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Abstract. The paper describes the hardware and software architecture of a multicomputer 
control system of a very fast robot. The control system was designed for research and edu-
cational purposes with two goals in mind. First, it had to be flexible and modifiable with re-
spect to control algorithms applied to particular axes. Second, the interfacing of the system 
to additional devices, such as environmental sensors and other robots, should be possible 
with only limited effort. The various constraints and considerations imposed by these goals 
are examined. In addition, the technical problems related to the use of direct drive motors 
are described, and the impact of the requirement for very fast operation on the system archi-
tecture is discussed. 
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1. INTRODUCTION 
 
The paper describes the hardware and software archi-
tecture of a multicomputer control system designed 
for an experimental very fast robot. The robot column 
has been designed in the Institute of Aeronautics and 
Applied Mechanics. This is a six degree-of-freedom 
robot with three main axes driven by powerful high 
torque direct drive motors, and three other axes 
driven by much smaller conventional alternate current 
motors. 
 
The main axes drive systems comprise a direct drive 
motor and motor driver (manufactured by Yoko-
gawa), with the motor being coupled to the arm with-
out any gearbox. The range of the arm movement is 
unlimited in that the arms can revolve many times 
around their axes. The speed of the direct drive mo-
tors ranges up to 2 revolutions per second, and  the 
accuracy of the motor positioning — 0.0007° (500 
000 distinct positions per revolution). 
 
The robot is designed mostly for research and educa-
tional purposes. The users of the device are likely to 
play with different types of control algorithms for 
particular axes. This imposes an additional require-
ment on the control system of the robot — it should 
be very flexible and a modification of the control 
algorithm should be possible with only limited effort. 

2. LOGICAL ARCHITECTURE 
 
The general software structure of the robot controller 
is shown in fig. a [6]. The upper layer task, called  
MASTER, coordinates the robot movement, i.e. it 
computes the kinematic model of the robot and de-
composes an elementary step of the robot column 
into the individual steps of particular robot axes. The 
lower layer tasks, called SERVO, implement control 
algorithms, such as e.g. PID or MRAC, of particular 
axes. The axis control can be based on setting the 
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Fig. A. Control software architecture 



desired velocity or torque of the motor. Current arm 
position is fed back to the controller as counts from 
the motor resolver. Other status data can also be read 
from the motor driver. 
 
High frequency of the computation is required to take 
advantage of the possible speed and accuracy of the 
robot motors: MASTER task has to be repeated cy-
clically once per a millisecond, and the calculation of 
each SERVO control tasks has to be repeated ten 
times per one millisecond. These requirements create 
the need for a multiple computer architecture of the 
robot control system. 
 
Other tasks can also be performed by the robot con-
trol system, in particular, the tasks for graphical man-
machine interface, for communication with advanced 
environmental sensors, such as video cameras, and 
for supervisory control of a multirobot workcell. 
These additional tasks can be executed either in the 
background of the basic robot control activity in a 
multitasking (time sharing) environment, or can be 
shifted to additional computers in a distributed envi-
ronment. The latter solution is more complicated and 
slightly more expensive, but can offer better perform-
ance and more modifiable system and application 
structure. 
 
3. HARDWARE ARCHITECTURE 
 
The requirements on the robot control system, which 
can be derived from the general objectives of the 
project stated in Sections 1 and 2, are for: 
• high reliability, as the system is to be used in an 

educational environment, 
• high flexibility and modifiability, 
• high performance, as a very short repetition cycle 

of the axis controllers is needed. 
The first of those requirements (high reliability) 
eliminates the use of popular PC-type computers. 
Economical limitations and the requirement for the 
ease of modification eliminate the use of DSP and 
transputer systems. What remains is an architecture 
composed of universal microprocessors of a modular 
industrial computer kit. 
 
The required performance of the control system can-
not be met by a single microprocessor. Therefore, a 
three processor architecture has been developed, with 
a single processor running MASTER task and two 
other processors running SERVO tasks of three robot 
axes each. 
 
