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Abstract

Tests for measuring the real-time operating sys-
tem performance belong to the software techmology.
They give quantitative measures for the most impor-
tant characteristics and allow the implementer to com-
pare the efficiency of various operating systems. This
paper presents a set of simple tests for measuring the
real-time operating system characteristics. The tests
require no specialized hardware, and are based on direct
measuring of the duration of execution of sequences of
system functions. All tests described in the paper have
been applied to measure the efficiency of a distributed
operating system QNX. The measurements include the
speed of intertask communication through messages,
proxies and signals, and the speed of task switching and
timer interrupt handling. The results are presented in
a series of easily readable tables.

1 Introduction

Measuring operating system characteristics and
comparing the systems to each other are difficult prob-
lems. The difficulty comes primarily from the fact that
various systems, even if intended for the same appli-
cation area, can exhibit different functionalities and
no consensus exists on which features are to be mea-
sured and compared. The second source of problems
is the question how these features shall be measured
and how the results can be compared.

The scope of this paper is limited to the area
of real-time operating systems. Such systems can be
characterized by two requirements which are essential
within this application area: timeliness and depend-
ability. These requirements are implemented within
the current technology using the following princi-
ples:

e multitasking,

e efficient task communication and synchronization,
e efficient time and event handling,
e transparent distribution in a local area network.

The above list gives a guideline for planning a set
of measures of the real-time system performance. Un-
fortunately, a variety of different tools are used within
various operating systems to implement those princi-
ples. A list of the most popular tools for the task
communication, task synchronization, and event sig-
naling can be summarized as follows [1]:
synchronous messages and rendezvous,
asynchronous messages and pipes,
semaphores and proxies,
signals,
direct interrupt handling.

It is worth noting that pipes and signals have recently
been standardized by IEC/ISO [2].

The goal of this paper is to suggest a set of sim-
ple tests which can be used for practical measurement
of the operating system efficiency. The tests will relay
on software tools only, and will not require any special
hardware support. To achieve this goal, the paper is
organized as follows. Tests for measuring the duration
of a message transfer and the communication through
a pipe is described in Section 2. Tests for measuring
the speed of the task synchronization through proxies
and signals is described in Section 3. A test for mea-
suring the duration of the task switching is described
in Section 4. A test for measuring the duration of the
timer interrupt handling is described in Section 5.

All tests described in this paper have been im-
plemented and applied to a distributed real-time op-
erating system QNX. The test bed used throughout
the testing process consisted of three PC-compatible
computers, numbered 1, 2 and 3, and connected to
a segment of an Ethernet network. The computers 1
and 2 were additionally linked to a small three-node
Arcnet network. The detailed characteristics of the
hardware are the following:



e Computer 1: 486/66 MHz, Opti chipset, Net-400
ECT Ethernet card (NE2000 compatible), Quan-
tum Arcnet card.

e Computer 2: 486/66 MHz, Micronics LX30WB
chipset, Net-400 ECT, Quantum Arcnet card.

e Computer 3: 486/66 MHz, UMS82C480 chipset,
3Comb503 Ethernet card.

Ethernet: CSMA/CD, 10 Mbps.

Arcnet: token passing, 2.5 Mbps.

Most of the tests were run on a single computer
as well as throughout the networks. The network load
during the tests was very low. This was arranged de-
liberately, as the intention of this paper was to mea-
sure the characteristics of the operating system itself,
and not the behavior of a communication subsystem
under varying load.

2 Tests for message passing

Basic tools for the task communication fall into
two different categories: asynchronous, i.e. buffered,
message transfer (mailboxes and pipes) and syn-
chronous message transfer (synchronous messages and
rendezvous). This diversity causes a problem, as both
types of tools exhibit different characteristics and are
usually applied in different context. Fortunately, there
exists a specific form of the task communication, which
can easily and directly be implemented using any of
these tools. This is the rendezvous, implemented by a
pair of message transfers: from one of the cooperating
tasks to the other one and reverse. The proposal for
a test procedure described below is based on a direct
measuring of the time of a series of rendezvous.

