Evaluation of Software Quality

Krzysztof Sacha

Warsaw University of Technology, Nowowiejska 15/19
00-665 Warszawa, Poland
k. sacha@ a. pw. edu. pl

Abstract. The paper describes a method, which we used tmateathe ex-
pected quality of software that was developed fouge governmental system.
The evaluation lasted nearly two years and wapadd along with the soft-
ware development process. The output that was &egéy our customer con-
sisted of a quality assessment accompanied by afsgicommendations on
what to do in order to enhance the quality of thedpct.

1 Introduction

The ultimate goal of software engineering is tafinethods for developing high qual-
ity software products at reasonable cost. As coerpusre being used in more and
more critical areas of the industry, the qualitysoftware becomes a key factor of
business success and human safety.

Two approaches can be followed to ensure softwaadityg. One is focused on a
direct specification and evaluation of the quatifysoftware product, while the other
is focused on assuring high quality of the prodsswhich the product is developed.

The software industry is currently entering a perod maturity, in which particular
informal approaches are specified more precisedyaaa supported by the appropriate
standards. Quality characteristics of software pot&l are defined in ISO/IEC 9126
[1]. For each characteristic, a set of attributdésctv can be measured is determined.
Such a definition helps in evaluating the qualitsoftware, but gives no guidance on
how to construct a high quality software product.

The requirements for a quality management systendefined in 1ISO 9001 [2]. All
the requirements are intended for application withi software process in order to
enhance the customer satisfaction, which is corsiléhe primary measure of the
software product quality. The quality managemestay, as defined by the standard,
can be subject to a certification.

This paper describes a method, which we used tluaeathe expected as well as
the actual quality of a huge software system ttrest developed in the years of 2003-
2004 to support Common Agriculture Policy of EurapeJnion in Poland (IACS —
Integrated Administration and Control System). Bofhthe two approaches, men-
tioned above, appeared to be too abstract foreztdipplication. Moreover, the qual-
ity of a software product cannot be evaluated wflee development of this particular
product has been finished, and high quality of faxgoe process does not necessarily



guarantee high quality of the product. Thereforevweee pushed to develop an origi-
nal method. A general framework of this method lbeesn described in [3].

The paper is organized as follows. Section 2 pewithe reader with a short over-
view of the approach represented by ISO 9126, auti® 3 summarizes the ap-
proach of ISO 9001. The method that was used ttuateathe quality of the devel-
opment of the IACS software is presented in SectioRinal remarks are gathered in
Conclusions.

2 1SO/IEC 9126 Overview

ISO 9126 [1] is concerned primarily with the defioin of a quality model, which can
be used to specify the required product qualitthtor software development and
software evaluation. The model consists of six itypiatharacteristics, which are
intended to be exhaustive. Each quality charatieis very broad and therefore it is
subdivided into a set of sub-characteristics atibattes. This quality model can be
applied in industry through the use of measurerrgatitniques and related metrics.

All the six quality characteristics, defined in I1S1126, are recapitulated below,
along with some comments.

Functionality is defined as the ability of the software prodiacprovide functions
which meet stated or implied needsthe user. This is a very basic characteristic,
which is semantically close to the property of eotness, as defined in other quality
models [4]. If software does not provide the regdifunctionality, then it may be
reliable, portable etc., but no one will use it.

Efficiency is a characteristic that captures the ability ebarect software product
to provide appropriate performance in relationite amount of resources used. Effi-
ciency can be considered an indication of how wedi/stem works, provided that the
functionality requirements are met. The referereeéhe amount of resources used,
which appears in this definition is important, be traditional measures of efficiency,
such as the response time and throughput, aretisyatem-level attributes.

Usability is a measure of the effort needed to learn andausEtware product for
the purpose chosehe scope of this factor includes also the easasséssment
whether the software is suitable for a given puepasd the range of tolerance to the
user errors. The features that are important witiencontext of usability are adequate
documentation and support, and the intuitive urtdadability of the user interface.

Reliability is defined as the ability of software to maintaiepecified level of per-
formance within the specified usage conditions. hSacdefinition is significantly
broader than the usual requirement to retain fanatity over a period of time, and
emphasizes the fact that functionality is only ofiehe elements of software quality
that should be preserved by a reliable softwareymb

Maintainability describes the ease with which the software prodaotbe ana-
lyzed, changed and tested. The capability to auoikpected effects from modifica-
tions to the software is also within the scopehid tharacteristic. All types of modifi-
cations, i.e. corrections, improvements and adaptab changes in requirements and
in environment are covered by this characteristic.



