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Abstract. A method is presented for modeling, verification and automatic pro-
gramming of PLC controllers. The method offers a formal model of require-
ments, the means for defining and verifying safe behavior, and a technique for 
generating program code. The modeling language is UML state machine, which 
provides a widely accepted means for writing a specification at a suitable high 
level of abstraction. Such an abstract specification can be validated by the user, 
verified by means of a model-checker and translated automatically into a pro-
gram code, which preserves the correctness and safety of the specification. The 
program code is written in one of the standardized IEC 61131 languages.  

1   Introduction 

This paper describes a method for modeling, verification and automatic programming 
of PLC controllers, which are used in industry for solving time- and safety-critical 
problems, like traffic or process control. A PLC controller is a computer-based device 
that has several inputs and outputs where two-state sensors and actuators can be 
plugged in. The controller executes cyclically: Polling the inputs, executing the pro-
gram and updating the outputs. The duration of each cycle introduces an explicit 
granularity of time, which is measured and guaranteed by the operating system. 

The modeling language is UML state machine [1], which provides a widely ac-
cepted means for writing a specification at a suitable high level of abstraction. Such 
an abstract specification can be validated by the user, verified against safety require-
ments and translated automatically into a program code. To do this, a method for de-
fining the semantics of the specification is required, followed by a method of safety 
verification, and the rules for automatic code generation. The problem is not new and 
many methods have been developed for specifying safety critical real-time systems in 
a formal manner. Those methods are based on various mathematical theories, such as 
algebra [2], temporal logic [3], finite state machines [4-6] and Petri nets [7].  

A UML state machine diagram describes a finite state machine augmented with hi-
erarchical structure of nested states and time sensitive behavior. Unfortunately, 
whereas the syntax and the static semantics of a state machine diagram are precisely 
defined, the execution semantics is only given in natural language. 

The method described in this paper is based on an original model of translatable 
finite state time machines (FSTM), which extend the classical Moore automata with a 
hierarchy of states and time. The model itself and a method for automatic code gen-



 

eration were described in detail in [8,9]. What was missing in those papers was a 
sound method for a formal verification of such properties as safety, liveness and 
reachability. This paper describes a concept of an integrated development environ-
ment with the potential for modeling of a controller, simulation of the environment (a 
controlled plant), verification of the compound model using UPPAAL model-checker 
[10] and automatic generation of IEC 61131 program code for the controller [11]. 

A schematic drawing of the development cycle is shown in Fig. 1. The tasks of 
modeling the controller in UML, modeling the environment in UPPAAL, and formu-
lating safety requirements in a formal language of CTL formulae are done manually. 
The tasks of converting the model from UML to FSTM and from FSTM to UPPAAL, 
verifying the model, and generating the program code are done automatically. 

The paper is organized as follows. Section 2 provides the reader with an overview 
of finite state time machine and the conversion of UML models. Section 3 describes a 
conversion from FSTM to UPPAAL, and Section 4 explains the rules of safety verifi-
cation in UPPAAL. The process of converting finite state time machine into a pro-
gram code is described in Section 5. An illustrative case study is provided in Section 
6. A discussion of the results and plans for future work are given in Conclusions. 

2   Conversion of UML State Machine to FSTM 

UML state machine is a graph that shows the states an object can have, and the tran-
sitions between states that can be time or event triggered, and accompanied with ac-
tions. Relating this model to the execution of a PLC, one can note that an event is a 
combination of all the input signals of the PLC, and an actions is a combination of all 
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the output signals of the PLC. States, transitions between states and time behavior are 
defined by a program code. Basic elements of a state machine can be seen in Fig. 2. 

In order to provide a means for managing complexity, UML allows for a hierarchi-
cal nesting of states. Hierarchy of states does not add any new semantics to the 
model, in that a hierarchical diagram can always be converted into a “flat” one. A 
formal model of the hierarchy of states, including history indicator, entry and exit ac-
tions, and an algorithm for flattening the hierarchy were described in detail in [9] an 
will not be discussed in the rest of this paper. 

