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Abstract—This paper describes a method for the 
implementation and optimization of business processes in a 
service oriented architecture (SOA). A process specification is 
created by business people, and expressed in Business Process 
Modeling Notation (BPMN). The specification is then 
translated into Business Process Execution Language (BPEL), 
and used by technical people as a reference process, which is 
subject to a series of transformations that change the internal 
process structure in order to improve the quality of the process 
execution. The behavior of each transformed process is verified 
automatically against the behavior of the reference process. 
The verification mechanism is based on a mapping from BPEL 
to Language of Temporal Ordering Specification (LOTOS), 
followed by a comparison of the trace set that is generated 
using a program dependence graph of the reference process 
and the trace set of the transformed one. When the design 
goals have been reached, the transformed BPEL process can be 
executed on a target SOA environment using a BPEL engine. 

Keywords-Business Process, BPEL, Service Oriented 
Architecture, Program Dependence Graph, LOTOS 

I.  INTRODUCTION AND RELATED WORK 
A business process is a set of partially ordered activities, 

which produce a specific product or service that adds value 
for a customer. The specification of a business process can 
be expressed graphically using an appropriate notation, such 
as the Business Process Modeling Notation [1] or UML 
activity diagrams [2]. The structure of the specified business 
process and the arrangement of activities reflect business 
decisions made by business people. The implementation of a 
business process on a computer system is expected to exhibit 
the defined behavior at a satisfactory level of quality. 
Reaching such a level of quality may require restructuring of 
the initial process, according to a series of technical 
decisions, which have to be made by technical people. 

This paper describes a transformational method for the 
implementation and optimization of business processes in 
Service Oriented Architecture [3-5]. The starting point of the 
method is a process specification, defined by business people 
using BPMN. The specification is translated by an open 
source tool into a reference process expressed in Business 
Process Execution Language [6-8]. The reference process is 
subject to a series of transformations, which change the 
internal structure of the process and make it closer to the 
implementation. The transformations are selected manually 
by human designers (technical people) and performed 

automatically by a software tool. Each transformation 
changes the ordering of activities within the process in order 
to improve the quality of the process implementation, e.g. by 
benefiting from the parallel structure of services, but 
preserves the reference process behavior. When the design 
goals have been reached, the transformed BPEL process can 
be executed on a target SOA environment. The evaluation of 
the process quality can be guided by metrics, which are 
similar to metrics discussed in the literature [9-11]. 

A critical part of the method is the verification of 
behavior that the process exhibits before and after a 
transformation. One possible verification mechanism could 
be based on trace semantics of processes. To use this 
principle, we could define a trace of the reference process 
execution, and request that the trace of a process after a 
transformation was the same. Unfortunately, the identity of 
traces is not an appropriate criterion, because it eliminates 
such transformations, which reorder the process activities 
without changing the results of the process execution. 

Therefore, we have chosen another approach, which is 
based on an original mapping from BPEL to Language of 
Temporal Ordering Specification [12,13]. In the first step, 
dataflow dependencies between the activities of the reference 
process are analyzed using program slicing techniques 
[14,15] and presented in the form of a program dependence 
graph [16,17]. All the insignificant ordering constraints are 
removed and the minimal dependence process is created and 
mapped into a LOTOS expression. The labeled transition 
system of this expression defines the set of all the traces that 
define the behavior of the reference process, which is 
considered acceptable from the application viewpoint. 

In the second step, the reference process is subject to 
transformations selected by a designer, and the transformed 
process is mapped into a simple LOTOS expression. If all 
the traces generated by the labeled transition system of this 
expression are within the set of traces generated by the 
labeled transition system of the minimal dependence process, 
then the transformed process behavior is compliant with the 
reference process behavior. 

The rest of this paper is organized as follows. The 
structure of a business process, BPMN notation and BPEL 
language are described in Section II. LOTOS language and a 
BPEL to LOTOS mapping are covered in Section III. 
Transformations of a BPEL process are shown in Section IV. 
The verification method is described in Section V. Quality 
metrics are exemplified in Section VI. Conclusions and plans 
for further research are given in Section VII. 
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II. THE STRUCTURE OF A BUSINESS PROCESS 
A business process is a set of related activities, which 

produce a service or product for a customer. Part of these 
activities can be implemented on-site by locally executed 
functions, while others can be implemented externally, by 
services offered by a service-oriented environment. The 
services can be viewed from the process perspective as the 
main business data processing functions. 