The computational characteristics and requirements 
of both types of tasks are different, as MASTER task 
(which computes the kinematic model of the robot) 
uses mostly trigonometric functions, and SERVO task 
(which implements a control algorithm) uses mostly 
simple arithmetic operations. This suggests the need 
for two different types of processors used for running 
different tasks. 

The computer hardware selected for the development 
of the robot control system is based on an industrial 
VME-based computer kit from PEP Modular Com-
puters. The hardware is able to work in a multiproc-
essor configuration composed of Intel 486 and Mo-
torola 68060 processor boards. Basic characteristics 
of these processors, published in commercial papers, 
were not sufficient for comparison. Hence, an ex-
periment was performed, in which the particular 
arithmetic operations were executed in long loops. 
The number of loop cycles was counted and the dura-
tion of the loop was measured. The results of the 
measurements are shown in table a. The experiment 
proved that 486 could better perform in MASTER 
layer, while 68060 in SERVO layer. 
 
Table A. Characteristics of the processors 

Type of operation 486/66Mhz 
[Mop/s] 

68060/50Mhz 
[Mops/s] 

Fixed point 3.1 3.6 

Floating point 1.6 2.7 

Trigonometric 0.3 0.2 
 
The selected architecture of the robot control system 
consists of a single Intel 486 processor board and two 
Motorola 68060 processors boards connected to 
VME bus (fig. b) and mounted within a single rack, 
together with nearly fifteen interface circuit boards. 
The processors can communicate with each other 
through common memory areas accessible via VME 
bus and can exchange interrupt signals. Both 68060 
processors act as axis controllers and execute 
SERVO control tasks, while 486 performs the super-
visory MASTER task. Moreover, the supervisory 
processor can cooperate through a network with ex-
ternal computers, thus creating a distributed control 
system with enormous power and flexibility. 
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Fig. B. Hardware architecture of the robot control 
system 
 
The interface circuit boards that link particular proc-
essors with their axes are referenced by the proces-
sors. The needs of the control algorithm and the type 
of the interface boards are such that up to ten words 
can be transferred within a single SERVO task cycle. 
Since the transfer of a data word from an interfacing 



board takes about 500ns, the total load produced by 
the controllers of 6 axes can reach 30µs within a 
100µs cycle. If the interfacing boards were placed 
directly on VME bus, this load could consume 30% 
of the total bus bandwidth. Taking into account addi-
tional load introduced by the interprocessor commu-
nication, one can note that the bus could become a 
bottleneck in a single bus architecture, which could 
result in violation of the required repetition cycle. 
 
To prevent traffic jams on the communication system 
within the control computer, a dual bus architecture 
has been selected in which the interface boards are 
coupled to local buses of particular axes processors 
(fig. c). VME bus is used as the main system bus for 
inter-processor communication only. Relatively low 
actual load on the main bus preserves the potential 
for future system expansion, as additional robot-
related sensors, not assigned to particular axes, can 
be interfaced to the supervisory processor through 
VME bus. This is the only possibility for such expan-
sion, as no local buses for 486 board are offered. 
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Fig. C. Hardware structure of an axis controller 
 
The interface to a motor driver consists of an analog 
torque or speed setpoint signal, quadrature pulse 
signals from relative resolver and a number of bi-
stable status and configuration signals. An external 
synchronization sensor supplements each axis hard-
ware. Optocouplers, shown in fig. c, are indispensa-
ble, as the total rush current of the high-torque direct 
drives can exceed 100A and can reproduce a danger-
ous  current flow through galvanic connections 
throughout the interfacing circuits. 
 