Consider a single message transfer between two
tasks. Although simple, this operation is not atomic
and two different actions must be performed by the op-
erating system between the beginning of Send_message
instruction in one task and the end of Receive_message
instruction in the other. First, the operating system
must deliver the message. Second, it must switch the
tasks, i.e. preempt the sending task and run the re-
ceiving one. The question arises, what exactly is to
be measured: the time of delivery only, or rather the
total time of the entire operation?

The answer suggested in this paper is, that the
total time of the whole operation should be consid-
ered. This is the smallest piece of operation which
can be observed in real life, and the division of this
function into more elementary actions depends on the
operating system architecture and is irrelevant for an
application programmer. A test which refers to this
very practical point of view can be described as fol-

lows.

Test description. Two tasks take part in the
experiment. One is a client, which sends requests and
the other one is a server, which responds to the client.
The client task reads the current time from a real-time
clock and executes a known number of rendezvous in a
loop. After finishing the loop, the client reads the time
again, calculates the difference and divides it by the
number of loops. The result is the duration of a single
rendezvous. The duration of a rendezvous divided by
two equals to the time of a single message transfer.

It can easily be seen, that the test can be used
for testing the speed of communication within a sin-
gle computer as well as for testing the communication
across the network (if the operating system supports
transparent network communication).

Case study. QNX operating system supports
the task communication through messages, which can
be sent synchronously by means of message passing
primitives Send-Receive-&-Reply, or asynchronously
through a pipe. The duration of a single message
transfer can be measured in both cases by similar test
programs which kernel parts are shown in Figure 1.

The results received for synchronous message
transfer are gathered in Table 1. The first glance
at the table reveals, that basically identical computer
hardware can be surprisingly different. Relatively
small speed of long message transfer within the com-
puter 1 suggests poor design of the cache installed
on the main board. Relatively fast transfer of short
messages between the computer 3 and the other ones
suggests that the network card installed in this com-
puter is faster than the other cards. Apart of these
hardware-dependent effects, there are several lessons
which can be learnt from the results of this test:

1. Message transfer is extremely fast within a single
computer, and much, much slower in a distributed
system.

2. The correspondence between the size of a message
and the time needed for a single message transfer
is strongly nonlinear.

3. Ethernet-based communication is extremely fast:
Messages below 100 bytes can be transferred
within 1 ms, and the application-level transfer rate
of 900,000 bytes per second is really moving.

4. Transfer of very short messages is faster on Arc-
net than on Ethernet — this effect comes probably
from the existence of a lower bound on the length
of frames transmitted through Ethernet.

5. Transfer of very long messages is extremely slow
on Arcnet.

The results received for pipe message transfer are



Client task (QNX messages) Server task

cnt=count;

clock_gettime (&t1);

do {
Send(server,msgl,msg2,n1,n2);

} while (--cnt);

clock_gettime (&t2);

TM=(t2-t1)/count/2;

Client task (pipes)

cnt=count;

clock_gettime(&t1);

do {
write(pipel,msgl,nl);
read(pipe2,msg2,n2) ;

} while (--cnt);

clock_gettime (&t2);

TP=(t2-t1)/count/2;

do {
Receive(client,msgl,nl);
Reply(client,msg2,n2);

} while (1);

Server task

do {
read(pipel,msgl,nl);
write(pipe2,msg2,n2);
} while (1);

Figure 1: Tests for the QNX messages and pipes.

100 23 22 22
1000 48 37 38
10000 474 330 318

Message Single computer Ethernet Arcnet
length 1 2 3 1-2 1-3 2-3 1-2
[bytes] || [us] | [us] | [us] || [us] | [ws] | [us] [ps]

1 22 21 21 906 799 752 622
10 21 20 21 909 801 755 691

1074 975 934 1405
2800 | 2908 | 2797 7191
11512 | 12108 | 12435 52886

Table 1: The duration of a s

ingle message transfer (TM).