Finite state time machine is a finite state Moore automaton extended with timer 
variables. It uses a discrete model of time, where all the timers progress synchro-
nously with the same granularity of time. Finite state time machine is translatable, and 
can be used as a basis for automatic generation of a program code for PLC controllers 
[9]. 

Definition 1. A finite state time machine is a tuple A = ( S, Σ, Γ, τ , δ, s0 , ε, Ω, ω ) 
where 
S is a finite set of states, 
Σ is a finite set of input symbols, 
Ω is a finite set of output symbols, 
Γ is a finite set of variables called timer symbols, 
τ : Γ → 2S × N+ is an injective function, called timer function (with two projections 

τS: Γ → 2S and τN: Γ → N+, respectively), 
δ : S × Σ × 2Γ → S is a partial function, called transition function, such that: 

[( s, a, T )∈Dom(δ )] ⇔ (∀ t∈ T )[ s∈ τS ( t )] 
s0 ∈ S  is the initial state, 
ε ∈ N+ is the granularity of time, 
ω : S → Ω  is an output function. 

Notation: N+ is the set of positive integers, R+ is the set of positive reals, Dom(δ ) is 
the domain of function δ, card(X) is the cardinality of a set X, and φ is an empty set. 

It can be noted that a finite state time machine looks much like a Moore automaton 
with three additional elements: Γ, τ , ε, which add to the model the dimension of time. 
A timer symbol t∈Γ  is a variable, which takes values from the set R+. The current 
value of a variable t is interpreted as the duration of a period of time. Timer function 
τ assigns to each timer a group of states τS ( t ) and a constant value τN ( t ). The mean-
ing of those elements is such that timer t is enabled, i.e. counts time, as long as the 
automaton resides in one of the states from τS ( t ) and it expires when the current 
value of t exceeds τN ( t ). 

Timer symbols in Γ can be set in an arbitrary order: t1... tn. The current valuation of 
timer symbols ŧ:Γ→ R+ can now be described as a vector of values: ŧ1... ŧn. 

The execution of a finite state time machine starts in state s0 with the values of all 
timers equal to 0. For a given state sk and a valuation of timers ŧk there exists a set of 
expired timers, defined as: 

Θ ( sk , ŧk ) = { ti∈Γ: sk∈τS ( ti
 ) and  ŧik ≥ τN (ti

 ) } 



 

The machine executes in state sk with the valuation of timers ŧk, k= 0,1..... , by tak-
ing an input symbol ak and moving to the next state sk+1 defined by the transition 
function: 

sk+1=δ (sk ,ak ,Θ ( sk , ŧk ) ) 

When the machine enters a state sk+1 time advances and the values of enabled tim-
ers change reflecting the elapsed time interval ε: 

  
ŧik+1 =  

 
When the valuation of timers ŧ changes, the set Θ of expired timers may change as 

well. This way a finite state time machine can respond to the flow of time, even if sk+1 
= sk  and ak+1 = ak . Because the last argument of δ is a set of all timers expired in a 
given state and time, no conflict exists if several timers expire at the same time in-
stant. 

The finite state time machine models a time-sensitive device, which advances time 
with a fixed increment of ε time units. After each such increment the values of timers 
and the machine state are updated as described by the transition function. The device 
responds to a timed sequence of input symbols a1…aj… that occur at time 
ϑ1…ϑj…[5]. The flow of time within the input sequence is not synchronized to ε-
increments of the machine. This means that a finite state time machine may or may 
not capture a symbol aj of a timed input sequence, if ϑj+1−ϑj < ε. 

A conversion algorithm of an UML state machine diagram into a finite state time 
machine, which defines the semantics of the diagram, can be described as follows.  

 S equals to the set of all states of the UML state machine. 
Σ equals to the set of all events of the UML state machine; each event is a particu-

lar combination of all the input signals of the PLC. 
Γ is a set of timer symbols t1,...,tn; the cardinality of Γ equals to the number of 

timed transitions in the diagram (i.e. transitions triggered by an after clause) and 
there is one timer symbol ti for each timed transition in the UML state machine. 

τ is the timer function, which assigns to each timer symbol ti created for a timed 
transition T a pair composed of a source state of this transition and the value of 
the after clause of this transition. 

