
Model-Based Implementation of Real-Time Systems

Krzysztof Sacha

Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland
e-mail: k.sacha@ia.pw.edu.pl

Abstract. A method is presented for modeling, verification and automatic pro-
gramming of PLC controllers. The method offers a formal model of require-
ments, the means for defining and verifying safe behavior, and a technique for
generating program code. The modeling language is UML state machine, which
provides a widely accepted means for writing a specification at a suitable high
level of abstraction. Such an abstract specification can be validated by the user,
verified by means of a model-checker and translated automatically into a pro-
gram code, which preserves the correctness and safety of the specification. The
program code is written in one of the standardized IEC 61131 languages.

1 Introduction

This paper describes a method for modeling, verification and automatic programming
of PLC controllers, which are used in industry for solving time- and safety-critical
problems, like traffic or process control. A PLC controller is a computer-based device
that has several inputs and outputs where two-state sensors and actuators can be
plugged in. The controller executes cyclically: Polling the inputs, executing the pro-
gram and updating the outputs. The duration of each cycle introduces an explicit
granularity of time, which is measured and guaranteed by the operating system.

The modeling language is UML state machine [1], which provides a widely ac-
cepted means for writing a specification at a suitable high level of abstraction. Such
an abstract specification can be validated by the user, verified against safety require-
ments and translated automatically into a program code. To do this, a method for de-
fining the semantics of the specification is required, followed by a method of safety
verification, and the rules for automatic code generation. The problem is not new and
many methods have been developed for specifying safety critical real-time systems in
a formal manner. Those methods are based on various mathematical theories, such as
algebra [2], temporal logic [3], finite state machines [4-6] and Petri nets [7].

A UML state machine diagram describes a finite state machine augmented with hi-
erarchical structure of nested states and time sensitive behavior. Unfortunately,
whereas the syntax and the static semantics of a state machine diagram are precisely
defined, the execution semantics is only given in natural language.

The method described in this paper is based on an original model of translatable
finite state time machines (FSTM), which extend the classical Moore automata with a
hierarchy of states and time. The model itself and a method for automatic code gen-

eration were described in detail in [8,9]. What was missing in those papers was a
sound method for a formal verification of such properties as safety, liveness and
reachability. This paper describes a concept of an integrated development environ-
ment with the potential for modeling of a controller, simulation of the environment (a
controlled plant), verification of the compound model using UPPAAL model-checker
[10] and automatic generation of IEC 61131 program code for the controller [11].

A schematic drawing of the development cycle is shown in Fig. 1. The tasks of
modeling the controller in UML, modeling the environment in UPPAAL, and formu-
lating safety requirements in a formal language of CTL formulae are done manually.
The tasks of converting the model from UML to FSTM and from FSTM to UPPAAL,
verifying the model, and generating the program code are done automatically.

The paper is organized as follows. Section 2 provides the reader with an overview
of finite state time machine and the conversion of UML models. Section 3 describes a
conversion from FSTM to UPPAAL, and Section 4 explains the rules of safety verifi-
cation in UPPAAL. The process of converting finite state time machine into a pro-
gram code is described in Section 5. An illustrative case study is provided in Section
6. A discussion of the results and plans for future work are given in Conclusions.

2 Conversion of UML State Machine to FSTM

UML state machine is a graph that shows the states an object can have, and the tran-
sitions between states that can be time or event triggered, and accompanied with ac-
tions. Relating this model to the execution of a PLC, one can note that an event is a
combination of all the input signals of the PLC, and an actions is a combination of all

Modeling in UML

State machine diagram

Conversion to FSTM

Finite state time machine

Code generation (STEP 7)

Program code for a PLC

Conversion to UPPAAL

Verification

Fig. 1. Modeling, verification and implementation of the program code

Environment modeling

the output signals of the PLC. States, transitions between states and time behavior are
defined by a program code. Basic elements of a state machine can be seen in Fig. 2.

