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Abstract-- The paper  descr ibes the specification method 
for  dependable systems, called Transnet. The method 
offers a formal notation for  descr ibing the software 
structure, the means for  defining safe and un-safe states 
and techniques for  the software simulation and analysis. 
The modeling process is based on an extension to Petr i 
nets, which enables the modeler  to represent control as 
well as data processing aspects of the software. Petr i 
net-based model can be analyzed using the concept of a 
modified reachability graph and a state graph or  can be 
a framework for  simulated execution. The model can be 
built in the specification phase, thus creating the 
potential for  ear ly validation of the software behavior .  
 
Index Terms—software specification, rapid prototyping, 
fault analysis, fault prevention, Petr i nets 
 

1 INTRODUCTION 

omputer systems are used in many application areas in 
which a malfunction of the system can cause significant 
losses or even endanger the environment or human life. 

Examples of such areas are air and railway transport, 
process control and medical devices. The systems which are 
used in such or similar application areas are expected to 
exhibit always an acceptable behavior. This property of a 
system is often referred to as dependability. Any departure 
from the acceptable behavior is considered a system failure. 
Failures are caused by faults, which can arise in different 
phases of the system lifecycle. 

Most of the techniques which have been devised for fault 
analysis are targeted towards hardwired systems and do not 
match the characteristics of software. A crucial difference 
between hardware and software system is that a program 
can neither break nor wear-out. Software faults can always 
be traced back to mistakes, which have been made during 
software specification, design or implementation. 

To detect and remove faults, the software can be verified 
and validated against the requirements specification. The 
weakest point of this procedure is the requirements 
specification. Any fault or ambiguity in the specification can 
result in a fault in the software implementation. 

Fault avoidance is another approach to increase software 
dependability. Most of the measures applied throughout the 
development process attempt to make the development 
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more strict and formal. It is important that the process of 
adding rigor and formality could start from the very 
beginning, i.e. from developing a formal requirements 
specification which defines the space of all behaviors, which 
can be exhibited by the software. In the next step the 
unacceptable, e.g. dangerous, behaviors can be identified 
and defined in terms of the same formalism. Finally, one can 
check whether an unacceptable behavior can be deduced 
from the specification. If this is the case, the specification 
can be modified and the analysis repeated.  

A special case arises, when the formal model which 
underlies a software specification is discrete. In such a case 
the space of all behaviors is discrete, and a definition of an 
unacceptable behavior can be reduced to a definition of 
unacceptable states. The evaluation of the software behavior 
can be conducted as a verification whether or not such states 
belong to the state space of the specification. 

This paper describes a method for software specification, 
which addresses the problem of fault analysis. The method 
consists of a mathematical formalism based on extended 
Petri nets and techniques for rapid prototyping and fault 
analysis. Section 2 provides the reader with an overview of 
the formal model. Section 3 describes the techniques used 
for fault analysis. An example is presented in Section 4. The 
results are summarized in Conclusions. 

2 FORMAL MODEL 

Petri net [1] can be represented as a bipartite directed 
graph composed of nodes, which are places and transitions, 
and oriented arcs. Places are represented graphically by 
circles, and transitions by bars (Figure 3). Neither two 
places nor two transitions can be linked directly. 

Places of a net can be marked with tokens, drawn as dots. 
Tokens can move between places as result of transition 
firings. A transition is enabled, i.e. ready to fire, if all places 
that input the transition have a token. Firing a transition 
removes a token from each of its input places and deposits a 
token in each of its output places. The current distribution 
of tokens among places, called a marking, defines the 
current state of the net. 

Petri net is usually interpreted as a control flow graph of 
the modeled system. Places correspond to conditions, while 
transitions correspond to actions. In this paper Petri nets are 
used for modeling the flow of control within the software 
under design. The flow of a token through the net models 
the execution of a software process. Transitions correspond 
to actions, e.g. functions which have been executed. A 
transition firing moves a token between places, thus 
reflecting a change to the process state. 
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Marked Petri net can be viewed as an abstract machine 
which starts with an initial marking µ0, selects an enabled 
transition t0, computes the next marking µ1, and continues: 
µ0, µ1 ... µk, µk+1 ...  as long, as there exists at least one 
transition tk enabled in marking µk. If more than one 
transition is enabled in a given marking µk, then the choice 
of the firing transition is random. This way a marked Petri 
can produce many different computations. 

2.1 Representation of data 

Petri net provides very little opportunity for representing 
data. This compromises also the capability for modeling the 
flow of control, which depends on the results of some 
earlier computation. To overcome this restriction various 
extensions to the model have been suggested. The models of 
Coloured Petri Nets [2] and Environment/Relationship Nets 
[3] both assign data values to tokens, and provide a 
mechanism to compute the values, and to control the choice 
of the firing transition. These models are complex, and 
describe in fact a data-flow machine in which multi-sets of 
tokens convey multi-sets of data items. 