Portability is a measure of the effort that is needed to nsmfvare to another
computing platform. This characteristic becomedipalarly important in case of an
application that is developed to run in a distrdaliheterogeneous environment or on
a high performance computing platform, which lifesps usually short. It is less im-
portant if the application runs in a stable envinemt that is not likely to be changed.

It can be noticed that the characteristics cornedgo the product only and avoid
any statement related to the development procdss. Way the standard presents
a coherent model, which skips such features ligeteneliness, which can be defined
as the ability of a product to meet delivery deaeli Although timeliness relates
closer to the process than to the product itsetfan influence the subjective feeling
of the customer. If a product is delivered latentlit may be of good quality, but cus-
tomers may consider it to be of lesser quality ttenproducts delivered on time [5].

3 1S0 9001 Overview

ISO 9001 [2] describes the requirements for a gualanagement system, which is a
part of the total manufacturing process. The stahavery general and applies to all
types of organizations, regardless of their siz afrwhat they do. The recommended
practices can help both product and service orieatganizations and, in particular,
can be used within the context of software devekmnand manufacturing. 1ISO 9001
certificates are recognized and respected throughewvorld.

Because of this generality it is not easy to maprétommendations of the stan-
dard into the practical activities that can be qerfed within a software process.
Moreover, the standard is intended to be used éyntanufacturers and not by the
auditors that are hired by their customers. Theeefocontains many recommenda-
tions that relate to resource management procdishwas completely outside the
scope of our evaluation. What we were expectedsess was the quality of products
of particular steps of the development processlytical specifications, design docu-
ments, testing plans and procedures, user manndl¢ha resulting code. The actual
implementation of the testing process was alsoestitp our evaluation.

ISO 9001 does not define any particular model @ligu Instead, it adopts a sim-
ple approach that the quality of a product is mesby the customer satisfaction.
According to this approach, no quality characterssare defined, and the only basis
for quality evaluation are the customer requiremetitthose requirements are met,
then the product quality can be evaluated high. [&ble of a quality model makes this
standard orthogonal to ISO 9126. There are no cammaints between the two, but
also no contradiction can be found.

The top level requirement of ISO 9001 is such thaality management system
must be developed, implemented and maintained.thidl processes and activities
performed within the scope of this system havea@dcumented and recorded for the
purpose of future review. A huge part of the staddelates to the processes of qual-
ity planning and management, resource managemahi@ntinuous quality monitor-
ing, analysis and improvement. This part is noyuelpful in evaluating the quality
of a specific software product under design.



The part, which relates directly to the body obéware project, is a section on re-
alization requirements. Basic requirements and meoendations that are stated
therein can be summarized as follows:

1. Identify customers’ product requirements, i.e. thguirements that the customer
wants to meet, that are dictated by the produssar by legal regulations.

2. Review the product requirements, maintain a readrthe reviews, and control
changes in the product requirements.

3. Develop the software process, clarify the respdlitgils and authorities, define the
inputs and outputs of particular stages.

4. Perform the necessary verification and validatictivdies, maintain a record of
these activities, and manage design and developrhanges.

All of those statements are very concrete and geovaluable guidelines for auditing
and evaluating the quality of a software processtedver, the stress that is placed on
the need to meet customer requirements helps gingdhe gap between the quality
of the software process and the quality of softviisesf.

4 Quality Evaluation Method

There is a great difference between the qualityuaiimn made for and by a software
manufacturer and the evaluation that is made ®ctistomer.

A manufacturer can define a set of metrics thatriles particular quality charac-
teristics, measure and collect historical data feoiset of similar projects, and com-
pare the current data with the ones taken fronhisterical database. The entire proc-
ess can be supported by computerized tools likeottee described in [6]. Such an
approach is focused on a direct evaluation of thality of a software product, and
can be implemented using GQM method (Goal — QuestiMetric), described for the
first time in [7] and developed since that time NitSA. The set of goals or quality
characteristics can be the same or similar to tieedzfined in ISO/IEC 9126.

It is very difficult to a customer to follow thigpproach. The lack of historical data
makes many of the quantitative characteristicsesselFor example, consider the
following metric: “The percentage of classes thaitain a method for displaying help
information for the user” (Tab 1 in [6]) and assuthat it has been measured equal to
45%. What does this data mean? Is 45% many or Féov? does 45% contribute to
the usability of the software product — is it highlow?

4.1 Process-Centric Approach

The problems related to the interpretation of mgogntitative metrics of software
quality pushed us towards the approach focuseti@e\vtaluation of the quality of the
development process. The rationale that standsthehis approach is based on a
hope that if things are done right, than the resuitl also be right. Sinchope is not
the same asertainty, we tried to relate somehow the attributes of psscquality to
the attributes of product quality defined in IS281An important advantage of such



a process-centric approach is that it gives thdat@udn opportunity to formulate
recommendations on what to improve in the developmpecess.

