
IEEE Real-time Embedded Systems Workshop, Dec. 3, 2001

 130

Abstract-- The paper descr ibes the specification method
for dependable systems, called Transnet. The method
offers a formal notation for descr ibing the software
structure, the means for defining safe and un-safe states
and techniques for the software simulation and analysis.
The modeling process is based on an extension to Petr i
nets, which enables the modeler to represent control as
well as data processing aspects of the software. Petr i
net-based model can be analyzed using the concept of a
modified reachability graph and a state graph or can be
a framework for simulated execution. The model can be
built in the specification phase, thus creating the
potential for ear ly validation of the software behavior .

Index Terms—software specification, rapid prototyping,
fault analysis, fault prevention, Petr i nets

1 INTRODUCTION

omputer systems are used in many application areas in
which a malfunction of the system can cause significant
losses or even endanger the environment or human life.

Examples of such areas are air and railway transport,
process control and medical devices. The systems which are
used in such or similar application areas are expected to
exhibit always an acceptable behavior. This property of a
system is often referred to as dependability. Any departure
from the acceptable behavior is considered a system failure.
Failures are caused by faults, which can arise in different
phases of the system lifecycle.

Most of the techniques which have been devised for fault
analysis are targeted towards hardwired systems and do not
match the characteristics of software. A crucial difference
between hardware and software system is that a program
can neither break nor wear-out. Software faults can always
be traced back to mistakes, which have been made during
software specification, design or implementation.

To detect and remove faults, the software can be verified
and validated against the requirements specification. The
weakest point of this procedure is the requirements
specification. Any fault or ambiguity in the specification can
result in a fault in the software implementation.

Fault avoidance is another approach to increase software
dependability. Most of the measures applied throughout the
development process attempt to make the development

 Krzysztof Sacha is with the Department of Control and Computation
Engineering, Warsaw University of Technology, Warsaw, Poland. Email:
k.sacha@ia.pw.edu.pl.

more strict and formal. It is important that the process of
adding rigor and formality could start from the very
beginning, i.e. from developing a formal requirements
specification which defines the space of all behaviors, which
can be exhibited by the software. In the next step the
unacceptable, e.g. dangerous, behaviors can be identified
and defined in terms of the same formalism. Finally, one can
check whether an unacceptable behavior can be deduced
from the specification. If this is the case, the specification
can be modified and the analysis repeated.

A special case arises, when the formal model which
underlies a software specification is discrete. In such a case
the space of all behaviors is discrete, and a definition of an
unacceptable behavior can be reduced to a definition of
unacceptable states. The evaluation of the software behavior
can be conducted as a verification whether or not such states
belong to the state space of the specification.

This paper describes a method for software specification,
which addresses the problem of fault analysis. The method
consists of a mathematical formalism based on extended
Petri nets and techniques for rapid prototyping and fault
analysis. Section 2 provides the reader with an overview of
the formal model. Section 3 describes the techniques used
for fault analysis. An example is presented in Section 4. The
results are summarized in Conclusions.

2 FORMAL MODEL

Petri net [1] can be represented as a bipartite directed
graph composed of nodes, which are places and transitions,
and oriented arcs. Places are represented graphically by
circles, and transitions by bars (Figure 3). Neither two
places nor two transitions can be linked directly.

Places of a net can be marked with tokens, drawn as dots.
Tokens can move between places as result of transition
firings. A transition is enabled, i.e. ready to fire, if all places
that input the transition have a token. Firing a transition
removes a token from each of its input places and deposits a
token in each of its output places. The current distribution
of tokens among places, called a marking, defines the
current state of the net.

Petri net is usually interpreted as a control flow graph of
the modeled system. Places correspond to conditions, while
transitions correspond to actions. In this paper Petri nets are
used for modeling the flow of control within the software
under design. The flow of a token through the net models
the execution of a software process. Transitions correspond
to actions, e.g. functions which have been executed. A
transition firing moves a token between places, thus
reflecting a change to the process state.