The model adopted in this paper is much simpler [4]. The 
definition of Petri net is extended by associating: 

� places with variables, 
� transitions with functions, and 
� arcs from places to transitions with Boolean functions. 

A transition is enabled if all places that input the 
transition have a token and all Boolean functions associated 
with arcs that input the transition evaluate to true. Firing a 
transition removes a token from each of the input places of 
the transition, and deposits a token in each of the output 
places. Additionally, the function associated with the 
transition is evaluated, and the results are substituted to 
variables associated with output places. 

2.2 Overview of the Transnet model 

The model adopted by Transnet is based on two concepts 
of digital computation: Concurrent processes and Petri nets. 
A specification is built as a set of concurrent processes, 
each of which is modeled by an extended Petri net. A 
process can represent a system object, such as a task, or an 
environmental object, such as a discrete model of a physical 
process. A complete specification is formal and executable 
and can be used as a prototype of software. 

All processes of a specification are cyclic and run 
forever. Each process has a distinguished place, referred to 
as the terminal place, which is marked with a token in the 
inactive state of the process, just between two consecutive 
cycles of execution. The terminal place holds a token in the 
initial net marking. The variables associated with the 
terminal place, which are called terminal var iables, store 
the results of the computation and retain the process history. 
The values of terminal variables are changed at the end of 
the current process cycle and are stable throughout the next 
cycle. Other variables of the process do not retain the 
process history. They are used only as value-holders, which 
invalidate when the terminal place receives a token. 

Variables comply with the single assignment rule: Any 
variable used within a process net can be assigned a value 
only once during a run through a process net. This implies 
that no local iteration inside the process net is allowed. 

A process net can be composed of three building blocks: 
� sequential composition, modeled by a sequence of 

transitions, 
� alternative selection, modeled by a set of transitions 

with a common input place, 
� parallel branching, modeled by a transition with a set of 

output places, 
which correspond to the basic control structures used in 
program design and implementation. The result is that Petri 
nets used in this paper are safe Petri nets, which means that 
at most one token can reside in a place. 

Two processes of a specification can interact with each 
other according to the concept of a rendezvous. Neither 
common variables nor buffered message transfer are 
provided. A rendezvous between two processes is modeled 
in a Transnet specification by a transition with two input 
arcs and two output arcs. Such an exchange transition 
belongs to both cooperating processes with a pair of one 
input arc and one output arc belonging to the one process, 
and the other pair of arcs belonging to the other process. 
The exchange function associated with such a transition 
returns in each process the value supplied as the function 
argument in the invocation within the other process. 

The introduction of variables changes the semantics of 
the model, as the net marking can no longer be considered 
the state of the model. The real results of the computation 
are stored as values of variables, while the current marking 
describes only an internal state of the computation.  

An external state of a specification, i.e. a state which can 
be observed from the outside and interpreted by people or 
devices, is defined as a vector of values of all terminal 
variables. A sequence of external states produced during the 
net execution, is called a trace. The execution is non-
deterministic, and a specification can have many traces. The 
meaning of the specification is characterized by a trace set, 
including all traces that may be produced during the 
execution. The trace set can be subject to analysis and 
validation against the user requirements.  

3 FAULT ANALYSIS 

The flow of control within a Transnet specification is 
dictated by Petri net. The analysis techniques based on the 
construction of a reachability tree [1] can be used in order to 
verify the structural correctness of the interprocess 
communication. A disadvantage is, that the reachability tree 
does not take into account any information related to data 
values and decision points. 

3.1 Modified reachability graph 

Reachability graph of a marked Petri net is composed of 
nodes, which correspond to subsequent markings of the net, 
and oriented arcs, each of which describes the firing of an 
enabled transition. An arc is labeled by the transition fired. 
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The graph takes the form of a tree, with the initial marking 
in the root node. The construction of the graph proceeds 
from the root by firing all transitions enabled in the current 
marking. A branch of the tree is finished when a marking is 
reached with no transition enabled, or a marking which has 
previously appeared in the tree. The reachability graph of a 
safe Petri net is finite. 

Reachability graph deals with net marking only. Boolean 
functions associated with arcs can influence the shape of the 
graph because they can control the firing of transitions. A 
firing of a transition is reflected in the graph by an arc 
between the two consecutive markings. In a modified 
reachability graph an arc label consists of two elements: The 
fired transition and the Boolean function which must have 
evaluated to true in order to enable the transition. 

The values of Boolean functions are determined by the 
current valuation of variables. The specification models a 
software under design, and each computation reflects a 
particular scenario of the software execution. This enables 
the modeler to prototype the software and simulate various 
scenarios of execution by selecting and firing enabled 
transitions, and computing the values of variables. 