The specification of a business process can be defined 
textually, or with a flowchart, as a sequential or parallel set 
of activities with interleaving decision points. Business 
Process Modeling Notation is a graphical representation used 
frequently by business people for specifying business 
processes in their organizations. An example BPMN process 
is shown in Fig. 1. The process starts after receiving an 
invocation from a remote client (another process). Then, it 
invokes two services in parallel and when the invocations are 
finished, i.e. the results are received; it performs the first 
piece of a local computation. Next, it checks a condition and 
decides to perform one out of two other pieces of 
computation. Finally, the process replies to the client. This 
way, a business process in SOA environment can be 
implemented as a service, which is composed of services and 
which can be invoked by another service. 

BPMN specification of a business process is created by a 
business analyst, who defines functioning of an organization. 
The specification can be automatically translated into a 
BPEL program, which can be used by technicians for semi-
automatic implementation. The translation from BPMN to 
BPEL is subject to a research effort [7,8], which is not 
covered in this paper. An open-source tool can be found at 
http://code.google.com/p/bpmn2bpel/. 

BPEL syntax is composed of a set of instructions, called 
activities, which are XML elements indicated in the 
document by explicit markup. The activities can be classified 
as simple, which define elementary pieces of computation, 
and structured, which comprise another activities. The set of 
BPEL activities is rich, however, we focus in this paper on a 
limited subset of activities for defining flow of control, 
service invocation and basic data handling.  

The body of a BPEL process consists of simple activities, 
which are elementary pieces of computation, and structured 
elements, which comprise other simple or structured 
activities, nested in each other to an arbitrary depth. Simple 
activities are <assign>, which implements substitution, 
<invoke>, which invokes an external service, and <receive>, 
<reply> pair, which receives and replies to an invocation. 

Structured activities are <sequence> element to describe 
sequential execution, <flow> element to describe parallel 
execution and <if> alternative branching. An example BPEL 
program, which implements the business process in Fig. 1, is 
shown in Fig. 2. We use roman letters for the language tags 
and attributes (terminal symbols), and italics for nonterminal 
symbols. Name attribute will be used to refer to particular 
activities of the program in the subsequent figures. 

The first executable activity of the program is <receive>, 
which waits for a message that invokes the process execution 
and conveys a value of the input argument. The last activity 
of the process is <reply>, which responds to the invocation 
by sending a message that returns the result. The activities 
between <receive> and <reply> execute a business process, 
which invokes other services and transforms the input into 
the output. This is a typical construction of a BPEL process, 
which itself can be viewed as a service invoked and used by 
other services. 

SOA services are assumed stateless [3]. This means that 
the behavior of a service, observed by another services, 
depends only on values passed to the service by means of 
messages. An impact of services on the real world will be 
discussed in Section V. On the other hand, the behavior of a 
service depends on the type, number and order of activities, 
which constitute the program body. The activities and the 
order of their execution can formally be described by a 
LOTOS expression, which captures a trace, or a set of traces, 
of the program execution. Services composed of the same set 
of activities and characterized by the same set of execution 
traces, return the same results for given arguments, 
regardless of their internal structure. 

<sequence> 
   <receive name="rcv" … > </receive> 
   <flow> 
      <invoke name="inv1" … > </invoke> 
      <invoke name="inv2" … > </invoke> 
   </flow> 
   <assign name="ass1" > … </assign> 
   <if name="alt"> 
      <condition> … </condition> 
         <assign name="ass2" > … </assign>
      <else> 
         <assign name="ass3" > … </assign>
   </if> 
   <reply name="rpl" … > </reply> 
</sequence> 

Figure 2. BPEL program of the business process in Fig. 1 

Figure 1. BPMN specification of a business process 
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III. THE LANGUAGE LOTOS 
Language of Temporal Ordering Specification (LOTOS) 

is one of the formal description techniques developed within 
ISO [12] for the specification of open distributed systems. 
The semantics of LOTOS is based on algebraic concepts and 
is defined by a labeled transition system (LTS), which can be 
built for each LOTOS expression. 

A process, or a set of processes, is modeled in LOTOS as 
a behavior expression, composed of actions, operators and 
parenthesis. Actions correspond to activities, which 
constitute the process body. Operators describe the ordering 
of actions during the process execution. The list of operators, 
together with an informal explanation of their meaning is 
given in Table I. We use μ to denote an arbitrary action and 
δ to denote a special action of a successful termination of an 
expression or sub-expression. 