Message Single computer Ethernet Arcnet
Length 1 2 3 1-2 1-3 2-3 1-2
[bytes| || [us] | [ws] | [ps] || [ws] | [us] | [ps] [1s]

1 245 202 205

10 244 201 206
100 257 210 216
1000 368 280 283
10000 1511 | 1056 | 1225

1904 | 1725 | 1622 1515
1919 | 1707 | 1613 1600
2108 | 1904 | 1809 8321
3786 | 3776 | 3659 7974

14577 | 15064 | 14659 61333

Table 2: The duration of a pipe message transfer (TP).

gathered in Table 2. It can be noted, that pipe mes-
sage transfer within a single computer is an order of
magnitude slower than synchronous message transfer.
This results from the implementation of QNX: Pipes
are handled by a pipe manager task and each data
transfer is accomplished by two rendezvous between
the cooperating tasks and the pipe manager. When

the network communication is considered, the time of
the physical network transfer becomes a dominating
factor and the results obtained for pipes and message
transfer primitives, particularly for long messages, are
similar. The efficiency of the Ethernet-based network
communication is still very high. The most surprising
figure in Table 2 is the duration of the 100 bytes long



message transfer through Arcnet. I cannot find any
explanation for this peculiarity.

3 Tests for task synchronization and
event handling

Tools for passing control signals between tasks
can also be classified in two distinct categories: asyn-
chronous signals, i.e. POSIX signals which look like
software generated interrupts, and synchronous sig-
nals, transferred usually by means of semaphores. The
semantics of these tools is different, however both of
them can be used in such a way that one task will
be waiting until a signal is generated by the other
one. Hence, a rendezvous between two tasks can be
arranged by forcing them to send a signal back and
forth in a loop. The proposal for a test procedure de-
scribed below is based on a direct measuring of the
time of a series of “signal-rendezvous”.

A semaphore is a task-level tool, and the im-
plementation of an intertask rendezvous is obvious.
POSIX signals, however, can act at a lower level of
signal handlers, and two different schemes of commu-
nication are possible. The first one relates to signals
transferred at the task level only, the other one ad-
dresses the relation between a task and a signal han-
dling routine. Despite the difference, the general idea
of measuring the operating system characteristics is in
both cases similar and similar to the idea presented in
the previous section.

Consider the signal transfer at the task level first.
The actions performed by the operating system be-
tween the time instant when a signal has been raised
and the time instant in which a task is starting to re-
act on that signal include: signal generation, signal
delivery, signal catching, and task switching. I believe
that all these elementary actions constitute a single
operation, indivisible at the task level. A test pro-
gram based on this premise will be described a little
bit later in this section.

Consider the signal transfer at the level of a signal
handler. This case differs from the previous one in that
the time of the propagation of a signal from a signal
handler to the task level and the duration of the task
switch should be excluded.

Test description. Two tasks take part in the
experiment and synchronize with each other, sending
signals back and forth in a loop. The client task sends
a request-signal and waits for a response-signal from
the server. The server task waits for a request-signal
and sends a response-signal to the client. The du-

ration of this loop can be measured and the time of

a single “signal-rendezvous” can be calculated. A sig-

nal handling routines installed in both tasks do noth-

ing. Nevertheless, they are necessary according to the

rules of signal handling [2].

The client task reads the time from a real-time
clock twice: before and after executing the loop. After
finishing the loop, the client calculates the difference
and divides it by the doubled number of loop cycles.
This gives the duration of a single signal transfer.

The measurement of the duration of a signal trans-
fer at the signal handler level is more difficult. How-
ever, only a slight modification to the previous test
program is needed. First, the instruction for sending
(raising) a response-signal must be moved from the
body of the server task to its signal handler. Second,
the priority of the server must be decreased, to prevent
scheduling this task for execution. In this way, the ac-
tivity of the server becomes limited to the body of its
signal handler. The client task remains unchanged,
and it performs its action exactly the same way as it
did in the previous test. The result of the test is the
duration of a signal transfer between the client task
and the signal handler.

Both tests can be used for testing the speed of
intertask communication within a single computer as
well as for testing the communication between tasks
executed in a distributed network.

Case study. QNX operating system supports
POSIX signals, which can be sent and waited for at
the task level by means of standard primitives kill and
sigsuspend. The function kill can also be invoked from
within a signal handler. The duration of a single mes-
sage transfer can be measured at both levels by sim-
ilar test programs, which kernel parts are shown in
Figure 2.