4. SOFTWARE ARCHITECTURE 
 
The operation of Intel 486 is controlled by QNX, 
a multitasking, distributed real-time operating system 
from QNX Systems Software [3,5]. The operation of 
68060 is controlled by OS-9, a multitasking, real-time 
operating system from MicroWare [2]. The systems 
differ from each other in many aspects and cannot 
cooperate directly using their standard tools for inter-
task communication. Basic sets of these tools and the 
performance characteristics of both systems, partially 
measured [4] and partially found in the literature [1], 
are listed in table b. The comparison of the data 

shows, that the speed of the system operation is in 
both cases similar. 
 
Table B. Characteristics of the operating systems 

QNX  OS-9 
Operation Duration  Operation Duration 

task switch 6 µs  task switch 5 µs 

signal 45 µs  signal 20 µs 

proxy 25 µs  event 15 µs 

semaphore 15 µs  semaphore 14 µs 

message 20 µs  interrupt 18 µs 
 
The performance requirements formulated in Section 
2 impose hard real-time constraints on the robot con-
trol operation, and particularly on the operation of the 
axes controllers implemented by 68060/OS-9 com-
puters. These requirements exceed, in fact, the real 
possibilities of a multitasking operating system (but 
not the possibilities of the hardware). In case of OS/9, 
the standard configuration is offered with the real 
time clock resolution equal to 10ms. Special configu-
ration with the clock resolution of 100µs can be de-
livered on request. However, better resolution results 
in an increased overhead, which decreases the overall 
system throughput. 
 
The resolution of the real time clock is not the only 
problem encountered in designing the software. Axis 
controllers (SERVO tasks in fig. a) are basically 
independent of each other — the coordination be-
tween the axes is ensured by the supervisory 
MASTER task. Hence, the most flexible and modular 
structure of the 68060 software could consist of 3 
separate tasks, each of which could control a separate 
robot axis. The execution of the tasks could be trig-
gered by a standard OS/9 tool for cyclic operation, 
i.e. a cyclically generated signal. However, each 
SERVO task must be executed once per 100µs. 
A quick look to the table b shows that the speed of 
signal generation and delivery is too slow for the 
required 100µs repetition cycle.  
 
To solve the problem, a variant of a two-level, fore-
ground-background software architecture has been 
developed. Control algorithms (SERVOs) of the three 
axes are executed sequentially within a single task, 
which runs at a high priority level. The execution of 
the control task is triggered by a service function of 
an interrupt generated cyclically by a timer device. 
Such a design eliminates the need for a high resolu-
tion operating system configuration. The communica-
tion of the axes control task with the robot coordina-
tor (MASTER, executed by another processor) is 
implemented by a separate communication task, 
which runs at a low priority level (fig. d). The control 
task and the communication task can exchange data 
and synchronize to each other through a common 
data area. The synchronization uses simple flag-based 
handshaking, and is relatively simple, as only the 



control task can interrupt the communication task, but 
not vice versa.  
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Fig. D. Foreground-background architecture 
 
Nice feature of the architecture shown in fig. d is 
simplicity. Vital functions of the control algorithm 
are executed at the task level, the pattern of inter-task 
communication is simple, and the use of interrupts is 
reduced to the minimum. This makes software devel-
opment and software debugging relatively simple and 
efficient. 
 
Unfortunately, this architecture could be used only in 
the initial phase of our work, as it did not meet the 
performance requirements. The real measurements 
showed, that the figures in table b described the mean 
values only, while the worst case delays were much 
longer. In particular, the worst case signal delivery 
exceeded 100µs, thus eliminating any possibility of 
the use of system tools within the axes control loop. 
Therefore, the architecture in fig. d had to be modi-
fied in such a way that the control loop was shifted to 
the body of the interrupt service function. The modi-
fication, shown in fig. e, had no significant influence 
on the structure of the communication task. 
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Fig. E. Target architecture of the axes controller 

Real-time constraints imposed on the operation of the 
robot coordinator implemented by 486/QNX com-
puter are less critical, as MASTER task must be exe-
cuted only once per 1ms. Such a repetition rate can 
be matched by QNX, which can operate with the time 
resolution equal to 0.5ms. Moreover, a violation of 
the required repetition cycle is also less critical, as it 
can slow down the robot operation but cannot cause 
any dangerous robot movement. Hence, software 
architecture of the robot coordinator can be based on 
standard multitasking features of QNX, with standard 
system tools being used for intertask communication. 
 
