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Abstract: A method is described for modelling, verification and automatic 
generation of code for PLC controllers. The requirements for a controller are 
modelled using UML state machine diagram, with a formal semantics given by 
a finite state time machine. The model can automatically be converted into a 
timed automaton, embedded into a model of the environment (a controlled 
plant) and verified against safety requirements using UPPAAL – a free model 
checking tool for the networks of timed automata. The verified model can 
automatically be translated into a program code in one of the IEC 61131 
languages, e.g., ladder diagram of structured text. 
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1 Introduction 

The goal of our research is to find a way for automatic programming of PLC controllers, 
which are used in industry for solving time- and safety-critical problems, like traffic or 
process control. The starting point of the method described in this paper is UML state 
machine diagram, which provides a means for writing a specification at a suitable high 
level of abstraction. Such an abstract specification can be validated by the user, verified 
against safety requirements and translated automatically into a program code of a 
guaranteed correctness and safety of the implementation. Such a development process 
requires a formal method for defining the semantics of a UML-based specification, a 
means for safety verification and the rules for automatic code generation. 
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Many methods and techniques have been developed for specifying real-time safety 
critical systems in a formal way, based on mathematical theories, such as process algebra 
(Milner, 1990), temporal logic (Manna and Pnueli, 1995), Petri nets (Jensen, 1997) and 
finite state machines (Alur and Dill, 1996; Kaynar et al., 2004). Those methods are used 
mainly for modelling and verification of time-dependent behaviour of state systems. 
Other models, such as PLC-automata (Dierks, 1997) and time triggered automata (Krcal 
et al., 2004) are used for code generation only. 

The approach presented in this paper relies on modelling the controller as a reactive 
system equipped with input and output signals. The desired behaviour of the controller is 
modelled using UML state machine diagram (OMG, 2005). The semantics of a UML 
state machine diagram, including timed transitions, is formally defined by means of a 
finite state time machine (FSTM), described in detail in Sacha (2007, 2008). A 
conversion from a UML state machine diagram to a formal description of the FSTM, as 
well as a translation into an IEC 61131 (IEC, 2003) program code for a PLC controller 
can be done automatically (Figure 1). 

Figure 1 The development process 

 

A verification of the controller behaviour with respect to the requirements is an optional 
step in this process. The requirements are expressed in a language of CTL formulae 
(Henzinger et al., 1994) over a network of timed automata that model the controller 
together with the controlled plant and fed to UPPAAL model-checker (Behrmann et al., 
2004). A conversion of the controller model from a FSTM into a timed automaton used 
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by UPPAAL is done automatically. The model of the environment must be built 
manually as a separate task (Figure 1). The verification of CTL formulae with respect to 
the model is done automatically by the model-checker. 

The paper is organised as follows. Section 2 provides the reader with an overview of 
FSTM and a conversion of UML models. Sections 3 and 4 explain the rules of safety 
verification in UPPAAL and a conversion from FSTM to UPPAAL. A case study is 
provided in Section 5. The code generation process is described in Section 6. A 
discussion of the results and plans for future work are given in the conclusions. 

2 Finite state time machine 

Finite state machine is a tool for defining algorithms of processing the enumerative sets 
of events. The model is formal and its graphical form is understandable to engineers and 
computer programmers. In this section, we define a model of a FSTM (Sacha, 2007, 
2008), which adds time to the classical Moore automaton and defines the semantics of an 
UML state machine diagram. 

2.1 Definitions 

FSTM is a tuple A = (S, Σ, Γ, τ, δ, s0, ε, Ω, ω), where: 

S is a finite set of states 

Σ is a finite set of input symbols 

Ω is a finite set of output symbols 

Γ is a finite set of variables called timer symbols 

τ: Γ → 2S × N+ is an injective function, called timer function (with two projections  
τS: Γ → 2S and τR: Γ → N+, respectively) 

δ: S × Σ × 2Γ → S is a partial function, called transition function, such that: 
( ) ( ) ( ) ( ), , Ss a T Dom t T s tδ τ∈ ⇔ ∀ ∈ ∈⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

s0 ∈ S is the initial state 

ε ∈ N+ is the granularity of time 

ω: S → Ω is an output function. 