In order to provide a means for managing complexity, UML allows for a hierarchi-
cal nesting of states. Hierarchy of states does not add any new semantics to the
model, in that a hierarchical diagram can always be converted into a “flat” one. A
formal model of the hierarchy of states, including history indicator, entry and exit ac-
tions, and an algorithm for flattening the hierarchy were described in detail in [9] an
will not be discussed in the rest of this paper.

Finite state time machine is a finite state Moore automaton extended with timer
variables. It uses a discrete model of time, where all the timers progress synchro-
nously with the same granularity of time. Finite state time machine is translatable, and
can be used as a basis for automatic generation of a program code for PLC controllers
[9].

Definition 1. A finite state time machine is a tuple A = (S, Σ, Γ, τ , δ, s0 , ε, Ω, ω)
where
S is a finite set of states,
Σ is a finite set of input symbols,
Ω is a finite set of output symbols,
Γ is a finite set of variables called timer symbols,
τ : Γ → 2S × N+ is an injective function, called timer function (with two projections

τS: Γ → 2S and τN: Γ → N+, respectively),
δ : S × Σ × 2Γ → S is a partial function, called transition function, such that:

[(s, a, T)∈Dom(δ)] ⇔ (∀ t∈ T)[s∈ τS (t)]
s0 ∈ S is the initial state,
ε ∈ N+ is the granularity of time,
ω : S → Ω is an output function.

Notation: N+ is the set of positive integers, R+ is the set of positive reals, Dom(δ) is
the domain of function δ, card(X) is the cardinality of a set X, and φ is an empty set.

It can be noted that a finite state time machine looks much like a Moore automaton
with three additional elements: Γ, τ , ε, which add to the model the dimension of time.
A timer symbol t∈Γ is a variable, which takes values from the set R+. The current
value of a variable t is interpreted as the duration of a period of time. Timer function
τ assigns to each timer a group of states τS (t) and a constant value τN (t). The mean-
ing of those elements is such that timer t is enabled, i.e. counts time, as long as the
automaton resides in one of the states from τS (t) and it expires when the current
value of t exceeds τN (t).

Timer symbols in Γ can be set in an arbitrary order: t1... tn. The current valuation of
timer symbols ŧ:Γ→ R+ can now be described as a vector of values: ŧ1... ŧn.

The execution of a finite state time machine starts in state s0 with the values of all
timers equal to 0. For a given state sk and a valuation of timers ŧk there exists a set of
expired timers, defined as:

Θ (sk , ŧk) = { ti∈Γ: sk∈τS (ti
) and ŧik ≥ τN (ti

) }

The machine executes in state sk with the valuation of timers ŧk, k= 0,1..... , by tak-
ing an input symbol ak and moving to the next state sk+1 defined by the transition
function:

sk+1=δ (sk ,ak ,Θ (sk , ŧk))

When the machine enters a state sk+1 time advances and the values of enabled tim-
ers change reflecting the elapsed time interval ε:

ŧik+1 =

When the valuation of timers ŧ changes, the set Θ of expired timers may change as

well. This way a finite state time machine can respond to the flow of time, even if sk+1
= sk and ak+1 = ak . Because the last argument of δ is a set of all timers expired in a
given state and time, no conflict exists if several timers expire at the same time in-
stant.

The finite state time machine models a time-sensitive device, which advances time
with a fixed increment of ε time units. After each such increment the values of timers
and the machine state are updated as described by the transition function. The device
responds to a timed sequence of input symbols a1…aj… that occur at time
ϑ1…ϑj…[5]. The flow of time within the input sequence is not synchronized to ε-
increments of the machine. This means that a finite state time machine may or may
not capture a symbol aj of a timed input sequence, if ϑj+1−ϑj < ε.

A conversion algorithm of an UML state machine diagram into a finite state time
machine, which defines the semantics of the diagram, can be described as follows.

 S equals to the set of all states of the UML state machine.
Σ equals to the set of all events of the UML state machine; each event is a particu-

lar combination of all the input signals of the PLC.
Γ is a set of timer symbols t1,...,tn; the cardinality of Γ equals to the number of

timed transitions in the diagram (i.e. transitions triggered by an after clause) and
there is one timer symbol ti for each timed transition in the UML state machine.

