the transformed processes.
This proves that both transformations are safe.

VI. QUALITY METRICS
Quality metrics to measure parallel programs have been

studied for many years. A traditional tool for measuring
performance of a parallel application is Program Activity
Graph, which describes parallel flow of control within the
application [9]. We do not use this graph; nevertheless, our
Length of thread metric can be viewed as an approximation
of Critical path metric described in [9]. Similarly, our
Number of threads metric is similar to Available
concurrency defined in [10]. The value of each metric can be
calculated using a program dependence graph.

Size of a process is measured as the number of simple
activities in the BPEL program. More precisely, the value of
this metric equals the number of leaf nodes in the program

rcv

inv1; ass1

rpl

inv2 ass2

ass3

a

b

y

n

d

c

d

Figure 7. Construction of MDP: The reduced program dependence
graph (Fig. 6) after step 3

48

dependence graph of this process. Leaf nodes are simple
activities, which perform the processing of data. Therefore,
the value of the process size metric could be considered a
measure of the amount of work, which can be provided by
the process. For example, the size of all the processes shown
in Fig. 2, 3a and 3b is 7.

Complexity of the process is measured as the total
number of nodes in PDG. For example, the size of program
in Fig. 2 is 10, the size of program in Fig. 3a is 11, and the
size of program in Fig. 3b is 12. The number of nodes in
PDG, compared to the size of the process, describes the
amount of excess in the graph, which can be considered a
measure of complexity of the program structure.

Number of threads is measured as the number of items
within <flow> elements of a BPEL program, at all levels of
nesting. The algorithm of computation assigns weights to
nodes of the program dependence graph of the process,
starting from the leaves up to the root, according to the
following rules:

• the weight of a simple BPEL activity is 1,
• the weight of a <flow> element is the sum of weights

assigned to the descending nodes (i.e. nodes directly
nested within the <flow> element),

• the weight of a <sequence> or <if> element is the
maximum of weights assigned to the descending
nodes (i.e. nodes directly nested within the
<sequence> element).

The metric value equals the weight assigned to the top
<sequence> node of PDG. For example, the number of
threads of all the processes in Fig. 2, 3a and 3b is 2.

Length of thread is measured as the number of
sequentially executed activities within a BPEL program. The
algorithm of computation assigns weights to nodes of the
program dependence graph of the process, starting from the
leaves up to the root, according to the following rules:

• the weight of a simple BPEL activity is 1,
• the weight of a <flow> or <if> element is the

maximum of weights assigned to the descending
nodes (i.e. nodes directly nested within the <flow>
element),

• the weight of a <sequence> element is the sum of
weights assigned to the descending nodes (i.e. nodes
directly nested within the <sequence> element).

The metric value equals the weight assigned to the top
<sequence> node of PDG. For example, the length of thread
of programs in Fig. 2 and Fig. 3a is 1, while the length of
thread of program in Fig. 3b is 2.

To summarize the examples, one can note that all the
three processes has the same size, the complexity of the
transformed processes is higher than the complexity of the
reference process, the number of threads of all the processes
is the same, but the last process has the threads longer. This
means that the last process is probably the optimum one.
Unfortunately, the complexity of this process is also the
highest.

VII. CONCLUSIONS
The behavior of a business process is a business decision.

The way of implementation of a business process is a
technical decision. The transformational method for
implementation and optimization of business processes in
SOA, described in this paper, promotes separation of
concerns and allows making business decisions by business
people and technical decisions by technical people. The
former relates to the specification phase of a reference
process, which reflects the flow of business logic used in an
organization. The latter relates to the implementation phase,
in which the reference process is transformed in order to
improve efficiency and benefit from the parallel structure of
services in a SOA environment. The quality of processes can
be measured by metrics exemplified in Section VI.