Notation: N+ is the set of positive integers, R+ is the set of positive real numbers, Dom(δ) 
is the domain of function δ. Cardinality of a set X is denoted card(X), an empty set is 
denoted φ. 

It can be noted from the above definition that a FSTM is finite and looks much like a 
Moore automaton with three additional elements: Γ, τ, ε. Those elements add to the 
model the dimension of time. Each timer symbol t ∈ Γ is a variable, which takes values 
from the set N+. The current value of a variable t is interpreted as the duration of a period 
of time. Timer function τ assigns to each timer a group of states and a constant value. The 
meaning of those elements is such that timer t is enabled, i.e., counts time, as long as the 
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automaton resides in one of the states from τS(t) and it expires when the current value of t 
exceeds τR(t). 

Timer symbols in Γ can be set in an arbitrary order described as a function: 

{ }: 1t n →Γ…  

where n = card(Γ). 
Particular timers from Γ are now denoted t1… tn. The current valuation ŧ of timer 

symbols can be described as a vector of values: 

{ }: 1 n N +→…ŧ  

where n = card(Γ). 
The current value of a timer ti is denoted .iŧ  
The execution of a FSTM starts in state s0 with the values of all timers equal to 0. For 

a given state sk and a valuation of timers ,kŧ  there exists a set of expired timers: 

( ) { }, : ( ) and ( )i i i i
k k k s k Rs t s t tτ τΘ = ∈Γ ∈ ≥ŧ ŧ  

The machine executes in state sk with the valuation of timers ,kŧ  k = 0, 1…, by taking an 
input symbol ak and moving to the next state sk+1 defined by the transition function: 

( )( )1 , , ,k k k k ks s a sδ+ = Θ ŧ  

When the machine enters a state sk+1, time advances and the values of timers change 
reflecting the elapsed time interval ε: 

1
1

if ( ) and ( )
0 otherwise

i i i
i k k S k S
k

s t s tε τ τ+
+

⎧ + ∈ ∈⎪= ⎨
⎪⎩

ŧŧ  

When the valuation of timers ŧ  changes, the set Θ of expired timers may change as well. 
This way a FSTM can respond to the flow of time, even if sk+1 = sk and ak+1 = ak. Please 
note that the last argument of δ is a set of all timers expired in a given state and time, 
hence, no conflict exists if several timers expire at the same time instant. 

A state sk of the automaton corresponds to an output symbol qk = ω(sk). By that means 
the automaton responds to an input sequence a1… ak… with an output sequence q1… 
qk…. 

2.2 Conversion of UML state machine to FSTM 

UML state machine diagram is a graph composed of nodes, which are locations and 
edges, which are labelled transitions. A transition can be triggered by a signal received 
from the outside. A transition which is triggered can fire, if the corresponding guard 
expression over a set of variables evaluates to true. Firing of a transition can move the 
machine to a new location, change the values of variables and send a signal. This way, 
the state space of a UML state machine is a Cartesian product of the set of locations and 
the set of all possible valuations of variables. 
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In order to provide a means for managing complexity, UML allows for a hierarchical 
nesting of locations. Hierarchy of locations does not add any new semantics to the model, 
in that a hierarchical diagram can always be converted into a ‘flat’ one. A formal model 
of the hierarchy of locations and an algorithm for flattening the hierarchy, is described 
elsewhere (Sacha, 2007) and will not be discussed in the rest of this paper. 