τ is the timer function, which assigns to each timer symbol ti created for a timed
transition T a pair composed of a source state of this transition and the value of
the after clause of this transition.

δ is the transition function δ : S × Σ × 2Γ → S, such that δ (s1 , a, T) = s2 if and only
if there exists a transition in the UML state machine such that s1 is the source
and s2 the destination state of this transition, and either a is the event that trig-
gers this transition (in this case T = φ), or T = {ti} and ti is the timer symbol of
this timed transition (in this case δ (s1 , a, T) = s2 for all a∈Σ).

so is the initial state of the UML state machine diagram.
ε is a characteristic of the PLC controller.
Ω equals to the set of combinations of all the output signals of the PLC that are set

by the actions of the UML state machine.
ω is the output function, which assigns to each state s∈S the output symbol q∈Ω,

which is set by all transitions to s.

⎧
⎨
ŧik+ ε if sk+1∈τS (ti

) and sk ∈τS (ti
)

0 otherwise ⎩

3 Conversion of FSTM into UPPAAL

UPPAAL [10] is a toolbox for modeling and verification of real time systems, based
on the theory of timed automata. The core part of the toolbox is a model-checking
engine, which enables for verification of properties defined as CTL path formulae.

A timed automaton [4], as used in UPPAAL, is a finite state machine extended
with clock variables that evaluate to positive real numbers and state variables that
evaluate to discrete values. State variables are part of the state. All the clock variables
progress simultaneously. An automaton may fire a transition between two states in re-
sponse to an action, which can be thought of as an input symbol, or to a time action
related to the expiration of a clock condition. Clock variables can be reset to zero at a
transition.

Definition 2. A timed automaton is a tuple TA = (S, s0 , C, A, E, I) , where
S is a finite set of states,
C is a finite set of clock variables (called also clocks),
A is a finite set of actions,
E⊆ S × A × B (C) × 2C × S is a set of transitions between states; each transition has an

action, a guard and a set of clocks to be reset (a transition relation),
s0 ∈ S is the initial state,
I : S → B (C) is a function, which assigns invariants to states.

Notation: B(C) is a set of conjunctions over simple clock conditions, e.g. t < c or t ≥ c.
A valuation of clocks is a function ŧ: C→ R+. An expression g∈B(C) defines a set of
clock valuations that satisfy expression g; we will write ŧ∈g to mean that ŧ satisfies g.

The execution of an automaton TA starts in state s0 with the valuation ŧ0 , such that
all clock variables equal to 0. The machine executes in state s with the valuation of
clocks ŧ by performing an action:

(s, ŧ) → (s’, ŧ’) if there exists e= (s, a, g, r, s’)∈ E such that ŧ∈g and ŧ∈ I (s); the
new valuation of clocks ŧ’= ŧ over C − r and ŧ’(t)= 0 for t∈ r;

or a time action:

(s, ŧ) → (s, ŧ+ d) if ∀d’:(0 ≤ d’≤ d) ⇒ (ŧ+ d’)∈I (s)

The semantics of a timed automaton is a labeled graph consisting of nodes and
edges. Each node defines a compound state of the automaton and is a pair z= (s, ŧ)
composed of a state s and a valuation of the clock variables ŧ. The set of all nodes
Z ⊆ S × RC, and the initial state (s0 , ŧ0)∈Z. The edges in the graph are transitions,
which fulfill the conditions defined above.

A set of timed automata can be composed into a network over a common set of ac-
tions. This way a model of a controller and a controlled plant can be established, such
that an action of one automaton can trigger a transition in another one.

The cooperation between two automata is described in UPPAAL using synchroni-
zation channels, in which an action labeled c! (c is the channel name) in one automa-
ton, triggers an action labeled c? in another automaton. A pair of matching actions in
two component automata are performed simultaneously.

The actions are considered atomic with respect to the flow of time, which means
that time can flow when the automata reside in their states. However, there are also
special states, called committed states, in which delay is not allowed – such a state
must be left immediately. Committed states are routinely used to separate a ?-action
and !-action, in order to express causality relation between the two.