The method we developed was based on a set ofi@ritet characterize the qual-
ity of the software process or the quality of aduat of a particular step of the soft-
ware process. The method was similar to GQM in thatevaluation of particular
criteria was based on a process of asking questiodgjiving answers to these ques-
tions. To avoid problems with the interpretationdafta, the sets of questions were
limited to the ones that were meaningful for therugo make the evaluation process
structured, we divided the problem space into gbject areas. The first subject area
corresponded to the development process itselfnéxé four areas corresponded to
particular activities within the process, and tastlone dealt with the software docu-
mentation. This way the following areas were define

. Software process and development methods.
. The analysis and analysis products.

. The design and design products.

. The implementation and the code.

. Testing process and test documentation.

. User manuals.

OO WNBE

It can be noted from the above list that the aB2a$ cover all the activities that exist
in both: waterfall and incremental models of sofevdevelopment. The decomposi-
tion of the software process into the subject aie#i'en exhaustive.

Each subject area was covered by a set of criterggnized along the paths of
traceability: from requirements to verificationpifn requirements to the design, and
from the design to the implementation. The majasitanswers was qualitative. Quan-
titative measures were also used, however, ongugh cases in which the numbers
could be meaningful for the customer. Sample gatand questions that were stated
in particular subject areas, are discussed brinflhe next two subsections. The me-
chanics of the quality evaluation is describedéct®n 4.4.

4.2 Software process and development methods

The main goals of the activities performed witHiistsubject area are the identifica-
tion of methods and standards that were used thoutghe development process and
the verification of the use of those methods wibpect to completeness, readability
and traceability of the resulting products. In ortie achieve these goals we defined
the following set of criteria, accompanied by tipp@priate questions:

1. Methods and standards: Which methods and standeeds used throughout the
development process? How was the scope of the a&?ho

2. Completeness of results: Which artifacts recommeérmethe methods have been
created? Is the set of artifacts sufficient? Aeerdsults documented properly?

3. Readability and modifiability of the documentatiofice the created documents
readable and modifiable?

4. Traceability of the documentation: Are the docurearreated in subsequent steps
of the development process traceable?



As can be seen from the above list of criteria,dhaluation within this subject area
was focused on formal aspects of the developmehtinit did not include an in depth
analysis of the contents of the documents created.

The criteria correspond to the recommendationsS@ P001, which state that a
software process shall be developed, the outputsadfcular activities shall be de-
fined, and the results shall be recorded. Ther@iteave also a clear relation to the
quality characteristics defined in 1ISO 9126, beeatl®e completeness of results to-
gether with readability, modifiability and traceltlyi of the documentation promotes
the maintainability and portability of the softwagreduct.

4.3 Analysis

The main goals of the activities performed witHiistsubject area are the identifica-
tion of methods and models that were used throughewanalysis and the verification
of the use of those methods with respect to caresst completeness and verifiability
of the resulting documents and other products. rifeloto achieve these goals we
defined the following set of criteria, accompaniidthe appropriate questions:

1. Completeness of sources: Which sources of infoonatiere used throughout the
analysis? Was the selection of legal regulatiomspdete?

2. Consistency of the analysis model: Is the businasdel created during the analy-
sis consistent with legal regulations that havenbdentified in criterion 1?

3. Completeness of the analysis model: Is the cremtatysis model complete in that
it comprises all the business procedures definethéyegal regulations? Is the list
of possible scenarios complete?

4. Completeness of the context definition: Is theadéhput data sufficient to achieve
the business goals of the system? Is the set pibdata complete with respect to
business and legal requirements?

5. Completeness of the functionality: Are the funcéibrequirements complete in that
all the business procedures identified in crite@aare supported by the appropriate
functions of the software?

. Usability of the user interface prototype: Is thietptype complete and ergonomic?

7. Correctness of the data model: Is the data modaptaie and consistent? Is the
data model consistent with the business procedubeg® the data model comply
with the best engineering practices?

8. Completeness of the non-functional requirement& the non-functional require-
ments complete in that they define the expectatieteted to the security of data,
response time, throughput and reliability?

9. Verifiability of the non-functional requirements:ré the non-functional require-
ments defined verifiable (testable)?

10.Credibility of the verification: How is the caege of business procedures by the
test scenarios? Is the performance testing sufieiélow is the credibility of the
testing procedures?