The semantics of a UML state machine diagram is defined as a FSTM  
A = (S, Σ, Γ, τ, δ, s0, ε, Ω, ω), such that: 

S equals to the set of all states of the UML state machine diagram 

Σ equals to the set of external signals, which trigger transitions in the UML state 
machine; a signal is a particular combination of all the input signals of the PLC 

Γ is a set of timer symbols t1, …, tn; the cardinality of Γ equals to the number of timed 
transitions in the diagram (i.e., transition triggered by an after clause) and there is 
one timer symbol ti for each timed transition in the UML state machine 

τ is the timer function, which assigns to each timer symbol ti created for a timed 
transition T a pair composed of a source state of this transition and the value of the 
after clause of this transition 

δ is the transition function δ: S × Σ × 2Γ → S, such that: δ(s1, a, T) = s2 if and only if 
there exists a transition in the UML state machine diagram such that s1 is the source 
and s2 the destination state of this transition and either a is the event that triggers this 
transition (in this case T = φ) or T = {ti} and ti is the timer symbol of this timed 
transition (in this case δ(s1, a, T) = s2 for all a ∈ Σ). 

s0 is the initial state of the UML state machine diagram 

ε is the cycle time of the PLC controller 

Ω equals to the set of combinations of all the output signals of the PLC that are set by 
the actions of the UML state machine 

ω is the output function, which assigns to each state s ∈ S the output symbol q ∈ Ω, 
which is set by all transitions to s. 

The conversion of a UML state machine diagram to a formal definition of a FSTM is 
performed automatically by a software tool, which reads the diagram and constructs all 
the elements of the corresponding FSTM. 

3 Model-checking in UPPAAL 

A timed automaton, as used in UPPAAL, is a finite state machine extended with clock 
variables that evaluate to positive real numbers and state variables that evaluate to 
discrete values. State variables are part of the state. All the clock variables progress 
simultaneously. An automaton may fire a transition between two states in response to an 
action, which can be thought of as an input symbol, or to a time action related to the 
expiration of a clock condition. A set of clock variables can be reset to zero at a 
transition. 
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3.1 Definitions 

A timed automaton is a tuple TA = (S, s0, C, A, E, I), where: 

S is a finite set of states (called also locations) 

C is a finite set of clock variables (called also clocks) 

A is a finite set of actions 

E ⊆ S × A × B (C) × 2C × S is a set of transitions between states; each transition has an 
action, a guard and a set of clocks to be reset (a transition 
relation) 

s0 ∈ S is the initial state 

I: S → B(C) is a function, which assigns invariants to states. 

Notation: B(C) is a set of conjunctions over simple clock conditions built of a clock, a 
constant and an operator <, ≤, =, ≥, >, e.g., t < c or t > c. A valuation of clocks is a 
function : .C R+→ŧ  An expression g ∈ B(C) defines a set of clock valuations that 
satisfy expression g; we will write g∈ŧ  to mean that ŧ satisfies g. 

The execution of a timed automaton TA starts in state s0 with the valuation 0 ,ŧ  such that 
all clock variables equal to 0. The machine executes in state s with the valuation of clocks 
ŧ  by performing an action: 

( ) ( ) ( ), , if there exists , , , ,  such that  and
( ); the new valuation of clocks  over /

and ( ) 0 for ;

s s e s a g r s E g
I s C r

t t r

′ ′ ′→ = ∈ ∈

′∈ =
′ = ∈

ŧ ŧ ŧ
ŧ ŧ ŧ

ŧ

 

or a time action: 

( ) ( ) ( ) ( ), , if : 0 ( )s s d d d d d I s′ ′ ′→ + ∀ ≤ ≤ ⇒ + ∈ŧ ŧ ŧ  

The semantics of a timed automaton is a labelled graph consisting of nodes and edges. 
Each node defines a compound state of the automaton and is a pair ( , )z s= ŧ  composed 
of a state and a valuation of all the clock variables. The set of all nodes Z ⊆ S × RC and 
the initial state 0 0( , ) .s Z∈ŧ  The edges in the graph are transitions, which fulfil the 
conditions defined above. 

A set of timed automata can be composed into a network over common sets of clocks 
and actions. This way a model of a controller and a controlled plant can be established, 
such that an action of one automaton can trigger a transition in another one. The 
cooperation between two automata is described in UPPAAL using a convention that an 
action, which name ends in one automaton with a suffix ‘!’, triggers an action in another 
automaton, which has the same name with a suffix ‘?’. 