δ is the transition function δ : S × Σ × 2Γ → S, such that δ ( s1 , a, T ) = s2 if and only 
if there exists a transition in the UML state machine such that s1 is the source 
and s2 the destination state of this transition, and either a is the event that trig-
gers this transition (in this case T = φ ), or T = {ti} and ti is the timer symbol of 
this timed transition (in this case δ ( s1 , a, T ) = s2 for all a∈Σ ). 

so is the initial state of the UML state machine diagram. 
ε is a characteristic of the PLC controller. 
Ω equals to the set of combinations of all the output signals of the PLC that are set 

by the actions of the UML state machine. 
ω is the output function, which assigns to each state s∈S the output symbol q∈Ω, 

which is set by all transitions to s. 

⎧ 
⎨  
ŧik+ ε if  sk+1∈τS ( ti

 )  and  sk ∈τS ( ti
 ) 

0 otherwise ⎩ 



 

3   Conversion of FSTM into UPPAAL 

UPPAAL [10] is a toolbox for modeling and verification of real time systems, based 
on the theory of timed automata. The core part of the toolbox is a model-checking 
engine, which enables for verification of properties defined as CTL path formulae. 

A timed automaton [4], as used in UPPAAL, is a finite state machine extended 
with clock variables that evaluate to positive real numbers and state variables that 
evaluate to discrete values. State variables are part of the state. All the clock variables 
progress simultaneously. An automaton may fire a transition between two states in re-
sponse to an action, which can be thought of as an input symbol, or to a time action 
related to the expiration of a clock condition. Clock variables can be reset to zero at a 
transition. 

Definition 2. A timed automaton is a tuple TA = ( S, s0 , C, A, E, I ) , where  
S is a finite set of states, 
C is a finite set of clock variables (called also clocks), 
A is a finite set of actions, 
E⊆ S × A × B (C) × 2C × S  is a set of transitions between states; each transition has an 

action, a guard and a set of clocks to be reset (a transition relation), 
s0 ∈ S is the initial state, 
I : S → B (C) is a function, which assigns invariants to states. 

Notation: B(C) is a set of conjunctions over simple clock conditions, e.g. t < c or t ≥ c. 
A valuation of clocks is a function ŧ: C→ R+. An expression g∈B(C) defines a set of 
clock valuations that satisfy expression g; we will write ŧ∈g to mean that ŧ satisfies g. 

The execution of an automaton TA starts in state s0 with the valuation ŧ0 , such that 
all clock variables equal to 0. The machine executes in state s with the valuation of 
clocks ŧ by performing an action: 

(s, ŧ) → (s’, ŧ’) if there exists e= ( s, a, g, r, s’)∈ E such that ŧ∈g and ŧ∈ I (s ); the 
new valuation of clocks ŧ’= ŧ over C −  r and ŧ’(t)= 0 for t∈ r; 

or a time action: 

(s, ŧ) → (s, ŧ+ d) if  ∀d’:( 0 ≤ d’≤ d ) ⇒ ( ŧ+ d’)∈I ( s ) 

The semantics of a timed automaton is a labeled graph consisting of nodes and 
edges. Each node defines a compound state of the automaton and is a pair z= (s, ŧ) 
composed of a state s and a valuation of the clock variables ŧ. The set of all nodes 
Z ⊆ S × RC, and the initial state (s0 , ŧ0 )∈Z. The edges in the graph are transitions, 
which fulfill the conditions defined above. 

A set of timed automata can be composed into a network over a common set of ac-
tions. This way a model of a controller and a controlled plant can be established, such 
that an action of one automaton can trigger a transition in another one.  

The cooperation between two automata is described in UPPAAL using synchroni-
zation channels, in which an action labeled c! (c is the channel name) in one automa-
ton, triggers an action labeled c? in another automaton. A pair of matching actions in 
two component automata are performed simultaneously.  



 

The actions are considered atomic with respect to the flow of time, which means 
that time can flow when the automata reside in their states. However, there are also 
special states, called committed states, in which delay is not allowed – such a state 
must be left immediately. Committed states are routinely used to separate a ?-action 
and !-action, in order to express causality relation  between the two. 