Fault Analysis Using Petri Nets
Krzysztof Sacha, Member IEEE

C

IEEE Real-time Embedded Systems Workshop, Dec. 3, 2001

 131

Marked Petri net can be viewed as an abstract machine
which starts with an initial marking µ0, selects an enabled
transition t0, computes the next marking µ1, and continues:
µ0, µ1 ... µk, µk+1 ... as long, as there exists at least one
transition tk enabled in marking µk. If more than one
transition is enabled in a given marking µk, then the choice
of the firing transition is random. This way a marked Petri
can produce many different computations.

2.1 Representation of data

Petri net provides very little opportunity for representing
data. This compromises also the capability for modeling the
flow of control, which depends on the results of some
earlier computation. To overcome this restriction various
extensions to the model have been suggested. The models of
Coloured Petri Nets [2] and Environment/Relationship Nets
[3] both assign data values to tokens, and provide a
mechanism to compute the values, and to control the choice
of the firing transition. These models are complex, and
describe in fact a data-flow machine in which multi-sets of
tokens convey multi-sets of data items.

The model adopted in this paper is much simpler [4]. The
definition of Petri net is extended by associating:

� places with variables,
� transitions with functions, and
� arcs from places to transitions with Boolean functions.

A transition is enabled if all places that input the
transition have a token and all Boolean functions associated
with arcs that input the transition evaluate to true. Firing a
transition removes a token from each of the input places of
the transition, and deposits a token in each of the output
places. Additionally, the function associated with the
transition is evaluated, and the results are substituted to
variables associated with output places.

2.2 Overview of the Transnet model

The model adopted by Transnet is based on two concepts
of digital computation: Concurrent processes and Petri nets.
A specification is built as a set of concurrent processes,
each of which is modeled by an extended Petri net. A
process can represent a system object, such as a task, or an
environmental object, such as a discrete model of a physical
process. A complete specification is formal and executable
and can be used as a prototype of software.

All processes of a specification are cyclic and run
forever. Each process has a distinguished place, referred to
as the terminal place, which is marked with a token in the
inactive state of the process, just between two consecutive
cycles of execution. The terminal place holds a token in the
initial net marking. The variables associated with the
terminal place, which are called terminal var iables, store
the results of the computation and retain the process history.
The values of terminal variables are changed at the end of
the current process cycle and are stable throughout the next
cycle. Other variables of the process do not retain the
process history. They are used only as value-holders, which
invalidate when the terminal place receives a token.

Variables comply with the single assignment rule: Any
variable used within a process net can be assigned a value
only once during a run through a process net. This implies
that no local iteration inside the process net is allowed.

A process net can be composed of three building blocks:
� sequential composition, modeled by a sequence of

transitions,
� alternative selection, modeled by a set of transitions

with a common input place,
� parallel branching, modeled by a transition with a set of

output places,
which correspond to the basic control structures used in
program design and implementation. The result is that Petri
nets used in this paper are safe Petri nets, which means that
at most one token can reside in a place.

Two processes of a specification can interact with each
other according to the concept of a rendezvous. Neither
common variables nor buffered message transfer are
provided. A rendezvous between two processes is modeled
in a Transnet specification by a transition with two input
arcs and two output arcs. Such an exchange transition
belongs to both cooperating processes with a pair of one
input arc and one output arc belonging to the one process,
and the other pair of arcs belonging to the other process.
The exchange function associated with such a transition
returns in each process the value supplied as the function
argument in the invocation within the other process.

The introduction of variables changes the semantics of
the model, as the net marking can no longer be considered
the state of the model. The real results of the computation
are stored as values of variables, while the current marking
describes only an internal state of the computation.

An external state of a specification, i.e. a state which can
be observed from the outside and interpreted by people or
devices, is defined as a vector of values of all terminal
variables. A sequence of external states produced during the
net execution, is called a trace. The execution is non-
deterministic, and a specification can have many traces. The
meaning of the specification is characterized by a trace set,
including all traces that may be produced during the
execution. The trace set can be subject to analysis and
validation against the user requirements.