The actions are considered atomic, which means that time flows when the automata 
reside in their states. However, there are also special states, called committed states, in 
which delay is not allowed – such a state must be left immediately. Committed states are 
routinely used to separate a ?-action and !-action, in order to express causality relation 
between the two. 
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A compound state of a network of timed automata is a pair composed of a vector of 
states of the component automata and a valuation of all the clock variables. The 
semantics of the network is a graph composed of nodes, which are compound states, and 
edges, which are transitions in component automata. Pairs of matching actions  
in two component automata are performed simultaneously. The set of all nodes  
Z ⊆ S1 × … × Sn × RC and the initial state 1

0 0 0( , , , ) .∈… ns s Zŧ  

3.2 Model checking 

The main purpose of UPPAAL is to verify the model with respect to a requirements 
specification, which must be expressed in a formal language. UPPAAL uses a version of 
CTL and the query language consists of state formulae and path formulae. 

A state formula is an expression that can be evaluated for a particular state in order to 
check a property (e.g., a deadlock). Path formulae quantify over paths of execution and 
ask whether a given state formula ϕ can be satisfied in any or all the states along any or 
all the paths. Path formulae can be classified into three types of properties: 

• Reachability: will ϕ be satisfied in a state of a path? – E<>ϕ. 

• Safety: will ϕ be satisfied in all the states along a single or along all paths? – E[]ϕ 
and A[]ϕ. 

• Liveness: will ϕ eventually be satisfied? Will ϕ  respond to ψ? – A<>ϕ and ψ-->ϕ. 

UPPAAL model-checker enables verification of the model by evaluating path formulae 
over the reachability graph of a network of timed automata. 

4 Conversion of FSTM into UPPAAL 

FSTM uses a discrete time model with an explicit granularity ε. However, the controller 
must cooperate with an environment, which works in a continuous real-time. Therefore, 
the verification process is based on UPPAAL, which uses continuous time model, in 
which transitions can fire in arbitrary points in time, within the boundaries defined 
explicitly by transition guards and state invariants. This means that the properties verified 
for a compound UPPAAL system does not depend on the relative speed of the component 
automata. 

Let A = (S, Σ, Γ, τ, δ, s0, ε, Ω, ω) be a FSTM. The transition function  
δ: S × Σ × 2Γ → S is equivalent to a relation δ ⊆ S × Σ × 2Γ × S such that: 

( ) ( ){ }, , , : , ,s a T s s s a Tδ δ′ ′= =  

For a given state s ∈ S there exists a set of timers T(s) = {t ∈ Γ: s ∈ τS (t)} that are active 
in s. Any subset T = {t1, … tn} ⊆ T(s) defines an expression gT over simple time 
conditions: 

1 1 1 1( ) ( ) & ( ) ( )n n n n m m
R R R Rt t t tτ τ τ τ+ +≥ ≥ < <… …ŧ ŧ ŧ ŧ  

which must be satisfied by a valuation ŧ  in order to enable the transition ( , , , ) .s a T s δ′ ∈  
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Timed automaton TA = (S, s0, C, A, E, I), which is equivalent to a given FSTM  
A = (S, Σ, Γ, τ, δ, s0, ε, Ω, ω) can be constructed in the following way: 

0 0

(  is a set of committed-states)

(?-actions in  and !-actions in )

C CS S S S
s s
C
A
I φ

= ∪
=
= Γ
= Σ∪Ω Σ Ω
=

 

The set of committed states SC and the transition relation E are created in the following 
way: 

1 SC = φ 

For each ( , , , )s a T s δ′ ∈  such that ( ) ( )s sω ω ′=  a transition 

( , , , \ ( ), ) .Ts a g T s s E′Γ ∈  

2 For each ( , , , )s a T s δ′ ∈  such that ( ) ( )s sω ω ′≠  a new committed state sC is created 

and added to SC, a pair: ( , ?, , , ),T
Cs a g sφ  ( , ( )!, , \ ( ), )Cs s T s sω φ′ ′Γ  of transitions is 

added to E. 

