

Versatile control system for a very fast robot *

URSZULA KRÊGLEWSKA, KRZYSZTOF SACHA

Warsaw University of Technology, Institute of Control and Computation Engineering, War-
saw, Poland, ula@ia.pw.edu.pl, k.sacha@ia.pw.edu.pl

Abstract. The paper describes the hardware and software architecture of a multicomputer
control system of a very fast robot. The control system was designed for research and edu-
cational purposes with two goals in mind. First, it had to be flexible and modifiable with re-
spect to control algorithms applied to particular axes. Second, the interfacing of the system
to additional devices, such as environmental sensors and other robots, should be possible
with only limited effort. The various constraints and considerations imposed by these goals
are examined. In addition, the technical problems related to the use of direct drive motors
are described, and the impact of the requirement for very fast operation on the system archi-
tecture is discussed.

Key Words. Robot control, hard real-time control, multiprocessor control system.

*) The research was supported in part by Committee for Scientific Research under the grant no 8 T11A 028 09

1. INTRODUCTION

The paper describes the hardware and software archi-
tecture of a multicomputer control system designed
for an experimental very fast robot. The robot column
has been designed in the Institute of Aeronautics and
Applied Mechanics. This is a six degree-of-freedom
robot with three main axes driven by powerful high
torque direct drive motors, and three other axes
driven by much smaller conventional alternate current
motors.

The main axes drive systems comprise a direct drive
motor and motor driver (manufactured by Yoko-
gawa), with the motor being coupled to the arm with-
out any gearbox. The range of the arm movement is
unlimited in that the arms can revolve many times
around their axes. The speed of the direct drive mo-
tors ranges up to 2 revolutions per second, and the
accuracy of the motor positioning — 0.0007° (500
000 distinct positions per revolution).

The robot is designed mostly for research and educa-
tional purposes. The users of the device are likely to
play with different types of control algorithms for
particular axes. This imposes an additional require-
ment on the control system of the robot — it should
be very flexible and a modification of the control
algorithm should be possible with only limited effort.

2. LOGICAL ARCHITECTURE

The general software structure of the robot controller
is shown in fig. a [6]. The upper layer task, called
MASTER, coordinates the robot movement, i.e. it
computes the kinematic model of the robot and de-
composes an elementary step of the robot column
into the individual steps of particular robot axes. The
lower layer tasks, called SERVO, implement control
algorithms, such as e.g. PID or MRAC, of particular
axes. The axis control can be based on setting the

MASTER
Central robot coordinator

SERVO
(1)

Axis
controller

SERVO
(6)

Axis
controller

cycle 100 µs

cycle 1 ms

Robot step — every 1ms

µstep — every 100 µs

Axis step — every 1 ms

Motor +
resolver

Motor +
resolver

• • • •

Fig. A. Control software architecture

desired velocity or torque of the motor. Current arm
position is fed back to the controller as counts from
the motor resolver. Other status data can also be read
from the motor driver.

High frequency of the computation is required to take
advantage of the possible speed and accuracy of the
robot motors: MASTER task has to be repeated cy-
clically once per a millisecond, and the calculation of
each SERVO control tasks has to be repeated ten
times per one millisecond. These requirements create
the need for a multiple computer architecture of the
robot control system.

Other tasks can also be performed by the robot con-
trol system, in particular, the tasks for graphical man-
machine interface, for communication with advanced
environmental sensors, such as video cameras, and
for supervisory control of a multirobot workcell.
These additional tasks can be executed either in the
background of the basic robot control activity in a
multitasking (time sharing) environment, or can be
shifted to additional computers in a distributed envi-
ronment. The latter solution is more complicated and
slightly more expensive, but can offer better perform-
ance and more modifiable system and application
structure.

3. HARDWARE ARCHITECTURE

The requirements on the robot control system, which
can be derived from the general objectives of the
project stated in Sections 1 and 2, are for:
• high reliability, as the system is to be used in an

educational environment,
• high flexibility and modifiability,
• high performance, as a very short repetition cycle

of the axis controllers is needed.
The first of those requirements (high reliability)
eliminates the use of popular PC-type computers.
Economical limitations and the requirement for the
ease of modification eliminate the use of DSP and
transputer systems. What remains is an architecture
composed of universal microprocessors of a modular
industrial computer kit.