LOTOS expression can be executed, generating a 
sequence of actions, which is called the execution trace. An 
expression which contains parallel elements can generate 
many traces, each of which describes an acceptable ordering 
of actions. Not all of the actions that are syntactic elements 
of an expression are directly visible within the execution 
trace. These actions are called observable actions and are 
denoted by alphanumeric identifiers, e.g. g1, g2 etc. Only 
observable actions are counted as members of an execution 
trace of the expression. Other actions cannot be identified 
when observing the trace. These actions are called 
unobservable actions. Unobservable actions are denoted by 
letter i and are not counted as members of an execution trace. 

Formally, unobservable actions are those that are listed 
within the hide clause of LOTOS. In this paper, we omit this 
clause to help keeping the expressions simple. 

The operational semantics of LOTOS provides a means 
to derive the actions that an expression may perform from 
the structure of the expression itself. Formally, the semantics 
of an expression B is a labeled transition system < S, A,→, I > 

where: 

S – is a set of states (LOTOS expressions), 
A – is a set of actions, 
→ – is a transition relation, → ⊆ S × A × S, 
B – is the initial state (the given expression). 

The transition relation is usually written as  B  →
μ

   B’. For 
example, the semantics of expression (g; B1) can be 
described by a labeled transition: 

g; B1  →
g

   B1 
This means that expression (g; B1) is capable of performing 
action g and transforming into expression B1. 

The semantics of a complex expression consists of a 
directed graph (a tree) of labeled transitions, which root is 
the expression itself, and which edges are the labeled 
transitions. Each path from the root node to a leaf node of the 
graph defines a sequence of actions, which is an execution 
trace of the expression.  

LOTOS expression can serve as a tool for modeling the 
set of traces of execution of a BPEL process. To use the tool, 
we can model BPEL activities as observable actions in 
LOTOS, and describe the ordering of activities during the 
process execution by means of a LOTOS expression.  

Simple activities of BPEL are mapped to observable 
actions of LOTOS, followed by exit symbol. For example: 

<assign name="ass"> is mapped to ass; exit 
<invoke name="inv"> is mapped to inv; exit 

Structured activities of BPEL are translated into LOTOS 
expressions according to the following rules: 

• <sequence> element is mapped into sequential 
composition (>>), 

• <flow> element is mapped to parallel execution (|||), 
• <if> element is mapped to alternative choice ([ ]). 
Consider, for example, BPEL process in Fig. 2. If we 

map the process activities according to the above rules, then 
the resulting LOTOS expression looks as follows: 

rcv;exit >> ( inv1;exit ||| inv2;exit ) >> ass1;exit >> 
( ass2;exit [ ] ass3;exit ) >> rpl;exit 

The trace set generated by the labeled transition system 
of this expression consists of four traces composed of the 
following observable actions:  

rcv; inv1; inv2; ass1; ass2; rpl 
rcv; inv1; inv2; ass1; ass3; rpl 
rcv; inv2; inv1; ass1; ass2; rpl 
rcv; inv2; inv1; ass1; ass3; rpl 

The semantics of parallelism in LOTOS is interleaved. 
Parallel execution of the two <invoke> activities that are 
nested within <flow> element of the BPEL process is 
modeled by the possibility of executing the corresponding 
LOTOS actions inv1 and inv2 in an arbitrary order. The 
semantics of choice is exclusive. When one branch of <if> 
element begins execution, then the other branch disappears. 
Special action δ generated by exit is not counted in the 
execution traces because it is an unobservable action. 

TABLE I.  EXPRESSIONS IN BASIC LOTOS 

Syntax Explanation 
stop inaction, lack of action 
μ ; B action μ  precedes execution of 

expression B 
B1 [ ] B2 alternative choice of expressions B1 

and B2 
B1 |[ g1,…gn ]| B2 parallel execution of B1 and B2 

synchronized at actions g1,…,gn 
B1 ||| B2 parallel execution with no 

synchronization between B1 and B2 
exit successful termination; generates a 

special action δ 
B1 >> B2 sequential composition: successful 

execution of B1 enables B2 
B1 [> B2 disabling: successful execution of B1 

disables execution of B2 
hide g1,…,gn in B hiding: actions g1,…,gn are 

transformed into unobservable ones 
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IV. TRANSFORMATIONS 
The body of a BPEL process consists of activities. 