The cooperating computers in fig. b are PC-clones 
operating under QNX. The computers work in real-
time, but the constraints are, in general, less severe 
than the constraints imposed on the robot coordinator 
(486/QNX). The communication of the robot coordi-
nator and the cooperating computers is implemented 
by means of standard QNX tools for intertask com-
munication. Since QNX is a distributed operating 
system with a full possibility for task communication 
and resource sharing within a local area network, no 
special considerations with respect to this aspect of 
system architecture are needed. 
 
A separate problem is the communication between 
the robot coordinator (486/QNX) and axis controllers 
(68060/OS-9). The needs of the application are for 
two types of tools: 
• messages, for transferring commands from the 

robot coordinator to axis controllers, and a status 
data in the reverse direction, 

• signals, conveyed in both directions, for exception 
handling. 

Neither of those tools are available. Moreover, sys-
tem software does not support inter-processor com-
munication at all. The computer hardware offers 
a possibility of physical access to common memory 
areas with no means for synchronization, and a possi-
bility of mutual interrupting. No tools for higher level 
communication are implemented. The problem must 
be solved entirely within the application. Because it is 
crucial for the system modifiability, it will be consid-
ered in detail in a separate section. 
 
 
5. MODIFIABILITY AND COMMUNICATION 
 
The requirements specification of the very fast robot 
control system includes a requirement for high flexi-
bility and modifiability. The intention of the project 
is that neither hardware nor software architecture is 
constant within the whole system lifecycle. At the 
hardware level this means that the number of proces-
sors can change, and an additional 68060 can be 
attached to give more computational power for the 
axis controllers. At the software level this means that 
particular axis controllers (SERVOs in fig. a) can be 
shifted and assigned to different processors within the 
control system — in other words, the code modules 



which compute axes control algorithms can be shifted 
from one processor to another one. The contents of 
those code modules can also be changed. 
 
Any change in the assignment of axis controllers to 
processors affects the communication between the 
robot coordinator and the axes control processors. If 
the low level communication mechanisms (common 
memory areas and inter-processor interrupts) were 
used directly, the impact of such changes on the 
structure of the robot coordinator as well as axes 
control software could be destructive, in that any 
change could require a huge number of small modifi-
cations to the software code. 
 
The problem of changes identified above can be 
solved by implementing high level tools for message 
and signal passing, with the potential for redirection, 
following any reconfiguration of the hardware and 
software structure. Such a design makes the applica-
tion software of the robot coordinator (486/QNX) 
and cooperating computers (fig. b) independent of the 
actual structure of the axes control level. 
 
The implementation is based on a concept of a port, 
which can be interpreted as a uni-directional commu-
nication channel between a sender task and a receiver 
task. Ports are identified by numbers, and described 
in a port table stored in a common memory area (fig. 
f). A port description consists of a port number, the 
receiver task identifier (process identifier — pid) and 
a number of the processor, which executes the re-
ceiver task. The assignment of ports to receivers is 
constant, e.g.: 
port 1 — status and signals to MASTER, 
port 2 — commands and signals to SERVO 1, ... 
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Fig. F. Port table 
 
The port table is filled in during system start-up: The 
processor numbers are written manually as configura-
tion data, while the receiver task identifiers (pids) are 
written automatically by the code modules of 
MASTER and SERVOs. This way any command or 
signal to a particular application module (MASTER 
or SERVO) can always be sent to the same port, 
regardless of the actual placement of the module. 
 