A compound state of a network of timed automata is a pair composed of a vector 
of states of the component automata and a valuation of all the clock variables. The 
semantics of a network is a graph composed of nodes, which are compound states, 
and edges, which correspond to transitions in component automata. The set of all 
nodes Z ⊆ S1 ×  ...  × Sn × RC, and the initial state (s0

1,..., s0
n, ŧ0)∈Z. 

A conversion of a finite state time machine into a timed automaton can be described 
as follows.  

Let A = ( S, Σ, Γ, τ , δ, s0 , ε, Ω, ω ) be a finite state time machine. The transition 
function δ : S × Σ × 2Γ → S is equivalent to a relation δ ⊆  S × Σ × 2Γ × S such that: 

δ = { (s, a, T, s’): s’= δ ( s, a, T) } 

For a given state s∈S there exists a set of timers T ( s ) = { t∈Γ: s∈τS ( t ) } that are 
enabled in s. Any subset T = { t1,…tk } ⊆ T ( s ) defines an expression gT over simple 
time conditions: 

ŧ1≥τN ( t1 ) … ŧk≥τN ( tk ) & ŧk+1<τN ( tk+1 ) … ŧn<τN ( tn )  

which must be satisfied by a valuation ŧ in order to enable the transition (s, a, T, s’)∈δ. 
Timed automaton TA = ( S, s0 , C, A, E, I ), which is equivalent to the given finite 

state time machine A can be constructed in the following way: 

S = S ∪ SC (SC  is a set of committed-states) 
s0 = s0 
C = Γ 
A = Σ ∪ Ω (?-actions in Σ and !-actions in Ω) 
I = φ 

The set of committed states SC and the transition relation E are created in the fol-
lowing way: 

1. SC = φ  and  E = φ 
2. For each ( s, a, T, s’)∈δ : 

• if  ω ( s ) = ω ( s’ ) than a transition ( s, a, gT, Γ  \ T ( s ) , s’)∈ E. 
• if  ω ( s ) ≠ ω ( s’ ) than a new committed state sC is added to SC  and a pair of 

transitions: ( s, a?, gT, φ , sC ), ( sC, ω ( s’ )!, φ, Γ  \ T ( s ) , s’ ) is added to E. 

Finite state time machine uses a discrete time model with an explicit granularity ε. 
UPPAAL uses continuous time model, in which transitions can fire at arbitrary points 
in time, within the boundaries defined explicitly by transition guards and state invari-
ants. This means that the properties verified for a compound UPPAAL system does 
not depend on the relative speed of the component automata. Hence, they are true 
also for a synchronous finite state time machine. 



 

4   Verification 

The main purpose of UPPAAL is to verify the model with respect to safety require-
ments, which must be expressed in a formal language. UPPAAL uses a version of  
computational tree logic (CTL) and provides a query language consisting of state for-
mulae and path formulae.  

A state formula is an expression that can be evaluated for a particular state in order 
to check a property (e.g. a deadlock). Path formulae quantify over paths of execution 
and ask whether a given state formula ϕ can be satisfied in any or all the states along 
any or all the paths.  

Path formulae can be classified into three types: 

• Reachability properties (will ϕ be satisfied in a state of a path?) – E<>ϕ. 
• Safety properties (will ϕ be satisfied in all the states along a single or along all 

paths?) – E[]ϕ and A[]ϕ. 
• Liveness properties (will ϕ eventually be satisfied? will ϕ  respond to ψ?) – A<>ϕ 

and ψ -->ϕ. 

UPPAAL model-checker enables verification of the model by evaluating path for-
mulae over the reachability graph of a network of timed automata. 

5   Code generation 

PLC controller is a technical implementation of a state machine, which yields output 
signals in response to input signals and to the flow of time. The controller maintains 
the state of the machine using flip-flops in the program code, counts time using timer 
blocks, and executes cyclically, firing a transition in each execution cycle.  