The required performance of the control system can-
not be met by a single microprocessor. Therefore, a
three processor architecture has been developed, with
a single processor running MASTER task and two
other processors running SERVO tasks of three robot
axes each.

The computational characteristics and requirements
of both types of tasks are different, as MASTER task
(which computes the kinematic model of the robot)
uses mostly trigonometric functions, and SERVO task
(which implements a control algorithm) uses mostly
simple arithmetic operations. This suggests the need
for two different types of processors used for running
different tasks.

The computer hardware selected for the development
of the robot control system is based on an industrial
VME-based computer kit from PEP Modular Com-
puters. The hardware is able to work in a multiproc-
essor configuration composed of Intel 486 and Mo-
torola 68060 processor boards. Basic characteristics
of these processors, published in commercial papers,
were not sufficient for comparison. Hence, an ex-
periment was performed, in which the particular
arithmetic operations were executed in long loops.
The number of loop cycles was counted and the dura-
tion of the loop was measured. The results of the
measurements are shown in table a. The experiment
proved that 486 could better perform in MASTER
layer, while 68060 in SERVO layer.

Table A. Characteristics of the processors

Type of operation 486/66Mhz
[Mop/s]

68060/50Mhz
[Mops/s]

Fixed point 3.1 3.6

Floating point 1.6 2.7

Trigonometric 0.3 0.2

The selected architecture of the robot control system
consists of a single Intel 486 processor board and two
Motorola 68060 processors boards connected to
VME bus (fig. b) and mounted within a single rack,
together with nearly fifteen interface circuit boards.
The processors can communicate with each other
through common memory areas accessible via VME
bus and can exchange interrupt signals. Both 68060
processors act as axis controllers and execute
SERVO control tasks, while 486 performs the super-
visory MASTER task. Moreover, the supervisory
processor can cooperate through a network with ex-
ternal computers, thus creating a distributed control
system with enormous power and flexibility.

VME bus

ETHERNET

68060
(50 MHz)

OS9

68060
(50 MHz)

OS9

486
(66 MHz)

QNX

Cooperating
computers

QNX

Environmental
sensors

Fig. B. Hardware architecture of the robot control
system

The interface circuit boards that link particular proc-
essors with their axes are referenced by the proces-
sors. The needs of the control algorithm and the type
of the interface boards are such that up to ten words
can be transferred within a single SERVO task cycle.
Since the transfer of a data word from an interfacing

board takes about 500ns, the total load produced by
the controllers of 6 axes can reach 30µs within a
100µs cycle. If the interfacing boards were placed
directly on VME bus, this load could consume 30%
of the total bus bandwidth. Taking into account addi-
tional load introduced by the interprocessor commu-
nication, one can note that the bus could become a
bottleneck in a single bus architecture, which could
result in violation of the required repetition cycle.

To prevent traffic jams on the communication system
within the control computer, a dual bus architecture
has been selected in which the interface boards are
coupled to local buses of particular axes processors
(fig. c). VME bus is used as the main system bus for
inter-processor communication only. Relatively low
actual load on the main bus preserves the potential
for future system expansion, as additional robot-
related sensors, not assigned to particular axes, can
be interfaced to the supervisory processor through
VME bus. This is the only possibility for such expan-
sion, as no local buses for 486 board are offered.

digital
input

counter
& timer

digital
output

c/a

signal adapter & optocouplers

torque/speed
setpoints

control
signals

status
signals

resolver
pulses

VM62
(68060)

VME system bus

CXC local bus

......

Fig. C. Hardware structure of an axis controller

The interface to a motor driver consists of an analog
torque or speed setpoint signal, quadrature pulse
signals from relative resolver and a number of bi-
stable status and configuration signals. An external
synchronization sensor supplements each axis hard-
ware. Optocouplers, shown in fig. c, are indispensa-
ble, as the total rush current of the high-torque direct
drives can exceed 100A and can reproduce a danger-
ous current flow through galvanic connections
throughout the interfacing circuits.