Simple activities invoke external services and perform local 
data processing operations. Structured activities comprise 
other activities and decide on the order, in which the 
activities are executed. The results as well as the quality, e.g. 
efficiency of execution, of the process depend on the set of 
activities, which constitute the process body, and on the 
process structure. The goal of a transformation is to change 
the process structure in a way, which improves the process 
quality without changing the results of the process execution. 

A transformation applies to an element of a BPEL 
process. It can consist in moving an activity from one place 
to another in a BPEL program or in replacing one structured 
activity, e.g. <sequence>, by another, e.g. <flow>, composed 
of the same elements. If the results of the process execution 
are not changed by the transformation, then this 
transformation is considered safe for the user. It can easily be 
seen that a sequence of safe transformations is also safe. 

Several transformations can be defined. The basic ones 
are the following: Displacement, parallelization of the 
process operations, serialization, aggregation of processes 
into a single entity and a split of a single process. The first 
three of these transformations are described in detail below. 

Transformation 1: Displacement. 
Consider an arbitrary BPEL process, composed of 

activities nested in each other in compliance with the rules of 
BPEL syntax. Transformation 1 moves a selected activity, 
either simple or structured, from its original location in the 
program, into another place in the program structure. 

Transformation 2: Parallelization. 
Consider <sequence> element of a BPEL program, 

which contains n arbitrary activities A1 through An. 
Transformation 2 parallelizes the execution of activities by 
replacing <sequence> element with <flow> element, 
composed of the same activities. 

Transformation 3: Serialization.  
Consider <flow> element of a BPEL program, which 

contains n arbitrary activities A1 through An. Transformation 
3 serializes the execution of activities by replacing <flow> 
element with <sequence> element, composed of the same 
activities. 

Transformations 1 through 3 can be composed in any 
order, resulting in a complex transformation of a process 
structure. Transformations 4 and 5 play an auxiliary role and 
facilitate such a superposition. These transformations do not 
change the process behavior, because they do not change the 
order of execution of commands. 

Transformation 4: Sequential structuring.  
Transformation 4 adds a pair of tags <sequence> 

</sequence> around a single activity A. 

Transformation 5: Parallel structuring.  
Transformation 5 adds a pair of tags <flow> </flow> 

around a single activity A. 

To illustrate optimization of a BPEL process and the use 
of transformations, assume that ass1 activity in Fig. 2 uses 
only a data value, which has been set by inv1 activity, and 
that the structured <if> activity uses data values set by inv2 
only. It is easy to see that according to these assumptions, the 
activities ass1 and <if> are independent. Our goal is to 
speed-up execution of the process in Fig. 2.  

One way to reach the goal is by parallelizing the 
execution of ass1 and <if> activities. To do this, we can 
apply transformation 5 to add a pair of <flow> </flow> tags 
around ass1, and then apply transformation 1 to move <if> 
activity into the scope of the previously added <flow> tag. 
The structure of the transformed process is shown in Fig. 3a. 
The proof of safeness of this transformation sequence is 
given in Section V. 

Alternatively, we can restructure the process in such a 
way that two branches are executed in parallel: One 
composed of inv1 and ass1 activities, and the other one 

<sequence> 
  <receive name="rcv"> 
  <flow> 
    <invoke name="inv1"> 
    <invoke name="inv2"> 
  </flow> 
  <flow> 
    <assign name="ass1"> 
    <if name="alt"> 
      <condition> 
        <assign name="ass2"> 
      <else> 
        <assign name="ass3"> 
    </if> 
  </flow> 
  <reply name="rpl"> 
</sequence> 

<sequence> 
  <receive name ="rcv"> 
  <flow> 
    <sequence> 
       <invoke name="inv1"> 
       <assign name="ass1"> 
     </sequence> 
     <sequence> 
       <invoke name="inv2"> 
       <if name="alt"> 
         <condition> 
           <assign name'"ass2">
         <else> 
           <assign name="ass3">
        </if> 
      </sequence> 
   </flow> 
   <reply name="rpl"> 
</sequence> 

(a) (b)

Figure 3. The process after transformations 5 (a), and after transformations 4 and 1 (b) 
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composed of inv2 and <if>. To do this, we can apply 
transformation 4 twice, in order to add two pairs of 
<sequence> </sequence> tags: Around inv1 and around inv2. 
Then, we can use transformation 1 twice, to move ass1 
activity into the scope of the first added <sequence>, and to 
move <if> activity into the scope of the second added 
<sequence>. The structure of the transformed process is 
shown in Fig 3b. The proof of safeness of this transformation 
sequence is given in Section V. 