Cyclic execution of a controller can be described in a pseudo-code, which creates a 
reference model for PLC execution: 

state = initial_state ( ); 
loop_forever { 
    input  = poll_the_input ( ); 
    timers = set_timers (active_timers ( state ) ); 
    state  = next_state ( state, timers, input ); 
    output = count_output ( state ); 
    set_the_output ( output ); 
} 

The operating system of a PLC executes the following actions: 

• sets the initial state (initial_state), 
• executes the loop (loop_forever), 
• polls the input (poll_the_input),  
• counts time and sets the expired timers (set_timers),  
• sets the output signals (set_the_output). 



 

What the programmer must do is to write a code for: 

• selecting the active timers, which count time in the (active_timers), 
• calculating the next state of the controller (next_state), 
• calculating the output (count_output). 

The semantics of a PLC program, i.e. the meaning within its application domain, is 
a relation between a sequence of input signals and a sequence of output signals. If we 
establish a mapping between the input signals of a PLC and the input symbols of a fi-
nite state time machine, and a mapping between the output signals of a PLC and the 
output symbols of a machine, we can think about a finite state time machine as of a 
model of a program for a PLC controller. 

The behavior of a PLC program is defined formally within the reference model by 
the semantics of its programming language, which may be one of the IEC 61131 lan-
guages [11], e.g. ladder diagram or structured text. The behavior of a finite state time 
machine has been defined in Section 2. By that means a method for translating a high 
level abstract model of a finite state time machine ( S, Σ, Γ, τ, δ, s0, ε, Ω, ω ) into a PLC 
program can formally be defined. The method consists of the following steps. 

1. Mapping of sets Σ, Ω into the input and output signals of PLC. The sets of input 
and output signals of a controller are usually defined in the requirements speci-
fication. Each combination of input (output) signals defines an event in the con-
trolled plant, which is perceived by the controller as an input (output) symbol. 
This way, those two mappings are defined at the start of the modeling process.  

2. Mapping of set S into the values of flip-flops. At least log2(n), n= card(S), flip-
flops are needed to store all the states of set S. An arbitrary one-to-one mapping  
from set S to the set of n flip-flops (coding of states) can be used. 

3. Mapping of set Γ  into the set of timers. A separate timer with the expiration 
time equal to τN ( t ) is allocated for each timer symbol t ∈Γ. 

4. Defining function active_timers consistently with function τ. A timer block is 
a conceptual device, which has one input and one output. As long as the input 
equals 0, the timer block is reset with the output equal to 0. When the input 
changes to 1, the timer block is enabled and starts counting time. The output 
changes to 1 as soon as the input has continued to be 1 for a predefined period 
of time. Function active_timers defines the input signals of all the timer 
blocks. The input signal of a timer block allocated for a timer t ∈Γ , is a Boo-
lean function over the set of flip-flops used for coding of states, such that it is 
true in state s if and only if s ∈ τS(t). 

5. Defining function next_state consistently with function δ. This function de-
fines the set and reset signals of flip-flops, which have been used for coding of 
states. The signal to set (reset) a flip-flop is a Boolean function over the set of 
flip-flops, input signals of PLC and output signal of timer blocks, such that it is 
true if and only if this flip-flop is set (reset) in the next state of FSTM.  

6. Defining function count_output consistently with function ω. This function de-
fines the values of output signals of PLC. The value of an output signal is a 
Boolean function over the set of flip-flops, such that it is true if and only if this 
output signal is set in the current state of FSTM. 



 

6   Case Study 

Consider a railroad crossing controlled by a computer system. There are two railway 
tracks within the crossing, and two trains can approach the crossing simultaneously (a 
single train on a track is allowed). The movement of trains is controlled by a set of 
semaphores that can prevent trains from entering the crossing. The road traffic is con-
trolled by a gate that can be open or closed. A semaphore can be operated by a con-
troller to display green light, when a train approaches, but not earlier than after the 
gate has been closed. Opening and closing states of the gate are confirmed to the con-
troller by the appropriate input signals: up and down, respectively. The semaphore is 
red and the gate is up in the initial state of the crossing. 