Two basic primitives of port-based communication 
have been implemented: 
• send, for message transfer, 
• signal, for exception signalling. 
The implementation is divided between library func-
tions and the communication tasks. Basic structures 
used by the implementation of the function send, 

which sends a message from MASTER to SERVO 
are shown in (fig. g). A call to the function send is 
processed within the following sequence: 
1. The function looks to the port table and finds the 

receiver processor nr and the receiver id assigned 
to the port p. Next, it places a message (port nr + 
receiver pid + data c) in the receiver processor 
queue and sends an interrupt request to the re-
ceiver processor. 

2. The interrupt service function executed by the 
receiver processor posts the semaphore s and re-
sumes the communication task. 

3. The communication task reads the message from 
the queue and stores the data c in the data area in 
a slot assigned to the received port number. 
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Fig. G. Implementation of the function send 
 
The implementation of the function signal works 
similarly. The main difference lies in that no data is 
passed and the communication task does not refer to 
the data area, but just sends a signal to the receiver 
task (by calling the standard kill function of QNX or 
OS-9). The function signal can be called by an appli-
cation task or by an interrupt service function exe-
cuted by any processor of the system. 
 
The function send is not used directly by the applica-
tion programs. Instead, it is used as a building block 
for implementing rendezvous, semantically similar to 
the standard QNX message operation. Rendezvous is 
implemented by a function exchange and consists of 
a pair of send functions which convey data in the 
oposite directions. Rendezvous can be called by 486 
tasks only. It is used by MASTER task as a con-
firmed communication service for sending a com-
mand to a selected  SERVO task and receiving back a 
status data. Signals can be raised by 486 as well as 
68060 programs. They are used as unconfirmed ser-
vices for signaling in both directions exceptional 
situations which emerged during the program execu-
tion. 
 
The described implementation is completely safe in 
that neither a message nor a signal can be lost. The 
worst case arises if a second interrupt was requested 
before the previous one had been accepted. In such 
a case only one interrupt is effectively generated, 
while the second request is lost. The interrupt service 



function within the receiver processor anticipates 
such a situation and always posts the semaphore as 
many times, as is the number of messages waiting in  
the queue. Thus, if two messages were written to the 
queue at nearly the same time, both of them are proc-
essed regardless of the number of interrupts received. 
The communication between the interrupt service 
function and the communication task uses 
a semaphore which counts the number of messages or 
signals stored in the queue, so that neither of them 
can be lost. 
 
 
6. DEVELOPMENT ENVIRONMENT 
 
The development of software requires appropriate 
hardware and software environments, comprising 
disk memories, terminals, editors, compilers, debug-
gers, etc. All these facilities exist in our research 
system. The development system configuration dif-
fers from the one shown in fig. b in that all processors 
have network interfaces and can be accessed via 
standard Tcp/Ip services (ftp, telnet). Tcp/Ip services 
(nfs) are also used by particular 68060 processors to 
access a single disk memory station with a set of 
software tools. 
 
Neither of the facilities mentioned above are needed 
in the target configuration. Moreover, the develop-
ment configuration cannot be used in the target con-
trol system, as network software of OS-9 does not 
perform well in hard real-time. Network interrupts 
and system-state processes introduce a significant 
overhead and extend the worst case interrupt reaction 
time to above 100µs, and the signal delivery time to 
above 1ms. Therefore, the entire network software 
has to be unlinked from the target OS-9 system con-
figuration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. CONCLUSIONS 
 
The control of a high resolution fast robot is a chal-
lenging task which nearly reaches the limits of the 
current microcomputer technology. Meeting the hard 
real time constraints requires hardware architecture 
with multiple processing units and multiple buses for 
internal data transfer within the control system. Soft-
ware architecture at the axes control level cannot 
benefit the advantages of multitasking operating 
system, but must be tailored to meet severe real time 
limitations. 
 
The system described in our paper is currently under 
development. The computer hardware has been as-
sembled and debugged, basic software structures and 
control algorithms have been fixed and prototyped. A 
complete working robot system is expected at the end 
of this year. 
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