3 FAULT ANALYSIS

The flow of control within a Transnet specification is
dictated by Petri net. The analysis techniques based on the
construction of a reachability tree [1] can be used in order to
verify the structural correctness of the interprocess
communication. A disadvantage is, that the reachability tree
does not take into account any information related to data
values and decision points.

3.1 Modified reachability graph

Reachability graph of a marked Petri net is composed of
nodes, which correspond to subsequent markings of the net,
and oriented arcs, each of which describes the firing of an
enabled transition. An arc is labeled by the transition fired.

IEEE Real-time Embedded Systems Workshop, Dec. 3, 2001

 132

The graph takes the form of a tree, with the initial marking
in the root node. The construction of the graph proceeds
from the root by firing all transitions enabled in the current
marking. A branch of the tree is finished when a marking is
reached with no transition enabled, or a marking which has
previously appeared in the tree. The reachability graph of a
safe Petri net is finite.

Reachability graph deals with net marking only. Boolean
functions associated with arcs can influence the shape of the
graph because they can control the firing of transitions. A
firing of a transition is reflected in the graph by an arc
between the two consecutive markings. In a modified
reachability graph an arc label consists of two elements: The
fired transition and the Boolean function which must have
evaluated to true in order to enable the transition.

The values of Boolean functions are determined by the
current valuation of variables. The specification models a
software under design, and each computation reflects a
particular scenario of the software execution. This enables
the modeler to prototype the software and simulate various
scenarios of execution by selecting and firing enabled
transitions, and computing the values of variables.

A simplified analysis can be performed, by having
abandoned the computation of variables and just assuming
the values of particular Boolean functions. The arcs related
to functions which evaluate to false become ineffective and
can be removed from the modified reachability graph. The
reduced reachability graph can be verified against deadlock
and reachability of dangerous states.

3.2 State graph

State graph of a Transnet specification represents the set
of computations of a specification. It consists of nodes and
oriented arcs. A node consists of the current marking and
the current valuation of variables, while an arc corresponds
to a transition firing. Each arc is labeled by the transition
fired and the Boolean function which must have evaluated
to true in order to enable the transition.

The set of markings is finite. The set of valuations can, in
general, be infinite. A special case arises, when the set of
values is finite, i.e. all variables are of enumerative type.
The set of valuations and the state space are finite. The state
graph of such a specification is finite, and equivalent to a
finite state machine of the specification. The advantages of
Transnet notation over the notation of finite state machines
are the following:

� direct description of parallelism, inherent to the
problem at hand,

� well defined structure of processes of the software,
� compact size of Transnet specification.

State graph of a Transnet specification can be subject to
fault analysis. A fault in a specification can be defined as a
valuation of terminal variables, which is unacceptable from
the application viewpoint. The presence of faults can be
verified by exhaustive analysis of the state graph.

Unfortunately, the state space of a specification can be
large and a means of limiting the number of states is needed.
This can be helped by layered construction of Transnet

specification in the form of a hierarchy of models [4], which
gradually expose more and more details.

4 EXAMPLE: RAILROAD CROSSING

Consider a railroad crossing equipped with a semaphore
(green — red), which controls the movement of trains, and a
gate (up — down), which controls road traffic (Figure 1).
Both devices are controlled by a computer system which
receives and processes the information related to the train
position. The semaphore is red and the gate is up in the
initial state of the crossing.

Figure 1: Railroad crossing.

A specification of the railroad crossing control system
(and of the developed software) can be split into four
parallel activities which can be modeled by a set of four
parallel processes (Figure 3):
– keeping track of the current train position (places p1...p3),
– deciding: red or green, and up or down (places c1...c6),
– operating the semaphore (places s1 , s2),
– operating the gate (places g1 , g2).