V. VERIFICATION 
The reference process defines a behavior, which is 

acceptable from the application viewpoint. In the 
transformation phase, the structure of the process and the 
flow of execution are changed, in order to improve the 
performance characteristics. However, the externally 
observable behavior of the process must remain unchanged. 
The problem is how to define this behavior and how to verify 
that it has not been changed. 

The observable behavior of a process in a SOA 
environment consists of values of the variables that are 
visible to the outside world, i.e. variables, which are passed 
as arguments when external services are being invoked, and 
variables, which values are returned at the end of the process 
execution. This is sufficient, because services are stateless 
[3] and return the same results if invoked with the same 
values of arguments.  An impact of services on the real world 
is taken into account, as described in the next subsection. 

The verification follows a two-phase approach, illustrated 
in Fig. 4 where B2L acronym stands for: BPEL-to-LOTOS 
mapping. In the first phase, data dependencies between the 
activities of the reference process are analyzed using the 
Program Dependence Graph (PDG) and all the unnecessary 
sequencing constraints on these activities are removed. The 
resulting graph reflects all the dataflow dependencies 
between the activities of the reference process and is free 
from the initial process structuring. If we preserve the 
dataflow dependencies during the process transformation, 
then the values computed by all the activities remain 
unchanged. In particular, the values that are passed between 
the processes by means of the inter-process communication 
activities: <invoke> in one process and <receive> <reply> 
pair in the other one, remain also unchanged. Program 
dependence graph is then transformed into a LOTOS 

expression, which is called a Minimal Dependence Process 
(MDP). The labeled transition system of the minimal 
dependence process defines a set of traces that define the 
behavior of all processes, which comply with dataflow 
dependencies defined within the reference process. The first 
phase is performed only once for a given reference process. 

The second phase is performed repetitively during the 
transformational implementation cycle. A transformed BPEL 
process is mapped into a LOTOS expression, as described in 
Section III. The set of traces generated by the labeled 
transition system of this expression is compared with the set 
of traces generated by the labeled transition system of the 
minimal dependence process. If the trace set generated by the 
expression is within the trace set of MDP, then the behavior 
of the transformed BPEL process is safe in that it preserves 
the behavior of the reference process. 

A. Program Dependence Graph 
To capture the behavior of a process, we use a technique 

called program slicing [14,15], which allows finding all such 
activities in a program, which influence the value of a 
selected variable in a specific point of the program. For 
example, the value of a variable used as an argument by a 
service invocation activity or by the final <reply> activity of 
the process. The conceptual tool for the analysis is program 
dependence graph [16,17], which nodes are elements of a 
BPEL program and edges are control and dataflow 
dependencies between these elements.  

The algorithm for constructing PDG of a BPEL program 
consists of the following steps (Fig. 5): 

1. Define nodes of the graph, which are activities at all 
layers of nesting. 

2. Define control edges (solid lines in Fig. 5b), which 
follow the nested structure of the program, e.g. an edge 
from <sequence> to <flow> means that <flow> activity 
is nested within the <sequence> element. 

3. Define dataflow edges (dashed lines in Fig 5b), which 
show data dependencies between activities revealed 
using program slicing techniques. For example, an edge 
from rcv to inv1 means that the output value of rcv 
activity is used as the input argument of inv1. 

A dataflow edge between two nodes in a program 
dependence graph implies that the result of the activity at the 
end of the edge depends on the result of the activity at the 
beginning of this edge. Therefore, the arrangement of 
activities during the program execution, reflected by the 
succession of activities in an execution trace, must comply 
with the direction of dataflow edges. Any change to this 
arrangement may lead to a change in the program behavior. 

Structured nodes <sequence> and <flow>, as well as 
control edges connected to these nodes reflect the structure 
and the flow of control within the reference process. Both of 
the two can be changed during the process transformation. 
Therefore, structured nodes <sequence> and <flow> are 
removed from the program dependence graph. Control 
edges, which output a removed node, are redirected to the 
direct predecessor node, if one exists, or are removed as 
well. On the other hand, structured node <if> and the control 

BPEL 
reference 
process  

Program 
Dependence 

Graph 

Minimal  
Dependence 

Process 

Transformations 

Transformed 
BPEL  

process  

B2L LTS

LTS

Result

B2L 

⊆
?? LOTOS  

expression 
LTS 

Figure 4. Verification of a process behavior 
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edges, which output this node, are not removed from the 
graph, because they reflect the logic of conditional 
branching. The reduced program dependence graph of the 
reference process in Fig. 5 is shown in Fig. 6. 