4. SOFTWARE ARCHITECTURE

The operation of Intel 486 is controlled by QNX,
a multitasking, distributed real-time operating system
from QNX Systems Software [3,5]. The operation of
68060 is controlled by OS-9, a multitasking, real-time
operating system from MicroWare [2]. The systems
differ from each other in many aspects and cannot
cooperate directly using their standard tools for inter-
task communication. Basic sets of these tools and the
performance characteristics of both systems, partially
measured [4] and partially found in the literature [1],
are listed in table b. The comparison of the data

shows, that the speed of the system operation is in
both cases similar.

Table B. Characteristics of the operating systems

QNX OS-9
Operation Duration Operation Duration

task switch 6 µs task switch 5 µs

signal 45 µs signal 20 µs

proxy 25 µs event 15 µs

semaphore 15 µs semaphore 14 µs

message 20 µs interrupt 18 µs

The performance requirements formulated in Section
2 impose hard real-time constraints on the robot con-
trol operation, and particularly on the operation of the
axes controllers implemented by 68060/OS-9 com-
puters. These requirements exceed, in fact, the real
possibilities of a multitasking operating system (but
not the possibilities of the hardware). In case of OS/9,
the standard configuration is offered with the real
time clock resolution equal to 10ms. Special configu-
ration with the clock resolution of 100µs can be de-
livered on request. However, better resolution results
in an increased overhead, which decreases the overall
system throughput.

The resolution of the real time clock is not the only
problem encountered in designing the software. Axis
controllers (SERVO tasks in fig. a) are basically
independent of each other — the coordination be-
tween the axes is ensured by the supervisory
MASTER task. Hence, the most flexible and modular
structure of the 68060 software could consist of 3
separate tasks, each of which could control a separate
robot axis. The execution of the tasks could be trig-
gered by a standard OS/9 tool for cyclic operation,
i.e. a cyclically generated signal. However, each
SERVO task must be executed once per 100µs.
A quick look to the table b shows that the speed of
signal generation and delivery is too slow for the
required 100µs repetition cycle.

To solve the problem, a variant of a two-level, fore-
ground-background software architecture has been
developed. Control algorithms (SERVOs) of the three
axes are executed sequentially within a single task,
which runs at a high priority level. The execution of
the control task is triggered by a service function of
an interrupt generated cyclically by a timer device.
Such a design eliminates the need for a high resolu-
tion operating system configuration. The communica-
tion of the axes control task with the robot coordina-
tor (MASTER, executed by another processor) is
implemented by a separate communication task,
which runs at a low priority level (fig. d). The control
task and the communication task can exchange data
and synchronize to each other through a common
data area. The synchronization uses simple flag-based
handshaking, and is relatively simple, as only the

control task can interrupt the communication task, but
not vice versa.

Control task

 do {
P()

SERVO 1
SERVO 2
SERVO 3

 }

Interrupt
service
routine

∆t
signal or

semaphore

Communication
task

Data area

..............

high priority

low priority

MASTER

Fig. D. Foreground-background architecture

Nice feature of the architecture shown in fig. d is
simplicity. Vital functions of the control algorithm
are executed at the task level, the pattern of inter-task
communication is simple, and the use of interrupts is
reduced to the minimum. This makes software devel-
opment and software debugging relatively simple and
efficient.

Unfortunately, this architecture could be used only in
the initial phase of our work, as it did not meet the
performance requirements. The real measurements
showed, that the figures in table b described the mean
values only, while the worst case delays were much
longer. In particular, the worst case signal delivery
exceeded 100µs, thus eliminating any possibility of
the use of system tools within the axes control loop.
Therefore, the architecture in fig. d had to be modi-
fied in such a way that the control loop was shifted to
the body of the interrupt service function. The modi-
fication, shown in fig. e, had no significant influence
on the structure of the communication task.

Interrupt service
function

 irq()
 {

SERVO 1
SERVO 2
SERVO 3

 }

∆t=100µs

Communication
task

Data area

MASTER

.............