The first process (p places) computes the current train
position. The function compute_position can be a simulator
or a procedure which maintains the real train position.
When the computation is finished, i.e. place p2 is marked
with a token, the train position is offered to the process
which decides on the necessary action. The communication
between both processes is organized in such a way that it
cannot block the process which keeps track of the train
position. By convention, Boolean functions not shown in the
figure are all equal to true. In the last step the current train
data is stored as a value of terminal variable V.

The next process (c places) takes the new train position
and stores it as a value of variable x. When place c2 is
marked, it evaluates Boolean function train_approaches,
thus checking whether or not the train approaches the
crossing. If this is the case (train_approaches=true), two
consecutive commands for closing the gate and displaying
green on the semaphore are transferred to appropriate
device controllers by exchange transitions. Otherwise, the
token is moved directly to place c4. Afterwards, the process
evaluates Boolean function train_left, thus checking
whether or not the train has just left the crossing. If this is
the case, two commands for displaying red on the
semaphore and opening the gate are issued. The current
train position is stored as a value of terminal variable X.

The remaining two processes are device controllers. The
gate controller (g places) receives the command, stores it as
a value of variable g (place g2 marked) and operates the gate
accordingly (G=g). Thus, the value of terminal variable G
reflects the current state of the gate. The semaphore
controller (s places) is almost identical.

Train

Semaphore

Gate

IEEE Real-time Embedded Systems Workshop, Dec. 3, 2001

 133

The requirement for safety of the railroad crossing is such
that no valuation of terminal variables in which G=up and
S=green can appear in any trace of the specification. It
could seem that this requirement is fulfilled by the
specification in Figure 3. This hypothesis can be verified by
analyzing of the state graph of the specification.

Figure 2. Part of the state graph

A relevant part of the state graph is shown in Figure 2.

The values of variables have been shown nearby arcs, as

commands to substitute a new value to a variable, which has
been changed by the transition firing. One can note that an
un-safe scenario of execution exists, which leads to the
dangerous valuation. This results from the possibility of
internal delay in both device controller processes.

5 CONCLUSION

Transnet method is aimed at the development of real-time
software systems. An executable specification can be used
as a prototype or can be analyzed using a state graph or a
modified reachability graph. The method enables the
modeler to define unacceptable states of the software and to
verify the reachability of such states. The problems for
future research. are: An environment for automatic
transformation of the specification net structure, and means
for expressing timing aspects of the software execution [4].

6 REFERENCES

[1] Peterson, J. L: Petri net theory and modeling of systems,
Prentice-Hall, Inc., 1981.

[2] Jensen, K: Coloured Petri Nets: A High Level Language for
System Design and Analysis, LNCS 483, Springer-Verlag, pp.
342-416, 1991.

[3] Ghezi, C. et al.: A unified high-level Petri net formalism for
time-critical systems, IEEE Trans. Software Eng., vol. 17, pp.
160-172, Feb. 1991.

[4] Sacha, K: Real-Time Software Specification and Validation
with Transnet, Real-Time Systems Journal, vol. 6, pp. 153-
172, 1994.

[5] Sacha, K.: Safety Verification of Software Using Petri Nets,
LNCS 1516, pp. 329-342, 1998.

Figure 3. Transnet specification of the railroad crossing control system (Terminal places: p1, c1, s1 and g1)

p3c4s1g1

p3c4s2g1p3c4s1g2

p3c3s1g1p3c4s2g2

p3c3s1g2p3c4s1g1

p3c2s1g1p3c1s1g1

p2c1s1g1

G=g (down)

G=g (down)

x=train_position(v)

v=compute_position

s=green

S=s (green)

S====s (green)

s=green G=g (down)

g=down

p1c1s1g1 (Initially: G=up, S=red)

G is still up

p2

c1

p3

c2

c3

c4

g1

g2

s1

s2

c5

c6

v=compute_position

V=v

X=x

train_left(x)=false

S=s

G=g

train_approaches(x)=true

=true

=false

s=red

s=green

g=up

g=down

x=train_position(v)

(save train_data)

(save_position)

(move gate)

(move semaphore)

p1