A simplified analysis can be performed, by having 
abandoned the computation of variables and just assuming 
the values of particular Boolean functions. The arcs related 
to functions which evaluate to false become ineffective and 
can be removed from the modified reachability graph. The 
reduced reachability graph can be verified against deadlock 
and reachability of dangerous states. 

3.2 State graph 

State graph of a Transnet specification represents the set 
of computations of a specification.  It consists of nodes and 
oriented arcs. A node consists of the current marking and 
the current valuation of variables, while an arc corresponds 
to a transition firing. Each arc is labeled by the transition 
fired and the Boolean function which must have evaluated 
to true in order to enable the transition. 

The set of markings is finite. The set of valuations can, in 
general, be infinite. A special case arises, when the set of 
values is finite, i.e. all variables are of enumerative type. 
The set of valuations and the state space are finite. The state 
graph of such a specification  is finite, and equivalent to a 
finite state machine of the specification. The advantages of 
Transnet notation over the notation of finite state machines 
are the following: 

� direct description of parallelism, inherent to the 
problem at hand, 

� well defined structure of processes of the software, 
� compact size of Transnet specification. 

State graph of a Transnet specification can be subject to 
fault analysis. A fault in a specification can be defined as a 
valuation of terminal variables, which is unacceptable from 
the application viewpoint. The presence of faults can be 
verified by exhaustive analysis of the state graph. 

Unfortunately, the state space of a specification can be 
large and a means of limiting the number of states is needed. 
This can be helped by layered construction of Transnet 

specification in the form of a hierarchy of models [4], which 
gradually expose more and more details. 

4 EXAMPLE: RAILROAD CROSSING 

Consider a railroad crossing equipped with a semaphore 
(green — red), which controls the movement of trains, and a 
gate (up — down), which controls road traffic (Figure 1). 
Both devices are controlled by a computer system which 
receives and processes the information related to the train 
position. The semaphore is red and the gate is up in the 
initial state of the crossing.  

Figure 1: Railroad crossing. 

A specification of the railroad crossing control system 
(and of the developed software) can be split into four 
parallel activities which can be modeled by a set of four 
parallel processes (Figure 3): 
– keeping track of the current train position (places p1...p3), 
– deciding: red or green, and up or down (places c1...c6), 
– operating the semaphore (places s1 , s2), 
– operating the gate (places g1 , g2). 

The first process (p places) computes the current train 
position. The function compute_position can be a simulator 
or a procedure which maintains the real train position. 
When the computation is finished, i.e. place p2 is marked 
with a token, the train position is offered to the process 
which decides on the necessary action. The communication 
between both processes is organized in such a way that it 
cannot block the process which keeps track of the train 
position. By convention, Boolean functions not shown in the 
figure are all equal to true. In the last step the current train 
data is stored as a value of terminal variable V. 

The next process (c places) takes the new train position 
and stores it as a value of variable x. When place c2 is 
marked, it evaluates Boolean function train_approaches, 
thus checking whether or not the train approaches the 
crossing. If this is the case (train_approaches=true), two 
consecutive commands for closing the gate and displaying 
green on the semaphore are transferred to appropriate 
device controllers by exchange transitions. Otherwise, the 
token is moved directly to place c4. Afterwards, the process 
evaluates Boolean function train_left, thus checking 
whether or not the train has just left the crossing. If this is 
the case, two commands for displaying red on the 
semaphore and opening the gate are issued. The current 
train position is stored as a value of terminal variable X. 

The remaining two processes are device controllers. The 
gate controller (g places) receives the command, stores it as 
a value of variable g (place g2 marked) and operates the gate 
accordingly (G=g). Thus, the value of terminal variable G 
reflects the current state of the gate. The semaphore 
controller (s places) is almost identical. 

Train

Semaphore

Gate
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The requirement for safety of the railroad crossing is such 
that no valuation of terminal variables in which G=up and 
S=green can appear in any trace of the specification. It 
could seem that this requirement is fulfilled by the 
specification in Figure 3. This hypothesis can be verified by 
analyzing of the state graph of the specification. 

Figure 2. Part of the state graph 
 
A relevant part of the state graph is shown in Figure 2. 

The values of variables have been shown nearby arcs, as 

commands to substitute a new value to a variable, which has 
been changed by the transition firing. One can note that an 
un-safe scenario of execution exists, which leads to the 
dangerous valuation. This results from the possibility of 
internal delay in both device controller processes. 

5  CONCLUSION 

Transnet method is aimed at the development of real-time 
software systems. An executable specification can be used 
as a prototype or can be analyzed using a state graph or a 
modified reachability graph. The method enables the 
modeler to define unacceptable states of the software and to 
verify the reachability of such states. The problems for 
future research. are: An environment for automatic 
transformation of the specification net structure, and means 
for expressing timing aspects of the software execution [4]. 
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Figure 3. Transnet specification of the railroad crossing control system (Terminal places: p1, c1, s1 and g1) 
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