A compound state of a network of timed automata is a pair composed of a vector
of states of the component automata and a valuation of all the clock variables. The
semantics of a network is a graph composed of nodes, which are compound states,
and edges, which correspond to transitions in component automata. The set of all
nodes Z ⊆ S1 × ... × Sn × RC, and the initial state (s0

1,..., s0
n, ŧ0)∈Z.

A conversion of a finite state time machine into a timed automaton can be described
as follows.

Let A = (S, Σ, Γ, τ , δ, s0 , ε, Ω, ω) be a finite state time machine. The transition
function δ : S × Σ × 2Γ → S is equivalent to a relation δ ⊆ S × Σ × 2Γ × S such that:

δ = { (s, a, T, s’): s’= δ (s, a, T) }

For a given state s∈S there exists a set of timers T (s) = { t∈Γ: s∈τS (t) } that are
enabled in s. Any subset T = { t1,…tk } ⊆ T (s) defines an expression gT over simple
time conditions:

ŧ1≥τN (t1) … ŧk≥τN (tk) & ŧk+1<τN (tk+1) … ŧn<τN (tn)

which must be satisfied by a valuation ŧ in order to enable the transition (s, a, T, s’)∈δ.
Timed automaton TA = (S, s0 , C, A, E, I), which is equivalent to the given finite

state time machine A can be constructed in the following way:

S = S ∪ SC (SC is a set of committed-states)
s0 = s0
C = Γ
A = Σ ∪ Ω (?-actions in Σ and !-actions in Ω)
I = φ

The set of committed states SC and the transition relation E are created in the fol-
lowing way:

1. SC = φ and E = φ
2. For each (s, a, T, s’)∈δ :

• if ω (s) = ω (s’) than a transition (s, a, gT, Γ \ T (s) , s’)∈ E.
• if ω (s) ≠ ω (s’) than a new committed state sC is added to SC and a pair of

transitions: (s, a?, gT, φ , sC), (sC, ω (s’)!, φ, Γ \ T (s) , s’) is added to E.

Finite state time machine uses a discrete time model with an explicit granularity ε.
UPPAAL uses continuous time model, in which transitions can fire at arbitrary points
in time, within the boundaries defined explicitly by transition guards and state invari-
ants. This means that the properties verified for a compound UPPAAL system does
not depend on the relative speed of the component automata. Hence, they are true
also for a synchronous finite state time machine.

4 Verification

The main purpose of UPPAAL is to verify the model with respect to safety require-
ments, which must be expressed in a formal language. UPPAAL uses a version of
computational tree logic (CTL) and provides a query language consisting of state for-
mulae and path formulae.

A state formula is an expression that can be evaluated for a particular state in order
to check a property (e.g. a deadlock). Path formulae quantify over paths of execution
and ask whether a given state formula ϕ can be satisfied in any or all the states along
any or all the paths.

Path formulae can be classified into three types:

• Reachability properties (will ϕ be satisfied in a state of a path?) – E<>ϕ.
• Safety properties (will ϕ be satisfied in all the states along a single or along all

paths?) – E[]ϕ and A[]ϕ.
• Liveness properties (will ϕ eventually be satisfied? will ϕ respond to ψ?) – A<>ϕ

and ψ -->ϕ.

UPPAAL model-checker enables verification of the model by evaluating path for-
mulae over the reachability graph of a network of timed automata.

5 Code generation

PLC controller is a technical implementation of a state machine, which yields output
signals in response to input signals and to the flow of time. The controller maintains
the state of the machine using flip-flops in the program code, counts time using timer
blocks, and executes cyclically, firing a transition in each execution cycle.

Cyclic execution of a controller can be described in a pseudo-code, which creates a
reference model for PLC execution:

state = initial_state ();
loop_forever {
 input = poll_the_input ();
 timers = set_timers (active_timers (state));
 state = next_state (state, timers, input);
 output = count_output (state);
 set_the_output (output);
}

The operating system of a PLC executes the following actions:

• sets the initial state (initial_state),
• executes the loop (loop_forever),
• polls the input (poll_the_input),
• counts time and sets the expired timers (set_timers),
• sets the output signals (set_the_output).