The results received are gathered in Table 3. The
lessons which can be learnt from these results are the
following:

1. Signal transfer within a single computer is unex-
pectedly slow — it takes twice as much time as
a message transfer (Table 1).

2. Task-to-handler signal transfer across the Ethernet
network is fast — it takes only as much time as a
single message transfer.

3. Task-to-handler signal transfer across the Arcnet
network is 50% slower than a message transfer —
probably a separate acknowledgement frame is sent
on the network.

4. Task-to-task signal transfer across a network is
surprisingly slow, particularly on Arcnet network.
These results suggest the existence of hidden net-



Client task (task level) Server task

cnt=count;

clock_gettime (&t1);

do { do {
kill(server,SIGUSR1); sigsuspend (empty_mask) ;
sigsuspend (empty_mask) ; kill(client,SIGUSR1);

} while (--cnt); } while (1);

clock_gettime (&t2);
TT=(t2-t1) /count/2;

(signal handler level — added to the previous program)

cnt=count; /* SIGUSR2 signal handler */
clock_gettime (&t1);
do { void handler(sig)
kill (server,SIGUSR2); {
sigsuspend (empty_mask) ; kill(client,SIGUSR2);
} while (--cnt); }

clock_gettime (&t2);
t=(t2-t1)/count;

TH=t-TT;
Figure 2: Test for the QNX signals.
Loop Single computer Ethernet Arcnet
count 1 2 3 1-2 1-3 2-3 1-2
1S s 1S 1S LS LS 1S
Task-to-handler signal transfer (TH)
3000 42 39 39 925 855 803 974
6000 43 40 39 906 828 832 970
9000 32 39 39 902 914 793 976
Task-to-task signal transfer (TT)
3000 51 46 45 1292 1244 1185 2147
6000 51 46 46 1292 | 1250 | 1185 2363
9000 51 46 46 1292 | 1247 | 1213 2586
Table 3: The duration of a signal transfer.
Message Single computer Ethernet Arcnet
length 1 2 3 1-2 1-3 2-3 1-2
bytes s s LS LS s s s
1 26 24 24 862 762 723 600
10 26 24 25 866 760 730 606
100 28 25 25 868 765 725 604
Table 4: The duration of a proxy message transfer.
work frames, sent by the operating system in the is a slight extension of the classical semaphore def-
course of a signal delivery. I cannot find any ex- inition. Unlike the semaphore, which conveys only
planation why does this last so long on Arcnet. pure synchronization signals, a proxy can convey con-

stant messages, stored within the proxy at the time of
QNX version of a semaphore is called a prozy and



its creation. A task can Trigger a proxy, or Receive
the message stored within a proxy. The test program
for the proxy communication is nearly identical to the
programs shown in Figures 1 and 2.

The results received are gathered in Table 4. It
can be seen, that the proxy communication is very fast
in QNX, and it takes only as much time as a short
message transfer. The speed of communication does
not depend on the length of the message tied to a
proxy, and is in any case much faster than the signal
transfer.

4 A test for the speed of task switching

The time consumed by the task switching repre-
sents a pure overhead introduced by any multitasking
operating system. As it was noted in the discussion in
Section 2, such an overhead is inevitable in any form
of intertask communication within the same network
node. Therefore, the length of this time is an impor-
tant feature, which characterizes the overall operating
system efficiency.

A task switch occurs irregularly during the normal
computer operation, and is difficult to catch and mea-
sure. Fortunately, many operating systems implement
a special Yield function, which enforces the preemp-
tive scheduler to switch between the ready tasks at the
same level of priority. The test procedure suggested in
this paper is based on a direct measuring of the time
of a series of switches enforced by this function.

Test description. Two tasks take part in the
experiment. Each of them goes through a loop and
yields control to the partner in each loop cycle. The
main task reads the current time from a real-time clock
and executes a known number of the loop cycles. Af-
ter finishing the loop, the task reads the time again,
calculates the difference and divides it by the number
of loop cycles. The result comprises the duration of
a loop cycle within the main task, plus the duration
of a loop cycle within the other task plus the duration
of two task switches. Because the tasks are identical,
a division by two gives the duration of a single loop

Loop Computer
count 1 2 3
1S s s
10000 7.7 7.2 7.3
20000 7.7 7.2 7.4
30000 7.7 7.2 7.3

Table 5: The duration of the task switch.

cycle plus a task switch. The duration of an empty
loop cycle can be measured separately, thus enabling
the test program to calculate the time of a single task
switch.