The services invoked by a process can have an impact on 
the real world. If this is the case, a specific ordering of these 
services can be required. A designer can reflect this 
requirement adding appropriate edges to the reduced 
program dependence graph. 

Let GP = (NP, EP) be a reduced program dependence 
graph of a BPEL process P. It can be proved from the above 
algorithm that graph GP is acyclic. We say that node ni 
precedes node nj, denoted ni < nj, if there exists a path from ni 
to nj in the program dependence graph. Precedence relation 
is a strict partial order in NP. 

B. Minimal Dependence Process 
An execution of a BPEL program can be modeled as a 

process of traversing through the program dependence graph, 
starting at the initial node and moving along the directed 
arcs. The process stops when the last node of the graph is 
reached. Because the ordering of nodes is only partial, then 
the succession of visited nodes and arcs may vary. For 
example, the first node in Fig. 6 is rcv. After visiting this 
node, data can be passed along the arc to inv1 or along the 
arc to inv2. If the former is true, then in the next step node 
inv1 can be visited or data can be passed along the arc to 
inv2. However, node inv2 could not be visited in that step. 

Nodes and arcs of a program dependence graph can be 
mapped to LOTOS actions in such a way that a visit to a 
node is mapped to an observable action, while moving along 
an arc is mapped to an unobservable action. A sequence of 
execution steps is mapped to a sequence of LOTOS actions. 
An example mapping of nodes and arcs is shown in Fig. 7. 

A visit to a node enables visiting all the succeeding 
nodes. However, the way of reaching this node (described by 
an expression B1) has no influence on the other part of 
execution after visiting the node (described by an expression 
B2), and vice versa. This means that actions performed 
before the visit (within B1) and actions performed after the 
visit (within B2) are independent. However, finishing the 
visit and passing data along the output arcs of the visited 
node make a synchronization point between the two. This 
informal description can be expressed formally in LOTOS 
using the operator of parallel execution of B1 and B2 
synchronized at action assigned to the output arc. 

Minimal dependence process is a LOTOS expression that 
defines the set of traces, which are compliant with dataflow 
dependencies described by the program dependence graph. 
This way, minimal dependence process defines the semantics 
of a BPEL reference process. The algorithm for building 
MDP searches through the reduced program dependence 
graph, starting at the initial node. LOTOS expression is 
constructed iteratively, by appending a new sub-expression 
to the existing part of MDP in each visited node. 

For example, the first action in the graph in Fig 7 is rcv, 
followed by one of the actions a or b. Hence, the appropriate 
LOTOS expression begins with: 

rcv; (a|||b) … 

Passing data along one of the output arcs enables 
traversing through the other parts of the graph. Action a 
enables inv2, while action b enables inv1; ass1. Both of the 
enabled groups of actions are independent and can be 
executed in parallel. Hence, the next part of the LOTOS 
expression is: 

( (rcv; (a||b) ) |[a]| a; inv2;…) |[b]| b; inv1;ass1;… 

rcv 
inv1 

rpl 

inv2 ass2 <if> 

ass1 ass3 

Figure 6. The reduced program dependence graph of the process in Fig. 5 

<sequence> 
  <receive name="rcv"> 
  <flow> 
    <invoke name="inv1"> 
    <invoke name="inv2"> 
  </flow> 
  <assign name="ass1"> 
  <if name="alt"> 
    <condition> 
      <assign name="ass1">
    <else> 
      <assign name="ass2">
  </if> 
  <reply name="rpl"> 
</sequence> 

(a) (b)

rcv rpl 

inv2 ass2 

<if> 

ass1 

<flow> 

ass3 

<sequence> 

inv1 

Figure 5. A nested BPEL process: Process body (a) and program dependence graph (b) 
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Formally, the algorithm for constructing MDP of a BPEL 
program described by a reduced program dependence graph 
consists of the following steps: 

1. Assign an observable LOTOS action to each node of the 
reduced program dependence graph, except of <if> 
nodes. The action is identified by the name attribute of 
the node (nodes in PDG are BPEL activities).  