What the programmer must do is to write a code for:

• selecting the active timers, which count time in the (active_timers),
• calculating the next state of the controller (next_state),
• calculating the output (count_output).

The semantics of a PLC program, i.e. the meaning within its application domain, is
a relation between a sequence of input signals and a sequence of output signals. If we
establish a mapping between the input signals of a PLC and the input symbols of a fi-
nite state time machine, and a mapping between the output signals of a PLC and the
output symbols of a machine, we can think about a finite state time machine as of a
model of a program for a PLC controller.

The behavior of a PLC program is defined formally within the reference model by
the semantics of its programming language, which may be one of the IEC 61131 lan-
guages [11], e.g. ladder diagram or structured text. The behavior of a finite state time
machine has been defined in Section 2. By that means a method for translating a high
level abstract model of a finite state time machine (S, Σ, Γ, τ, δ, s0, ε, Ω, ω) into a PLC
program can formally be defined. The method consists of the following steps.

1. Mapping of sets Σ, Ω into the input and output signals of PLC. The sets of input
and output signals of a controller are usually defined in the requirements speci-
fication. Each combination of input (output) signals defines an event in the con-
trolled plant, which is perceived by the controller as an input (output) symbol.
This way, those two mappings are defined at the start of the modeling process.

2. Mapping of set S into the values of flip-flops. At least log2(n), n= card(S), flip-
flops are needed to store all the states of set S. An arbitrary one-to-one mapping
from set S to the set of n flip-flops (coding of states) can be used.

3. Mapping of set Γ into the set of timers. A separate timer with the expiration
time equal to τN (t) is allocated for each timer symbol t ∈Γ.

4. Defining function active_timers consistently with function τ. A timer block is
a conceptual device, which has one input and one output. As long as the input
equals 0, the timer block is reset with the output equal to 0. When the input
changes to 1, the timer block is enabled and starts counting time. The output
changes to 1 as soon as the input has continued to be 1 for a predefined period
of time. Function active_timers defines the input signals of all the timer
blocks. The input signal of a timer block allocated for a timer t ∈Γ , is a Boo-
lean function over the set of flip-flops used for coding of states, such that it is
true in state s if and only if s ∈ τS(t).

5. Defining function next_state consistently with function δ. This function de-
fines the set and reset signals of flip-flops, which have been used for coding of
states. The signal to set (reset) a flip-flop is a Boolean function over the set of
flip-flops, input signals of PLC and output signal of timer blocks, such that it is
true if and only if this flip-flop is set (reset) in the next state of FSTM.

6. Defining function count_output consistently with function ω. This function de-
fines the values of output signals of PLC. The value of an output signal is a
Boolean function over the set of flip-flops, such that it is true if and only if this
output signal is set in the current state of FSTM.

6 Case Study

Consider a railroad crossing controlled by a computer system. There are two railway
tracks within the crossing, and two trains can approach the crossing simultaneously (a
single train on a track is allowed). The movement of trains is controlled by a set of
semaphores that can prevent trains from entering the crossing. The road traffic is con-
trolled by a gate that can be open or closed. A semaphore can be operated by a con-
troller to display green light, when a train approaches, but not earlier than after the
gate has been closed. Opening and closing states of the gate are confirmed to the con-
troller by the appropriate input signals: up and down, respectively. The semaphore is
red and the gate is up in the initial state of the crossing.

A train cannot be stopped instantly. When it is detected by a train position sensor,
a controller has 30 seconds to close the gate and display green to allow the train to
continue its course. After these 30 seconds, it takes further 20 seconds to reach the
crossing. Otherwise, if the green signal is not displayed within these 30 seconds, the
train must break in order to stop safely before the crossing. Closing the gate must last
less than 20 seconds, or else an alarm must sound. The gate can be opened when the
position sensor has sent a leave signal after the last train has left the crossing.