In fact, the time measured in this test can include
also other types of the operating system activities, e.g.
periodical execution of certain system tasks. To min-
imize these effects, the priority of the tasks engaged
in this test should be set as high as possible. If the
maximal priority is set, then the activity of other tasks
would be suppressed.

Case study. The test program for measuring the
speed of task switching in QNX operating system is
presented in Figure 3. The body of the main task
consists of the reference loop, the creation of an inter-
weaving task, and the test loop.

The results received are gathered in Table 5. The
task switch appears very fast, and the predictability
of the system behavior is also pretty good.

5 A test for the speed of interrupt han-
dling

The response time of a real-time operating system
depends in many cases on the speed of interrupt han-
dling. The most important characteristic relevant to
this problem is the delay between the time instant in
which an interrupt has been requested, and the start
of an application-oriented interrupt handler. Unfortu-
nately, this parameter cannot be measured by means
of software tools only. Therefore, the test procedure
suggested in this paper attempts to evaluate another
characteristic, which is the length of a period of time
from an interrupt request to the ultimate return from
an interrupt servicing routine. Half of this time can
be considered an estimation of the delay to start an
interrupt handler.

Interrupts are, in general, requested by peripheral
devices irregularly, and the duration of a short inter-
rupt servicing routine cannot be measured directly by
a software tool. There exists, however, an exception
to this rule — timer interrupt, which is requested reg-
ularly at a given rate. Timer frequency can usually
be set under program control, and the duration of a
test program execution in the presence of timer in-
terrupts can directly be measured. If the test is run
twice, with the timer set to different rates, then the
duration of the timer interrupt servicing routine can
easily be calculated.

Test description. The heart of a test program is
a routine, which consumes a constant amount of time



Main task

Interweaving task

nt—rant .
ent=count;
clock_gettime (&t1);
do {

} while (--cnt);
clock_gettime (&t2);
t1=(t2-t1)/count/2;
spawn(...)
cnt=count;
clock_gettime (&t1);
do {

Yield();
} while (--cnt);
clock_gettime (&t2);
ty=(t2-t1)/count;
TS=ty-t1;

/* -> task creation -> x/

do {
Yield();
} while(1);

Figure 3: Test for the QNX task switch.

T (unknown). This routine is executed twice, with
the timer set to different rates to give a tick every ¢;
or to milliseconds. The duration of each execution is
measured, giving different values of 77 and T5 seconds,
respectively. Any of these values is a sum of the time
T plus the amount of time consumed by the timer
interrupt servicing routine. Hence:

T
T, =T+ =LAt
t1

T
Ty =T+ —2At
to

where At denotes the time of a single interrupt han-
dling. The above equations can be resolved, giving the
expression:

(71 A*TB)tth

At =
Tito — Thty

Test case. QNX implements a system function
clock_setres which allows to set the resolution of a real-
time clock in the range from 0.5 ms to 50 ms. Accord-
ing to the QNX documentation [3], this function scales
the hardware timer rate (interrupt 0) rather than some
software algorithm. The test program has been con-
structed exactly as described in the previous para-
graph. Its main routine is executed twice, with the
clock resolution set to 1 ms and 50 ms, respectively.

A minor problem of this test consists in poor reso-
lution of the time measurement, which is equal to the
resolution of the real-time clock. To get the accuracy
not worse than 5%, the test had to be conducted long

enough, to yield the difference (T3 — T3) greater than
1 second.

The results received are gathered in Table 6. They
show that the timer interrupt handling takes approxi-
mately 16 us, in any of the three computers employed
during the test. Half of this value can be considered
an estimation of the interrupt response time.
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Test Computer
length 1 2 3
S s LS 1S
75 15.5 16.5 15.5
75 15.5 16.5 15.5
75 15.5 16.5 15.5

Table 6: The duration of the timer interrupt servicing
routine.