2. Find paths in the reduced program dependence graph, 
such that the first node of a path has one output edge, the 
last node has one input edge and each other node has one 
input and one output edge. Substitute each path with a 
single node, and assign to this node LOTOS expression 
composed of actions, which were assigned to the 
removed nodes, separated by semicolons. 

3. Assign an unobservable LOTOS action to each edge of 
the graph. The actions should be distinct, except of the 
edges, which output the alternative nodes of an <if> 
activity and input the same node. These actions should be 
equal. 

4. Initiate graph search from the initial node. Create 
LOTOS expression, denoted MDP', composed of: 
• the expression assigned to the initial node,  
• semicolon and parallel composition of actions 

assigned to the output edges. 
5. Search through the nodes of the reduced program 

dependence graph in a sequence complying with the 
precedence relation (ni is visited before nj, if ni < nj). For 
each node, place parentheses around the MDP' and 
append the following expressions: 
• parallel composition synchronized on actions 

assigned to the input edges, 
• a sequence of actions assigned to the input edges, 

separated by semicolons, 
• semicolon and LOTOS expression assigned to the 

node (empty for <if> node), 
• semicolon, and parallel composition of actions 

assigned to the output dataflow edges or an 
alternative selection of actions assigned to the output 
control edges (the case of <if> activity). 

6. When the algorithm stops, after visiting the last node, 
MDP' becomes the minimal dependence process MDP. 

For example, consider the reduced program dependence 
graph in Fig.6. The steps of assigning LOTOS expressions to 
nodes (step 1), removing paths (step 2) and assigning 
unobservable actions to edges (step 3) change the graph as 
shown in Fig. 7. 

The minimal dependence process, derived from the graph 
in Fig. 7, takes the form of the following LOTOS expression: 

(((((rcv;(a|||b)) |[a]| a;inv2;(y[ ]n)) |[b]| b;inv1;ass1;c) 
|[y]| y;ass2;d) |[n]| n;ass3;d) |[c,d]| c;d;rpl 

The labeled transition system of this expression generates 
a set of 12 traces, each of which is a sequence of observable 
actions: 

{ rcv; inv1; ass1; inv2; ass2; rpl , 
 rcv; inv1; ass1; inv2; ass3; rpl , 
 rcv; inv1; inv2; ass1; ass2; rpl , 

 rcv; inv1; inv2; ass1; ass3; rpl , 
 rcv; inv1; inv2; ass2; ass1; rpl , 
 rcv; inv1; inv2; ass3; ass1; rpl , 
 rcv; inv2; ass2; inv1; ass1; rpl , 
 rcv; inv2; ass3; inv1; ass1; rpl , 
 rcv; inv2; inv1; ass2; ass1; rpl , 
 rcv; inv2; inv1; ass3; ass1; rpl , 
 rcv; inv2; inv1; ass1; ass2; rpl , 
 rcv; inv2; inv1; ass1; ass3; rpl } 

The trace set of the reference process in Fig. 2 consists of 
4 traces: 

{ rcv; inv1; inv2; ass1; ass2; rpl , 
 rcv; inv1; inv2; ass1; ass3; rpl , 
 rcv; inv2; inv1; ass1; ass2; rpl , 
 rcv; inv2; inv1; ass1; ass3; rpl } 

The trace set of the first transformed process in Fig. 3a 
consists of 8 traces: 

{ rcv; inv1; inv2; ass1; ass2; rpl , 
 rcv; inv1; inv2; ass1; ass3; rpl , 
 rcv; inv1; inv2; ass2; ass1; rpl , 
 rcv; inv1; inv2; ass3; ass1; rpl , 
 rcv; inv2; inv1; ass1; ass2; rpl , 
 rcv; inv2; inv1; ass1; ass3; rpl , 
 rcv; inv2; inv1; ass2; ass1; rpl , 
 rcv; inv2; inv1; ass3; ass1; rpl } 

The trace set of the second transformed process in Fig. 3b 
consists of 12 traces, and is identical to the trace set of MDP. 
Obviously, the trace set of MDP includes the trace sets of the 
reference process as well as of the transformed processes. 
This proves that both transformations are safe. 