6.1 Modeling of the controller

An algorithm for the railroad crossing controller, which can be a part of a broader
control system, is shown in Fig. 2 in the form of a UML state machine diagram. The
states within the graph correspond to states of the two trains that can appear within

Fig. 2. UML model of the railroad crossing controller

Outside

Entering1 Entering
Both

Entering2

Alarm1 Alarm3 Alarm2

Inside1 InsideBoth Inside2

approach1 / close approach2 / close

down / green1

approach2
approach1

down / green1; green2 down / green2

Leaving

approach1

after(20) / sound
down / green2

approach2

after(20) / sound
down / green1

after(20) / sound

down / green1; green2

leave2 / red2 leave1 / red1

 / red1;red2;open

approach1 / green1

leave2 / red2; open

approach2 / green2

leave1 / red1; open

up

the crossing area. The transitions between states are labeled event / action, where
event corresponds to an input symbol or the expiration of a time period, and action
corresponds to setting an output symbol. The graph has eleven states only, but is quite
complex due to the number of combinations of the input and output symbols.

The initial state, called Outside, corresponds to such a state of the crossing, in
which no train approaches. The gate is open in this state, and the semaphores display
red in order to prevent trains from entering the crossing. Such a state is safe in the
application domain, because no collision between cars and trains is possible.

One problem with this model relates to a time event after(20), which causes a tran-
sition from EnteringBoth to Alarm3. The requirement is such that this 20s delay
should be measured from the moment of entering state Entering1 or Entering2 and
the measurement should be continued through the period of being in state Entering-
Both. UML does not provide any simple means for expressing such a multi-state time
requirement. It can only be expressed as an informal note in natural language.

FSTM model of the controller has the same set of states, input symbols and output
symbols. It has a single timer symbol t, and the timer function τS (t) = {Entering1,
Entering2, EnteringBoth} and τN (t) = 20. The transition function is defined by the set
of all the transitions of the UML state machine. No timing problem exists in FSTM.

6.2 Verification

UPPAAL model of the controller (Fig. 3) has the same states as the finite state time
machine, plus a set of committed states. Basically, the transitions between states are
in both models the same, with exception to transitions between states that differ in the
finite state time machine on output symbols. Those transitions are split in UPPAAL
model into two consecutive transitions separated by an added committed state.

Fig. 3. UPPAAL model of the railroad crossing controller

up?up?

Outside

EnteringBoth

AlarmBoth

InsideBoth

Entering2Entering1

Alarm2Alarm1

Inside2Inside1

Leaving1

C C

C

approach1? approach2?

close!
t:=0

close!
t:=0 approach2? approach1?

t >20
sound!

 t >20
 sound! t >20

 sound!

 down?

down?

green1!
C
 down?

down?

C down?

 down?

green1!
green2!

green2!

 approach1?

leave2? leave1?C
leave1?

red1!
open!

C
leave2?

Leaving2

red2!
open!approach2?

Actions, which names bear the suffix ‘?’, act like input symbols that enable the as-
sociated transitions. Actions, which names bear the suffix ‘!’, act like output symbols
that are passed to other automata in order to trigger the respective input symbols. This
way the execution of one automaton can control the execution of a other automata.

The environment of the controller consists of two trains and a gate. Each of those
elements can be modeled in UPPAAL and synchronized with the controller within a
network of timed automata.

A model of a train is shown in Fig. 4. Time invariant t≤30 of state Approaches en-
forces a transition after 30 seconds have passed since the train has entered the state.
This models the necessity of breaking the train if green has not been displayed in
time. Time condition t>20 assigned to the transition from On crossing to Faraway re-
flects the minimum time of passing the crossing by a fast train. Time invariant t≤40 of
the state On crossing reflects the maximum time of passing the crossing by a slow
train.

A model of the second train is identical, with exception to the names of actions,
which are: approach2!, leave2!, and green2?, respectively.

A model of the gate is shown in Fig. 5. Time invariants t ≤ 20 assigned to states
Closing and Opening reflect time that it takes to close or to open the gate.

The simple reachability properties can check if a given state is reachable:

• E<> train1.On crossing: This checks if train 1 can pass the crossing (a similar
property can be checked for train 2).

• E<> (train1.On crossing && train2.On crossing): This checks if both trains can
move through the crossing simultaneously.