(o]

As can be seen from the above list of criteria @nelstions, the evaluation within this
subject area is focused on the contents of theyticell products. The sequence of



guestions moves along a path: From sources ofrivgtion to business model, from
business model to functions and efficiency, fromctions and efficiency to verifica-
tion. The results of the evaluation are in goodtieh to the following characteristics
of ISO 9126: Functionality is supported by crite?ia3, 4, 5, 7, efficiency by criteria
8, 9, usability by the criterion 6, reliability lyiteria 8, 9 10, and maintainability by
the criterion 7. Portability was not consideredignificant premise at the analysis
level of IACS.

4.4 Evaluation process

Input data to the quality evaluation process coedi®f all the documents that had
been created in the entire software developmené cybese included:

- a business model developed in the inception phase,

- early analysis model of the elaboration phase,

- the set of analysis and design models createctindhstruction phase,
- the code and the complete set manuals,

- test plans and test reports (plus the observafitimeatesting process).

Because of the incremental nature of the developnpamt of the documents circu-
lated in several versions, issued in a sequensalifequent increments.

The evaluation process was decomposed into thes distad in section 4.1 and
structured according to the set of criteria exefigaliin sections 4.2 and 4.3. The
analysis that was done within the context of aipaler criterion was guided by the set
of questions. Sometimes, a compound area was dessuidnto sub-areas and the
guestions were stated and answered separatehaftcypar groups of artifacts. For
example, the evaluation of the criterion 1 of sat.2 (Methods and standards) was
decomposed into a review of the software processysis methods, design methods,
implementation methods and tools, testing methad,documentation standards.

The answers to the questions were, in general tqtiadi, formulated usually in
terms of a ranking: good, satisfactory, bad. Quatite metrics were also used, how-
ever, only in such cases in which the results ctagldneaningful to the user. An ex-
ample of such a metric is the coverage of use searios by test scenarios.

The evaluation report was structured in accordavite the areas and the criteria.
The results of the evaluation within a particulagsawere concluded in the form of
two sections: Risks for the project and recommeadatto the project. The risk sec-
tion summed up the ‘bad’ answers and related tfieielecies to the quality character-
istics of ISO 9126. For example:

- The lack of functions that support certain businassedures creates the risk that
the functionality of software will not be met.

- The lack of readable design models creates thehégkthe maintainability of soft-
ware will be low.

The recommendation section advised what to doderoto avoid the risks identified
in the evaluation process and described in theiguevsection. An advice related to
the first point above could, for example, be: Defihe functionality that is missing.



5 Conclusions

This paper describes a practical method that cansked to evaluate the expected
quality of software under design. The evaluatioocpss does not refer directly to the
existing standards, however, it is consistent it basic elements of the quality
models of both ISO 9001 and ISO 9126. The mecharifitise evaluation is based on
a set of criteria that are decided by stating goestand finding answers to those
guestions. The collection of criteria is structuieth a set of subject areas that ex-
haustively cover the set of activities that existie most popular software processes:
Phases of the waterfall model or activities of féP incremental process.

The method was used successfully in evaluatinggtradity of software products
during the development of IACS system. The evatuatvas performed on behalf of
the customer and not the manufacturer of the sysidm criteria and questions that
guided the evaluation process allowed for a sydiemia depth analysis of the deliv-
erables of the particular development activities.résult, several risks were revealed
and identified. The recommendations helped in amgithe risks in the final product.
IACS system was build and certified for use witthie deadline.

The advantages of the method can be summarizediasd:

» The method does not depend on any particular smtpeocess or method that can
be used in the development of software.

» The results of the method, i.e. the answers togthestions that are stated in the
evaluation process, are readable and meaningthketoustomer.

» Negative answers to particular questions can ehsiliyanslated into recommenda-
tions on what to change in order to enhance thétgoed products.

The method is simple in use, does not relay onhastprical data, and need not be
supported by a computerized tool.

References

1. ISO/IEC 9126-1: Software engineering — Produstlity. ISO/IEC (2001)
. 1SO 9001: Quality management systems — RequitemksSO (2001)
3. Zalewski A., Cegieta R., Sacha K.: Modele i py&k audytu informatycznego, in: Huzar Z.,
Mazur Z. (eds.): Problemy i metodyzimierii oprogramowania, WNT, Warszawa (2003)
. Fenton, N: Software Metrics: A Rigorous ApproaChapman and Hall (1993)
. Horgan G., Khaddaj, S., Forte P.: An Essentiawg Model for Software Quality Assur-
ance, ESCOM-SCOPE 99 (1999)
6. Szejko S.: RDQC - sterowana wymaganiami konfeasci oprogramowania, in: Gorski J,
Wardziaski A. (eds): Iitynieria oprogramowania: Nowe wyzwania, WNT, Warsag2004)
7. Basili V.R., Weiss D.M.: A Methodology for Cotitng Valid Software Engineering Data,
IEEE Transactions on Software Engineering, Nov8#19

N

[S20F N