5 Case study 

A railroad crossing is controlled by a computer system. There are two railway tracks 
within the crossing and two trains can approach the crossing simultaneously. The 
movement of trains is controlled by a set of semaphores that can be red or green. The 
road traffic is controlled by a gate that can be open or closed. A semaphore can be 
operated by a controller to display green light, when a train approaches, but not earlier 
than after the gate has been closed. Opening and closing states of the gate are confirmed 
to the controller by two input signals: up and down, respectively. The semaphore is red 
and the gate is up in the initial state of the crossing. 

A train cannot be stopped instantly. When a train is detected, a controller has  
30 seconds to close the gate and display a green signal, which allows the train to continue 
its course. After these 30 seconds, it takes further 20 seconds to reach the crossing. 
Otherwise, if the green signal is not displayed within these 30 seconds, the train must 
break in order to stop safely before the crossing. Closing the gate must last less than  
20 seconds, or else an alarm must sound. The gate can be opened when a leave signal has 
been sent after the last train has left the crossing. 

An algorithm for the controller, which can be a part of a broader control system, can 
be defined as a state machine diagram, converted into a FSTM, verified using UPPAAL 
model checker and translated into a program code for a PLC controller. 

5.1 The controller 

A graphical representation of a FSTM, which defines the controller, is shown in Figure 2. 
Output symbols assigned to states are shown in italics in the second line within the boxes. 
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The initial state, called Outside, corresponds to such a state of the crossing, in which no 
train approaches. The gate is open in this state, and the semaphores display red, in order 
to prevent trains from entering the crossing. Such a state is safe in the application 
domain, because no collision between cars and trains is possible. 

The transitions between states are labelled with input symbols or a timer symbol t. 
Timer t is active in states from the set τS(t) = {Entering1, EnteringBoth, Entering2} and 
expires after the time period τR(t) = 30. 

Figure 2 A model of the railroad crossing controller 

 

Figure 3 UPPAAL model of the railroad crossing controller 
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5.2 Verification 

UPPAAL model of the controller (Figure 3) has the same states as the FSTM, plus a set 
of committed states. Basically, the transitions between states are in both models the same, 
with exception to transitions between states that differ in the FSTM on output symbols. 
Those transitions are split in UPPAAL model into two consecutive transitions separated 
by an added committed state. 

Actions, which names bear the suffix ‘?’, act like input symbols, which enable the 
associated transitions. Actions, which names bear the suffix ‘!’, act like output symbols 
that are passed to other automata in order to trigger the respective action (identified by 
name). This way, one automaton can control the execution of a cooperating automaton. 

The environment of the controller consists of two trains and a gate. A model of a train 
is shown in Figure 4. Time invariant t ≤ 30 of state Approaches enforces a transition after 
30 seconds have passed since the train has entered the state. This reflects the necessity of 
breaking the train if green has not been displayed within 30 seconds. Time condition  
t > 20 assigned to the transition from On crossing to Faraway reflects the minimum time 
of passing the crossing by a fast train. Time invariant t ≤ 40 of state On crossing reflects 
the maximum time of passing the crossing by a slow train. 

Figure 4 UPPAAL model of a train 

 

Figure 5 UPPAAL model of the gate 
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A model of the second train is identical except for the names of actions, which are: 
approach2!, leave2! and green2?, respectively. A model of the gate is shown in Figure 5. 
Time invariants t ≤ 20 assigned to states Closing and Opening enforce a transition after 
20 seconds have passed and reflect time that it takes to close or to open the gate. 

The simple reachability properties can check if a given state is reachable, e.g.: 

• E<>train1.On crossing: This checks if train 1 can pass the crossing (a similar 
property can be checked for train 2). 

• E<>(train1.On crossing && train2.On crossing): This checks if both trains can 
move through the crossing simultaneously. 

The safety properties can check that unsafe states will never happen: 

• A[](train1.On crossing or train2.On crossing) imply gate.Closed: This ensures that 
each time a train is passing the crossing, the gate is closed. 