The safety properties can check that unsafe states will never happen:

• A [] (train1.On crossing or train2.On crossing) imply gate.Closed: This ensures
that each time a train is passing the crossing, the gate is closed.

• A [] (gate.open imply (¬ train1.On crossing && ¬ train1.On crossing): This en-
sures that each time the gate is open, a train is not on the crossing.

The liveness properties can check consequences of an event, e.g.:

• train1.Approaches --> train1.On crossing: This ensures that if train 1 approaches
the crossing, it will eventually pass it (similar property can be checked for train 2).

Open

Closed

OpeningClosing

up!

open?

close?

down!

Faraway

Approaches

approach1!
t:=0

On crossing

green1?
t:=0

t >20
leave1!

Starting

Stop green1?
t:=0

t >10
t:=0

t ≤ 40

t ≤ 30

t ≤ 25 t ≤ 30

t ≥ 30

t ≤ 20 t ≤ 20

 Fig. 4. UPPAAL model of a train Fig. 5. UPPAAL model of the

All those properties can be verified by UPPAAL model-checker. In our example
the liveness condition is not satisfied. A counterexample is the following: Assume
that the train 2 approaches when train 1 is just leaving. The controller does not react
to approach2 in state Leaving1, hence, the transition to Outside appears without dis-
playing green2 for train 2. The train will stop and can never reach the crossing.

This proves that the control algorithm is erroneous and must be modified by add-
ing two additional transitions to the model. The corrected finite state time machine
model of the controller is shown in Fig. 6.

6.3 Implementation

There are six input signals and seven output signals at the diagram in Fig. 6. Each
combination of the input (output) signals corresponds to an input (output) symbol.
This way, there are 11 states, 64 input symbols, 128 output symbols, and 1 timer in
the finite state time machine, which defines the semantics of the diagram in Fig. 6.

PLC controller stores the states of the machine as values of its internal flip-flops.
The coding of eleven states requires at least four such flip-flops. A selected coding
for states and output signals of the railroad crossing controller is shown in Table 1.

A program for a PLC consists of a sequence of Boolean expressions to set or reset
flip-flops, timers and output signals, according to the values of input signals, flip-
flops and timers. These expressions implement the functions active_timers,
next_state and count_output described in Sect. 5. For example, timer t must be en-
abled in each of the Entering-states, and flip-flop M1 must be set at a transition from
any of the Entering-states to Alarm-states or Inside-states, i.e.:

Fig. 6. The corrected model of the railroad crossing controller

Outside

Entering1 Entering
Both

Entering2

Alarm1 Alarm3 Alarm2

Inside1 InsideBoth Inside2

approach1 / close approach2 / close

down / green1

approach2
approach1

down / green1; green2 down / green2

Leaving

approach1

after(20) / sound
down / green2

approach2

after(20) / sound
down / green1

after(20) / sound

down / green1; green2

leave2 / red2 leave1 / red1

 / red1;red2;open

approach1 / green1

leave2 / red2; open

approach2 / green2

leave1 / red1; open

up

approach1 / close approach2 / close

To ensure atomicity of transitions, a two-phase implementation of next_state

function is used. In the first phase, the next state is computed and stored using a set of
auxiliary flip-flops (M11 above), which mirror the primary flip-flops that are used to
encode the model states. In the second phase, the current state is changed to the next
state by copying the values of auxiliary flip-flops to the primary flip-flops [8].

Boolean expressions can be converted into the ladder diagram as shown in Fig. 7.

7 Conclusions and Future Work

The paper describes a method for the specification, verification and automatic gen-
eration of code for PLC controllers. The method relies on a mathematical formalism
based on finite state time machine model. The advantages of the method are intuitive
modeling and a potential for automatic verification and implementation of the model.

() ()
()

111) (
....................................