A train cannot be stopped instantly. When it is detected by a train position sensor, 
a controller has 30 seconds to close the gate and display green to allow the train to 
continue its course. After these 30 seconds, it takes further 20 seconds to reach the 
crossing. Otherwise, if the green signal is not displayed within these 30 seconds, the 
train must break in order to stop safely before the crossing. Closing the gate must last 
less than 20 seconds, or else an alarm must sound. The gate can be opened when the 
position sensor has sent a leave signal after the last train has left the crossing. 

6.1   Modeling of the controller 

An algorithm for the railroad crossing controller, which can be a part of a broader 
control system, is shown in Fig. 2 in the form of a UML state machine diagram. The 
states within the graph correspond to states of the two trains that can appear within 

Fig. 2. UML model of the railroad crossing controller 
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the crossing area. The transitions between states are labeled event / action, where 
event corresponds to an input symbol or the expiration of a time period, and action 
corresponds to setting an output symbol. The graph has eleven states only, but is quite 
complex due to the number of combinations of the input and output symbols.  

The initial state, called Outside, corresponds to such a state of the crossing, in 
which no train approaches. The gate is open in this state, and the semaphores display 
red in order to prevent trains from entering the crossing. Such a state is safe in the 
application domain, because no collision between cars and trains is possible. 

One problem with this model relates to a time event after(20), which causes a tran-
sition from EnteringBoth to Alarm3. The requirement is such that this 20s delay 
should be measured from the moment of entering state Entering1 or Entering2 and 
the measurement should be continued through the period of being in state Entering-
Both. UML does not provide any simple means for expressing such a multi-state time 
requirement. It can only be expressed as an informal note in natural language. 

FSTM model of the controller has the same set of states, input symbols and output 
symbols. It has a single timer symbol t, and the timer function τS ( t ) = {Entering1, 
Entering2, EnteringBoth} and τN ( t ) = 20. The transition function is defined by the set 
of all the transitions of the UML state machine. No timing problem exists in FSTM. 

6.2   Verification 

UPPAAL model of the controller (Fig. 3) has the same states as the finite state time 
machine, plus a set of committed states. Basically, the transitions between states are 
in both models the same, with exception to transitions between states that differ in the 
finite state time machine on output symbols. Those transitions are split in UPPAAL 
model into two consecutive transitions separated by an added committed state. 

Fig. 3. UPPAAL model of the railroad crossing controller 
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Actions, which names bear the suffix ‘?’, act like input symbols that enable the as-
sociated transitions. Actions, which names bear the suffix ‘!’, act like output symbols 
that are passed to other automata in order to trigger the respective input symbols. This 
way the execution of one automaton can control the execution of a other automata. 

The environment of the controller consists of two trains and a gate. Each of those 
elements can be modeled in UPPAAL and synchronized with the controller within a 
network of timed automata. 

A model of a train is shown in Fig. 4. Time invariant t≤30 of state Approaches en-
forces a transition after 30 seconds have passed since the train has entered the state. 
This models the necessity of breaking the train if green has not been displayed in 
time. Time condition t>20 assigned to the transition from On crossing to Faraway re-
flects the minimum time of passing the crossing by a fast train. Time invariant t≤40 of 
the state On crossing reflects the maximum time of passing the crossing by a slow 
train.  

A model of the second train is identical, with exception to the names of actions, 
which are: approach2!, leave2!, and green2?, respectively. 

A model of the gate is shown in Fig. 5. Time invariants t ≤ 20 assigned to states 
Closing and Opening reflect time that it takes to close or to open the gate. 

The simple reachability properties can check if a given state is reachable: 

• E<> train1.On crossing: This checks if train 1 can pass the crossing (a similar 
property can be checked for train 2). 

• E<> ( train1.On crossing && train2.On crossing ): This checks if both trains can 
move through the crossing simultaneously. 

The safety properties can check that unsafe states will never happen: 

• A [] ( train1.On crossing or train2.On crossing ) imply gate.Closed: This ensures 
that each time a train is passing the crossing, the gate is closed. 

• A [] ( gate.open imply (¬ train1.On crossing && ¬ train1.On crossing ): This en-
sures that each time the gate is open, a train is not on the crossing. 