VI. QUALITY METRICS 
Quality metrics to measure parallel programs have been 

studied for many years. A traditional tool for measuring 
performance of a parallel application is Program Activity 
Graph, which describes parallel flow of control within the 
application [9]. We do not use this graph; nevertheless, our 
Length of thread metric can be viewed as an approximation 
of Critical path metric described in [9]. Similarly, our 
Number of threads metric is similar to Available 
concurrency defined in [10]. The value of each metric can be 
calculated using a program dependence graph. 

Size of a process is measured as the number of simple 
activities in the BPEL program. More precisely, the value of 
this metric equals the number of leaf nodes in the program 
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b
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Figure 7. Construction of MDP: The reduced program dependence 
graph (Fig. 6) after step 3 
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dependence graph of this process. Leaf nodes are simple 
activities, which perform the processing of data. Therefore, 
the value of the process size metric could be considered a 
measure of the amount of work, which can be provided by 
the process. For example, the size of all the processes shown 
in Fig. 2, 3a and 3b is 7. 

Complexity of the process is measured as the total 
number of nodes in PDG. For example, the size of program 
in Fig. 2 is 10, the size of program in Fig. 3a is 11, and the 
size of program in Fig. 3b is 12. The number of nodes in 
PDG, compared to the size of the process, describes the 
amount of excess in the graph, which can be considered a 
measure of complexity of the program structure.  

Number of threads is measured as the number of items 
within <flow> elements of a BPEL program, at all levels of 
nesting. The algorithm of computation assigns weights to 
nodes of the program dependence graph of the process, 
starting from the leaves up to the root, according to the 
following rules: 

• the weight of a simple BPEL activity is 1, 
• the weight of a <flow> element is the sum of weights 

assigned to the descending nodes (i.e. nodes directly 
nested within the <flow> element), 

• the weight of a <sequence> or <if> element is the 
maximum of weights assigned to the descending 
nodes (i.e. nodes directly nested within the 
<sequence> element). 

The metric value equals the weight assigned to the top 
<sequence> node of PDG. For example, the number of 
threads of all the processes in Fig. 2, 3a and 3b is 2. 

Length of thread is measured as the number of 
sequentially executed activities within a BPEL program. The 
algorithm of computation assigns weights to nodes of the 
program dependence graph of the process, starting from the 
leaves up to the root, according to the following rules: 

• the weight of a simple BPEL activity is 1, 
• the weight of a <flow> or <if> element is the 

maximum of weights assigned to the descending 
nodes (i.e. nodes directly nested within the <flow> 
element), 

• the weight of a <sequence> element is the sum of 
weights assigned to the descending nodes (i.e. nodes 
directly nested within the <sequence> element). 

The metric value equals the weight assigned to the top 
<sequence> node of PDG. For example, the length of thread 
of programs in Fig. 2 and Fig. 3a is 1, while the length of 
thread of program in Fig. 3b is 2. 

To summarize the examples, one can note that all the 
three processes has the same size, the complexity of the 
transformed processes is higher than the complexity of the 
reference process, the number of threads of all the processes 
is the same, but the last process has the threads longer. This 
means that the last process is probably the optimum one. 
Unfortunately, the complexity of this process is also the 
highest.  

VII. CONCLUSIONS 
The behavior of a business process is a business decision. 

The way of implementation of a business process is a 
technical decision. The transformational method for 
implementation and optimization of business processes in 
SOA, described in this paper, promotes separation of 
concerns and allows making business decisions by business 
people and technical decisions by technical people. The 
former relates to the specification phase of a reference 
process, which reflects the flow of business logic used in an 
organization. The latter relates to the implementation phase, 
in which the reference process is transformed in order to 
improve efficiency and benefit from the parallel structure of 
services in a SOA environment. The quality of processes can 
be measured by metrics exemplified in Section VI. 

Transformations described in Section IV can change the 
process structure and, in some circumstances, can preserve 
the observable behavior of the reference process. To 
guarantee that the process behavior has not been changed 
during the transformations, we developed a verification 
technique, which relies on relaxing the ordering of activities 
by means of a program dependence graph and modeling the 
resulting minimal dependence process by means of a 
LOTOS expression. A comparison of trace sets generated by 
the relaxed reference process and the transformed process 
allows deciding whether the process behavior has changed. If 
the answer is 'no' (no changes), then the transformed process 
can be accepted. Otherwise, the comparison of traces can 
show the process fragment, in which the change occurred. If 
this is the case, the decision whether to allow or to deny such 
a change can be made by a human designer. 
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