• A[](gate.Open imply (¬ train1.On crossing && ¬ train1.On crossing): This ensures 
that each time the gate is open, a train is not on the crossing. 

Please note, that the above two properties are not equivalent, because the gate is not a 
two-state device and intermediate states exist between gate.Open and gate.Closed. 

The liveness properties can check consequences of an event, e.g.: 

• train1.Approaches --> train1.On crossing: This ensures that whenever train 1 
approaches the crossing, it will eventually pass it (a similar property can be checked 
for train 2). 

All those properties can be verified by UPPAAL model-checker. In our example, the 
liveness condition is not satisfied: assume that train 2 approaches when train 1 is leaving. 
The controller does not react to approach2 in state Leaving1, hence, the transition to 
Outside appears without displaying green2 for train 2. The train will stop and can never 
reach the crossing. To fix the problem two additional transitions must be added to the 
model in Figure 2: 

• a transition from state Leaving1 to Entering2, if approach2 appears 

• a transition from state Leaving2 to Entering1, if approach1 appears. 

In both cases, the output signal close must be issued. 

6 Program generation 

PLC controller cooperates with its environment through a set of input and output signals. 
The controller measures the flow of time using timer blocks, each of which has one input 
and one output. As long as the input equals 0, the timer is reset with the output equal to 0. 
When the input changes to 1, the timer is set and starts counting time. The output changes 
to 1 as soon as the input has continued to be 1 for a predefined period of time. 

The controller executes in a loop, which begins with polling the inputs and ends up 
with setting the outputs. Cyclic execution of a controller can be described in a  
pseudo-code, which creates a reference model for PLC execution: 
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state = initial_state(); 

loop_forever { 

 input = poll_the_input(); 

 timers = set_timers(state,active_timers()); 

 state = next_state(state,timers,input); 

 output = count_output(state); 

 set_the_output(output); 

} 

The operating system of a PLC controls the flow of time and executes the following 
actions: 

• sets the initial state (initial_state) 

• executes the loop (loop_forever) 

• sets the output (set_the_output) and polls the input (poll_the_input) just 
between the two consecutive loop cycles 

• sets the expired timers (set_timers). 

What the programmer must do is to write a code for: 

• selecting the active timers (active_timers) 

• calculating the next state of the controller (next_state) 

• calculating the output (count_output). 

The semantics of a PLC program, i.e., the meaning within its application domain, is a 
relation between a sequence of input signals and a sequence of output signals. If we 
establish a mapping between the input signals of a PLC and the input symbols of a 
FSTM, and a mapping between the output signals of a PLC and the output symbols of a 
machine, we can think about a FSTM as of a model of a program for a PLC controller. 

The behaviour of a PLC program is defined formally within the reference model by 
the semantics of its programming language, which may be one of the IEC 61131 
languages (IEC, 2003), e.g., ladder diagram or structured text. The behaviour of a FSTM 
has also been defined formally in Section 2. By that means a method for translating a 
high level abstract model of FSTM (S, Σ, Γ, τ, δ, s0, ε, Ω, ω) into a PLC program can 
formally be defined. The method consists of the following steps: 

• mapping of sets S, Γ, Σ, Ω into states, timers, input and output signals of a PLC 

• defining function active_timers consistently with function τ 

• defining function next_state consistently with function δ 

• defining function count_output consistently with function ω. 

Each of these steps can be performed automatically by an appropriate software tool, 
which can generate a complete program code. 
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6.1 Mapping of sets 

The mappings of sets S, Γ, Σ, Ω into states, timers, input and output signals of a PLC can 
be arbitrary one-to-one mappings. There are 12 states at the diagram in Figure 2, six 
individual input signals, seven output signals and one timer. Each combination of the 
input signals creates a single input symbol. Each combination of the output signals 
creates a single output symbol. A ladder diagram, which implements the controller, stores 
the states of the machine as the states of its internal flip-flops. The coding of 12 states 
requires at least four such flip-flops. One coding for states and output signals of the 
railroad crossing controller is shown in Table 1. 
Table 1 Coding of states and output signals 