Fig. E. Target architecture of the axes controller

Real-time constraints imposed on the operation of the
robot coordinator implemented by 486/QNX com-
puter are less critical, as MASTER task must be exe-
cuted only once per 1ms. Such a repetition rate can
be matched by QNX, which can operate with the time
resolution equal to 0.5ms. Moreover, a violation of
the required repetition cycle is also less critical, as it
can slow down the robot operation but cannot cause
any dangerous robot movement. Hence, software
architecture of the robot coordinator can be based on
standard multitasking features of QNX, with standard
system tools being used for intertask communication.

The cooperating computers in fig. b are PC-clones
operating under QNX. The computers work in real-
time, but the constraints are, in general, less severe
than the constraints imposed on the robot coordinator
(486/QNX). The communication of the robot coordi-
nator and the cooperating computers is implemented
by means of standard QNX tools for intertask com-
munication. Since QNX is a distributed operating
system with a full possibility for task communication
and resource sharing within a local area network, no
special considerations with respect to this aspect of
system architecture are needed.

A separate problem is the communication between
the robot coordinator (486/QNX) and axis controllers
(68060/OS-9). The needs of the application are for
two types of tools:
• messages, for transferring commands from the

robot coordinator to axis controllers, and a status
data in the reverse direction,

• signals, conveyed in both directions, for exception
handling.

Neither of those tools are available. Moreover, sys-
tem software does not support inter-processor com-
munication at all. The computer hardware offers
a possibility of physical access to common memory
areas with no means for synchronization, and a possi-
bility of mutual interrupting. No tools for higher level
communication are implemented. The problem must
be solved entirely within the application. Because it is
crucial for the system modifiability, it will be consid-
ered in detail in a separate section.

5. MODIFIABILITY AND COMMUNICATION

The requirements specification of the very fast robot
control system includes a requirement for high flexi-
bility and modifiability. The intention of the project
is that neither hardware nor software architecture is
constant within the whole system lifecycle. At the
hardware level this means that the number of proces-
sors can change, and an additional 68060 can be
attached to give more computational power for the
axis controllers. At the software level this means that
particular axis controllers (SERVOs in fig. a) can be
shifted and assigned to different processors within the
control system — in other words, the code modules

which compute axes control algorithms can be shifted
from one processor to another one. The contents of
those code modules can also be changed.

Any change in the assignment of axis controllers to
processors affects the communication between the
robot coordinator and the axes control processors. If
the low level communication mechanisms (common
memory areas and inter-processor interrupts) were
used directly, the impact of such changes on the
structure of the robot coordinator as well as axes
control software could be destructive, in that any
change could require a huge number of small modifi-
cations to the software code.

The problem of changes identified above can be
solved by implementing high level tools for message
and signal passing, with the potential for redirection,
following any reconfiguration of the hardware and
software structure. Such a design makes the applica-
tion software of the robot coordinator (486/QNX)
and cooperating computers (fig. b) independent of the
actual structure of the axes control level.

The implementation is based on a concept of a port,
which can be interpreted as a uni-directional commu-
nication channel between a sender task and a receiver
task. Ports are identified by numbers, and described
in a port table stored in a common memory area (fig.
f). A port description consists of a port number, the
receiver task identifier (process identifier — pid) and
a number of the processor, which executes the re-
ceiver task. The assignment of ports to receivers is
constant, e.g.:
port 1 — status and signals to MASTER,
port 2 — commands and signals to SERVO 1, ...

...
2

Port nr

1

......
2 pidS1 → SERVO 1

→ MASTER

Receiver id

pidM

Processor nr

1

Fig. F. Port table

The port table is filled in during system start-up: The
processor numbers are written manually as configura-
tion data, while the receiver task identifiers (pids) are
written automatically by the code modules of
MASTER and SERVOs. This way any command or
signal to a particular application module (MASTER
or SERVO) can always be sent to the same port,
regardless of the actual placement of the module.

Two basic primitives of port-based communication
have been implemented:
• send, for message transfer,
• signal, for exception signalling.
The implementation is divided between library func-
tions and the communication tasks. Basic structures
used by the implementation of the function send,

which sends a message from MASTER to SERVO
are shown in (fig. g). A call to the function send is
processed within the following sequence:
1. The function looks to the port table and finds the

receiver processor nr and the receiver id assigned
to the port p. Next, it places a message (port nr +
receiver pid + data c) in the receiver processor
queue and sends an interrupt request to the re-
ceiver processor.