Transformations described in Section IV can change the
process structure and, in some circumstances, can preserve
the observable behavior of the reference process. To
guarantee that the process behavior has not been changed
during the transformations, we developed a verification
technique, which relies on relaxing the ordering of activities
by means of a program dependence graph and modeling the
resulting minimal dependence process by means of a
LOTOS expression. A comparison of trace sets generated by
the relaxed reference process and the transformed process
allows deciding whether the process behavior has changed. If
the answer is 'no' (no changes), then the transformed process
can be accepted. Otherwise, the comparison of traces can
show the process fragment, in which the change occurred. If
this is the case, the decision whether to allow or to deny such
a change can be made by a human designer.

ACKNOWLEDGMENT
This research was supported in part by the Ministry of

Science and Higher Education under the grant number
5321/B/T02/2010/39.

REFERENCES
[1] OMG, Business Process Modeling Notation (BPMN), http://www.

omg.org/spec/BPMN/1.2
[2] OMG, Unified Modeling Language (OMG UML): Superstructure,

version V2.1.2, http://www.omg.org/spec/UML/2.1.2/Superstructure/
PDF (2007)

[3] Erl T.: Service-oriented Architecture: Concepts, Technology, and
Design. Prentice Hall, Englewood Cliffs (2005)

[4] MacKenzie C. M., Laskey K., McCabe F., Brown P. F, Metz R.:
Reference model for service oriented architecture 1.0. Technical
report, OASIS (2006)

[5] Ratkowski A., Zalewski A.: Transformational Design of Business
Processes for SOA. In: Huzar Z., Koci R., Meyer B., Walter B.,
Zendulka J. (Eds.): CEE-SET 2008. LNCS vol. 4980, pp. 76-90.
Springer, Heidelberg (2011)

[6] Jordan D., Evdemon J.: Web Services Business Process Execution
Language Version 2.0. OASIS Standard (2007)

[7] White S.: Using BPMN to Model a BPEL Process, BPTrends 3,
www.bptrends.com (2005)

[8] Ouyang, C., van der Aalst,W.M.P., Dumas, M., ter Hofstede, A.H.M.:
Translating BPMN to BPEL, BPM Center Report BPM-06-02,
BPMcenter.org (2006)

49

[9] Hollingsworth J. K., Miller B. P.: Parallel program performance
metrics: A comparison and validation, Proc. ACM/IEEE Conference
on Supercomputing, pp. 4 - 13, IEEE Computer Society Press (1992)

[10] Van Amesfoort A.S., Varbanescu A.L., Sips H.J.: Proc. 15th
Workshop on Compilers for Parallel Computing, pp 1-13 (2010)

[11] Ratkowski A, Sacha K.: Business Process Design In Service Oriented
Architecture. In: A. Grzech, L. Borzemski, J. �wi�tek, Z.
Wilimowska (Eds.): Information Systems Architecture and
Technology, pp. 15-24. Wroclaw University of Technology, Wroclaw
(2011)

[12] ISO 8807: Information Processing Systems: Open Systems
Interconnection: LOTOS: A Formal Description Technique Based on
the Temporal Ordering of Observational Behaviour. International
Organization for Standards (1989)

[13] Salaun G., Ferrara A., Chirichiello A.: Negotiation among web
services using LOTOS/CADP. In: L. Zhang (Ed.): Proc. European
Conference on Web Services. LNCS vol. 3250, pp. 198-212.
Springer, Heidelberg (2004)

[14] Weiser M.: Program slicing. IEEE Trans. Software Eng., 10 (4), pp.
352-357 (1984)

[15] Binkley D., Gallagher K.B.: Program slicing, Advances in
Computers, 43, pp. 1-50 (1996)

[16] Ottenstein K.J., Ottenstein L.M.: The program dependence graph in a
software development environment. Proc. ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software
Development Environments, ACM, pp. 177-184 (1984)

[17] Mao C.: Slicing web service-based software. IEEE International
Conference on Service-Oriented Computing and Applications, IEEE,
pp. 1-8 (2009)

50