M1 M2 M3 M4 State Red1 Red2 Green1 Green2 Close Open Sound 

0 0 0 0 Outside 1 1 0 0 0 0 0 
0 1 0 1 Entering1 1 1 0 0 1 0 0 
0 1 1 0 Entering2 1 1 0 0 1 0 0 
0 1 1 1 EnteringBoth 1 1 0 0 1 0 0 
1 1 0 1 Alarm1 1 1 0 0 1 0 1 
1 1 1 0 Alarm2 1 1 0 0 1 0 1 
1 1 1 1 AlarmBoth 1 1 0 0 1 0 1 
1 0 0 1 Inside1 0 1 1 0 0 0 0 
1 0 1 0 Inside2 1 0 0 1 0 0 0 
1 0 1 1 InsideBoth 0 0 1 1 0 0 0 
0 0 0 1 Leaving1 1 1 0 0 0 1 0 
0 0 1 0 Leaving2 1 1 0 0 0 1 0 

6.2 Defining functions 

The functions: active_timers, next_state and count_output are represented 
by sequences of Boolean expressions, which set or reset timers, internal flip-flops and 
output signals of the controller. The expressions are defined over the current values of 
flip-flops, input signals and expired timers. 

Boolean expressions to set timers (active_timers) depend on the coding of those 
states, which are assigned to timers by timer function τ. In our example, timer t must be 
set in states Entering1, Entering2, EnteringBoth, i.e.: 

Set ( ) t  M1 M2 M3 M4= ⋅ ⋅ +  (a1) 

Boolean expressions to set or reset flip-flops (next_state) implement transitions 
within the FSTM, depending on the coding of states, input signals and expired timers. For 
example, the transition from Entering1 to Alarm1 must set M1 flip-flop when t expires, 
while the transition form Entering1 to Inside1 must set M1 and reset M2 when down 
signal appears. A complete sequence of Boolean expressions that implement all the 
transitions in Figure 2, plus two transitions from Leaving1 to Entering2 and from 
Leaving2 to Entering1, added in order to satisfy the liveness condition are the following: 



   

 

   

   
 

   

   

 

   

    Verification and implementation of software for dependable controllers 251    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Set ( ) ( )M11 M1 M2 M3 M4 down t= ⋅ ⋅ + ⋅ +  (b1) 

Set ( )M12 M1 M2 M3 approach2 M4 approach1= ⋅ ⋅ ⋅ + ⋅  (b2) 

Set ( )M13 M1 M2 M4 M3 approach2= ⋅ + ⋅ ⋅  (b3) 

Set ( )M14 M1 M2 M3 M4 approach1= ⋅ + ⋅ ⋅  (b4) 

Res ( )M11 M1 M2 M3 M4 leave1 M3 M4 leave2= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅  (b5) 

Res ( )M12 M2 down M3 M4= ⋅ ⋅ +  (b6) 

Res ( )M13 M1 M2 M3 leave2 M1 M2 M3 M4 approach1 up= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ +  (b7) 

Res ( )M14 M1 M2 M4 leave1 M1 M2 M3 M4 approach2 up= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ +  (b8) 

M1 M11=  (c1) 

M2 M12=  (c2) 

M3 M13=  (c3) 

M4 M14=  (c4) 

The above functions have been minimised according to the rules of Boolean algebra. The 
auxiliary flip-flops M11..M14, which mirror the primary state-coding flip-flops M1..M4, 
are used to prevent a change of state before the entire sequence of expressions have been 
executed. Such an approach guarantees atomicity of each state transition. 