2. The interrupt service function executed by the
receiver processor posts the semaphore s and re-
sumes the communication task.

3. The communication task reads the message from
the queue and stores the data c in the data area in
a slot assigned to the received port number.

Communication
task

 do {
wait(s)
...........

 }

send(p,c)

MASTER

Queue

Port table

IRQ routine
post(s)

Axes controller

Data area

common
memory

68060486

Fig. G. Implementation of the function send

The implementation of the function signal works
similarly. The main difference lies in that no data is
passed and the communication task does not refer to
the data area, but just sends a signal to the receiver
task (by calling the standard kill function of QNX or
OS-9). The function signal can be called by an appli-
cation task or by an interrupt service function exe-
cuted by any processor of the system.

The function send is not used directly by the applica-
tion programs. Instead, it is used as a building block
for implementing rendezvous, semantically similar to
the standard QNX message operation. Rendezvous is
implemented by a function exchange and consists of
a pair of send functions which convey data in the
oposite directions. Rendezvous can be called by 486
tasks only. It is used by MASTER task as a con-
firmed communication service for sending a com-
mand to a selected SERVO task and receiving back a
status data. Signals can be raised by 486 as well as
68060 programs. They are used as unconfirmed ser-
vices for signaling in both directions exceptional
situations which emerged during the program execu-
tion.

The described implementation is completely safe in
that neither a message nor a signal can be lost. The
worst case arises if a second interrupt was requested
before the previous one had been accepted. In such
a case only one interrupt is effectively generated,
while the second request is lost. The interrupt service

function within the receiver processor anticipates
such a situation and always posts the semaphore as
many times, as is the number of messages waiting in
the queue. Thus, if two messages were written to the
queue at nearly the same time, both of them are proc-
essed regardless of the number of interrupts received.
The communication between the interrupt service
function and the communication task uses
a semaphore which counts the number of messages or
signals stored in the queue, so that neither of them
can be lost.

6. DEVELOPMENT ENVIRONMENT

The development of software requires appropriate
hardware and software environments, comprising
disk memories, terminals, editors, compilers, debug-
gers, etc. All these facilities exist in our research
system. The development system configuration dif-
fers from the one shown in fig. b in that all processors
have network interfaces and can be accessed via
standard Tcp/Ip services (ftp, telnet). Tcp/Ip services
(nfs) are also used by particular 68060 processors to
access a single disk memory station with a set of
software tools.

Neither of the facilities mentioned above are needed
in the target configuration. Moreover, the develop-
ment configuration cannot be used in the target con-
trol system, as network software of OS-9 does not
perform well in hard real-time. Network interrupts
and system-state processes introduce a significant
overhead and extend the worst case interrupt reaction
time to above 100µs, and the signal delivery time to
above 1ms. Therefore, the entire network software
has to be unlinked from the target OS-9 system con-
figuration.

7. CONCLUSIONS

The control of a high resolution fast robot is a chal-
lenging task which nearly reaches the limits of the
current microcomputer technology. Meeting the hard
real time constraints requires hardware architecture
with multiple processing units and multiple buses for
internal data transfer within the control system. Soft-
ware architecture at the axes control level cannot
benefit the advantages of multitasking operating
system, but must be tailored to meet severe real time
limitations.

The system described in our paper is currently under
development. The computer hardware has been as-
sembled and debugged, basic software structures and
control algorithms have been fixed and prototyped. A
complete working robot system is expected at the end
of this year.

8. REFERENCES

1. Zieli

�
ski C.: Object-oriented robot programming,

Robotica, vol. 15, 1997, pp. 41-48
2. QNX System Architecture, Quantum Software

Systems, Kanata, 1992.
3. OS-9 Technical Manual, Microware Systems

Corporation, Des Molnes, 1993.
4. Sacha K.: Measuring the Real-Time Operating

System Performance, Proc. 7th Euromicro Work-
shop on Real-Time Systems, 1995, pp. 34-40

5. Sacha K.: QNX − System operacyjny, X-Serwis,
Warszawa, 1995 (in Polish)

6. Dibble P.: OS-9 Insights, An Advanced Pro-
grammers Guide to OS-9, Microware, 1994