The liveness properties can check consequences of an event, e.g.: 

• train1.Approaches --> train1.On crossing: This ensures that if train 1 approaches 
the crossing, it will eventually pass it (similar property can be checked for train 2). 
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 Fig. 4. UPPAAL model of a train Fig. 5. UPPAAL model of the 



 

All those properties can be verified by UPPAAL model-checker. In our example 
the liveness condition is not satisfied. A counterexample is the following: Assume 
that the train 2 approaches when train 1 is just leaving. The controller does not react 
to approach2 in state Leaving1, hence, the transition to Outside appears without dis-
playing green2 for train 2. The train will stop and can never reach the crossing. 

This proves that the control algorithm is erroneous and must be modified by add-
ing two additional transitions to the model. The corrected finite state time machine 
model of the controller is shown in Fig. 6. 

6.3   Implementation 

There are six input signals and seven output signals at the diagram in Fig. 6. Each 
combination of the input (output) signals corresponds to an input (output) symbol. 
This way, there are 11 states, 64 input symbols, 128 output symbols, and 1 timer in 
the finite state time machine, which defines the semantics of the diagram in Fig. 6. 

PLC controller stores the states of the machine as values of its internal flip-flops. 
The coding of eleven states requires at least four such flip-flops. A selected coding 
for states and output signals of the railroad crossing controller is shown in Table 1.  

A program for a PLC consists of a sequence of Boolean expressions to set or reset 
flip-flops, timers and output signals, according to the values of input signals, flip-
flops and timers. These expressions implement the functions active_timers, 
next_state and count_output described in Sect. 5. For example, timer t must be en-
abled in each of the Entering-states, and flip-flop M1 must be set at a transition from 
any of the Entering-states to Alarm-states or Inside-states, i.e.: 

Fig. 6. The corrected model of the railroad crossing controller
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To ensure atomicity of transitions, a two-phase implementation of next_state 

function is used. In the first phase, the next state is computed and stored using a set of 
auxiliary flip-flops (M11 above), which mirror the primary flip-flops that are used to 
encode the model states. In the second phase, the current state is changed to the next 
state by copying the values of auxiliary flip-flops to the primary flip-flops [8].  

Boolean expressions can be converted into the ladder diagram as shown in Fig. 7. 

7   Conclusions and Future Work 

The paper describes a method for the specification, verification and automatic gen-
eration of code for PLC controllers. The method relies on a mathematical formalism 
based on finite state time machine model. The advantages of the method are intuitive 
modeling and a potential for automatic verification and implementation of the model. 
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Fig. 7. A fragment of the ladder diagram program for the railroad crossing controller 

Table 1. The coding of states and output signals 

M1 M2 M3 M4 State red1 red2 green1 green2 close open sound 
0 0 0 0 Outside 1 1 0 0 0 0 0 
0 1 0 1 Entering1 1 1 0 0 1 0 0 
0 1 1 0 Entering2 1 1 0 0 1 0 0 
0 1 1 1 EnteringBoth 1 1 0 0 1 0 0 
1 1 0 1 Alarm1 1 1 0 0 1 0 1 
1 1 1 0 Alarm2 1 1 0 0 1 0 1 
1 1 1 1 Alarm3 1 1 0 0 1 0 1 
1 0 0 1 Inside1 0 1 1 0 0 0 0 
1 0 1 0 Inside2 1 0 0 1 0 0 0 
1 0 1 1 InsideBoth 0 0 1 1 0 0 0 
0 0 1 1 Leaving 1 1 0 0 0 1 0 



 

A disadvantage is low scalability of the model with respect to the number of the 
modeled objects (trains). The problem is twofold. First, the model in Fig. 6 describes 
a crossing with exactly two tracks for trains. A completely new model must be built 
to describe, e.g., a four track crossing. Second, the number of states of the model 
raises exponentially. A way we want to follow to improve scalability is the introduc-
tion of variables for representing a number of similar states (vector a[N] in Fig. 8). 
Those variables are part of the state and do not prevent the state space explosion. 
However, the model itself is parameterized with the number of tracks, and can be 
used to describe a crossing with an arbitrary number of tracks N. 
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Fig. 8. A scalable model of the railroad crossing controller
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