Boolean expressions to set output signals (count_output) implement the output 
function of the FSTM and depend on the coding of states. A complete sequence of 
Boolean expressions can be defined in our example in the following way: 

green1 M1 M2 M4= ⋅ ⋅  (d1) 

green2 M1 M2 M3= ⋅ ⋅  (d2) 

red1 green1=  (d3) 

red2 green2=  (d4) 

( )lower M2 M3 M4= ⋅ +  (d5) 

( )raise M1 M2 M3 M4 M3 M4= ⋅ ⋅ ⋅ + ⋅  (d6) 

( )sound M1 M2 M3 M4= ⋅ ⋅ +  (d7) 

6.3 Code generation 

The sequence of Boolean expressions defines in all detail the functioning of a program 
for a PLC. A part of the program for the railroad crossing controller, expressed in the 
form of a in ladder diagram is shown in Figure 6. 
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Figure 6 A part of the ladder diagram code for the railroad crossing controller 

 

7 Conclusions and plans for further research 

PLC controllers are used in many application areas in which a malfunction of the control 
system can cause significant losses to the environment or endanger human life. The 
systems which are used in such application areas are expected to exhibit always an 
acceptable behaviour. Those expectations have to be verified in a formal way. 

This paper describes a method for the specification, verification and automatic 
generation of code for PLC controllers. The method relies on a mathematical formalism 
based on FSTM model. The advantages of the method are intuitive modelling and the 
potential for automatic verification and implementation of the model. 

A practical application of the method requires a set of tools which enable a developer 
for automatic conversion of FSTM to UPPAAL and automatic generation of code for a 
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PLC controller. Such an experimental tool has been built and is currently being tested in a 
student’s lab. 

A disadvantage of the described method is low scalability of the model with respect 
to the number of the modelled objects. The problem is twofold. First, the model in  
Figure 2 describes a crossing with exactly two tracks for trains. A completely new model 
must be built to describe, e.g., a four track crossing. Second, the number of states of the 
model rises exponentially. 

A way we want to follow to improve scalability is the introduction of variables for 
representing a number of similar states, as shown in Figure 7. Those variables are part of 
the state and do not prevent the state space explosion. However, the model itself is 
parameterised with the number of tracks and can be used to describe a crossing with an 
arbitrary number of tracks n. 

Figure 7 Parameterised model of the railroad crossing controller 

 

The states within the graph in Figure 7 correspond to states of the crossing with respect to 
train positions. The transitions bear labels of the type event/action, where event 
corresponds to a condition on the input signals or on the values of variables or to the 
expiration of a time period and action corresponds to setting the values of variables. 

The positions of particular trains with respect to the crossing area are signalled to the 
controller by a vector of input pulses approach(i) and leave(i), i = 0, …n – 1. The 
appearance of an approach-pulse is stored in a vector variable a(i), i = 0, …n – 1 and 
makes the controller to close the gate. When the gate is down, the controller uses the 
stored data to send green signals to all the appropriate semaphores – the function  
MOV(a, green) sends a green signal for each train, which approaches the crossing. 

When the trains are inside the crossing, the controller keeps track of all the 
approaching and leaving trains and waits until the last train has left. If this is the case, the 
controller turns the green signals off, opens the gate and waits until the gate is up. 

Vector a is part of the controller state. This way, there are in fact as many Entering 
and Inside states as are the combinations of values of the elements of vector a. Output 
signals of the state machine are two signals to operate the gate, which are open and close, 
and a vector of signals green(i) to operate the semaphores to display green or red. 

FSTM model of the controller has the same set of states and the same set of variables. 
It has a single timer symbol t and the timer function τS(t) = {Entering} and τN(t) = 30. 

Outside 

Entering after(30) / sound 
Alarm 

Inside 

Leaving 
up 

approach(i) / a(i) := 1, close 

down / MOV(a, green) 

down / MOV(a, green) 

when (a = 0) / MOV(a, green), open 

approach(i) / a(i) := 1 

approach(i) / a(i) := 1, green(i) := 1 
leave(i) / a(i) := 0 

MOV(0, green), open 
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The transition function is defined by the set of all the transition of the UML state 
machine. The sets of input and output symbols are the following: 

{ }
{ } { }(0), ( 1)

(0), ( 1), (0), ( 1), ,

2 ,green green n

approach approach n leave leave n down up

open close−

Σ = − −

Ω = ∪…

… …
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