2431432111 Res (3)
4321 11Set (2)

Set (1)

MM

leaveMMleaveMMMMM
tdownMMMMM

M4)(M3M2M1 t1

=

⋅⋅+⋅⋅⋅⋅=
+⋅+⋅⋅=

+⋅⋅=

(2)
M1 M2

S
M11 down

(1)
M2 tM1 M3

M4

t

M3

M4

(3)
M1 M2

R
M11 leave1M3 M4

leave2M3 M4

Fig. 7. A fragment of the ladder diagram program for the railroad crossing controller

Table 1. The coding of states and output signals

M1 M2 M3 M4 State red1 red2 green1 green2 close open sound
0 0 0 0 Outside 1 1 0 0 0 0 0
0 1 0 1 Entering1 1 1 0 0 1 0 0
0 1 1 0 Entering2 1 1 0 0 1 0 0
0 1 1 1 EnteringBoth 1 1 0 0 1 0 0
1 1 0 1 Alarm1 1 1 0 0 1 0 1
1 1 1 0 Alarm2 1 1 0 0 1 0 1
1 1 1 1 Alarm3 1 1 0 0 1 0 1
1 0 0 1 Inside1 0 1 1 0 0 0 0
1 0 1 0 Inside2 1 0 0 1 0 0 0
1 0 1 1 InsideBoth 0 0 1 1 0 0 0
0 0 1 1 Leaving 1 1 0 0 0 1 0

A disadvantage is low scalability of the model with respect to the number of the
modeled objects (trains). The problem is twofold. First, the model in Fig. 6 describes
a crossing with exactly two tracks for trains. A completely new model must be built
to describe, e.g., a four track crossing. Second, the number of states of the model
raises exponentially. A way we want to follow to improve scalability is the introduc-
tion of variables for representing a number of similar states (vector a[N] in Fig. 8).
Those variables are part of the state and do not prevent the state space explosion.
However, the model itself is parameterized with the number of tracks, and can be
used to describe a crossing with an arbitrary number of tracks N.

References

 1. OMG, Unified Modeling Language: Superstructure, version 2.0, August (2005.)
 2. Milner R., Operational and algebraic semantics of concurrent processes, in: J. van Leeu-

wen, Handbook of Theoretical Computer Science, Elsevier, (1990) 1201-1242.
 3. Manna Z., Pnueli A., Temporal Verification of Reactive Systems, Springer, Berlin (1995).
 4. Alur R., Dill D., Automata-theoretic verification of real-time systems, in: Formal Methods

for Real-Time Computing, Trends in Software Series, John Wiley & Sons (1996) 55-82.
 5. Kaynar D.K, Lynch N., Segala R., Vaandrager F., The Theory of Timed I/O Automata,

Technical Report MIT-LCS-TR-917a, MIT Lab. for Computer Science (2004).
 6. Dierks H., PLC-Automata, A New Class of Implementable Real-Time Automata, in: M.

Bertran, T. Rus (eds), Transformation-Based Reactive Systems Development, LNCS 1231,
Springer, Berlin (1997) 111-125.

 7. Jensen K., Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use,
Springer, Berlin (1997).

 8. Sacha K., Automatic Code Generation for PLC Controllers, in: R. Winter, B. A. Gran,
G. Dahll (eds.), Computer Safety, Reliability and Security, LNCS 3688, Springer, Berlin
(2005) 303-316.

 9. Sacha K., Translatable Finite State Time Machine, in: Gaudin E., Najm E., Reed R. (eds.),
Sdl 2007: Design for Dependable Systems, LNCS 4745, Springer, Berlin (2007) 117-132.

10. Behrmann G., David A., Larsen K.G, A Tutorial on Uppaal, Department of Computer Sci-
ence, Aalborg University (2004).

11. IEC 61131-3, Programmable controllers – part 3: Programming languages, IEC (1993).

Fig. 8. A scalable model of the railroad crossing controller

Outside Entering

approach(nr) / a(nr):=1

Alarm

approach(nr) / a(nr):=1

Inside Leaving

approach(nr) / a(nr):=1;green(nr)
leave(nr) / a(nr):=0;red(nr)

when(For al l i<N: a(i)==0) / open

down / For all i<N: if (a(i)==1) green(i)after(20) / sound

down / For all i<N:
if (a(i)==1) green(i)

approach(nr) / a(nr):=1;c lose

approach(nr) / a(nr):=1;close
up

