
Safety verification of software using structured

Petri nets

Krzysztof Sacha

Warsaw University of Technology, Institute of Control and Computation Engineering,
ul. Nowowiejska 15/19, 00-665 Warszawa, Poland

Abstract. A method is described for the analysis and the verification
of safety in software systems. The method offers a formal notation for
describing the software structure, the means for defining safe and un-
safe states of the system and a technique for the software simulation and
analysis. The modeling process is based on an extension to Petri nets,
which enables the modeler to represent control as well as data processing
aspects of the software. The Petri net-based model can be analyzed using
the concept of a modified reachability tree or can be used as a framework
for a simulated execution. The model can be build in an early phase of
the software development process, thus creating the potential for early
verification and validation of safety.

1 Introduction

The problem of safety has always played a pivotal role in the development of
control systems in such application areas as railway transport, process industry,
power plants, etc. The technological shift from traditional hardwired systems
towards software-based systems issued a new challenge — it has been recognized
that safety analysis should also be incorporated into the software development
process and embedded somehow into the software lifecycle. However, the problem
of selecting the appropriate methods for safety analysis in software domain has
not been solved as yet.
IEC 1508 (draft) standard [1] defines safety in terms of probabilistic mea-

sures (the notion of risk). Such a definition encourages two general methods of
increasing system safety:

– employing redundant architectures,
– increasing the reliability of components.

The drawback of such an approach within the software domain is, that there
are neither the means to measure the software reliability nor even a satisfactory
definition. Hence, there are not many methods which can be practically applied
to ensure the desired level of software reliability. A short survey of practices and
methods which are applied within the software lifecycle in order to enable and
to conduct safety analysis for software can be found in [2].
Nevertheless a number of factors have been identified which influence the

software reliability. Among them are the following:



– Exact and unambiguous requirement specification.
– Early validation of safety of the specification.
– Credible verification of the design and the implementation against the re-
quirements specification by means of:
• proof of correctness,
• testing.

At the current level of the software technology testing cannot guarantee pro-
gram correctness, while full proofs of correctness are not feasible, as yet. There-
fore it seems practical to develop an approach of partial proofs of correctness,
i.e. proofs related to selected features which are particularly resistive to testing.
Those features correspond to all aspects of interprocess synchronization and
communication. The reasoning is such, that a sequential program can effectively
be tested. Testing a set of parallel processes is much more difficult.
The goal of this paper is to describe a formal method for the software spec-

ification and prototyping which addresses all of the above mentioned problems.
The method — called Transnet — offers the potential of formal specification
combined with an efficient technique of rapid prototyping and safety analysis.
The paper is organized as follows. Section 2 provides the reader with an overview
of the method which is based on an extension to Petri nets. Section 3 presents
an illustrative example. A description of techniques used for analysis and proto-
typing is given in Section 4. Timing aspects are considered and formally defined
in Section 5. Tools supporting the use of the method and plans for future work
are discussed in Conclusions.

2 Overview of the method

Many methods and techniques have been developed for specifying real-time con-
trol systems in a formal way. Formal methods are based on mathematical theo-
ries, such as: algebra, temporal logic, finite-state machines, functional program-
ming or Petri nets. Transnet is a method which adopts a modified model of Petri
nets.
A classical Petri net [3] can be viewed as a bipartite directed graph consisting

of nodes which are places and transitions, and oriented arcs. Places are repre-
sented graphically by circles, and transitions by bars (or rectangles).The arcs
join places to transitions and transitions to places in such a way that neither
two places nor two transitions are linked directly. Places of a net can be marked
with tokens, drawn as dots. Tokens can move between places as result of tran-
sition firings. A transition is enabled, i.e. ready to fire, if all places that input
the transition have a token. Firing a transition removes a token from each of its
input places and deposits a token in each of its output places. The current dis-
tribution of tokens among places which is called a marking, defines the current
state of the net.
Petri net is usually interpreted as a control flow graph of a modeled system.

Places correspond to conditions within the system, while transitions correspond
to actions. A condition can be fulfilled, i.e. marked with a token in the current



system state, or not. An action, i.e. a transition firing, can move tokens between
places, thus reflecting a change to the system state.
Classical Petri nets are focused entirely on representing the flow of control

and provide no opportunity for representing data and time-dependent aspects
of the system operation. Hence, various extensions to the basic model have been
invented and described in the literature [4–8].
The net model adopted by Transnet [9] restricts the net structure to a com-

position of three basic building blocks:

– sequential composition,
– alternative selection,
– parallel branching.

This restriction complies with the basic control structures used in program
design and implementation. Moreover, it helps in maintaining readability of the
specification.
On the other hand, Transnet extends the definition of Petri net by associating

(Fig. 1):

– places with variables,
– transitions with data processing functions,
– arcs which lead from places to transitions with Boolean expressions.

The semantics of the extensions to Petri nets is as follows. A transition is
enabled if all places that input the transition have a token (classics) and all
Boolean expressions associated with the input arcs to the transition evaluate
to true (extension). Firing a transition removes and deposits tokens as usually,
but additionally the function associated with the transition is evaluated and the
results are substituted to variables associated with output places. This way, an
execution of a net can model the flow of control within the modeled system as
well as data values evaluated during the system operation.
A specification of a control system is build as a set of concurrent processes,

each of which is modeled by an extended Petri net. A process can be a repre-
sentation of a system object, such as task or data buffer, or an environmental
object, such as discrete model of a physical process. Processes in a specifica-
tion can cooperate with each other, exchanging messages during a symmetric
and synchronous rendezvous, modeled by an exchange transition i.e. a tran-
sition with input and output arcs belonging to both cooperating processes. A
complete specification is formal and executable and therefore can be used as a
system prototype.
The introduction of variables and arc expressions changes dramatically the

semantics of the model, as the net marking can no longer be used to characterize
the state of the model. The real results of the modeled computation are stored
as values of variables, while the current marking describes only an internal state
of the computation. A more elaborate treatment of this problem is given below.
All processes of a specification are cyclic and run forever. Each process has a

distinguished place, referred to as the terminal place, which is marked in the



inactive state of the process, just between two consecutive cycles of execution.
The terminal place holds a token in the initial net marking. The variables asso-
ciated with the terminal place which are called terminal variables, store the
results of the computation and retain the process history between the consecu-
tive process cycles. The values of terminal variables are changed at the end of the
current process cycle and are stable throughout the next cycle. Other variables
do not retain the process history. They comply with the single assignment rule
— the idea borrowed from functional languages — and are used only as value-
holders which are invalidated when the terminal place of the process receives a
token.
The specification state is defined as a vector of values of all terminal vari-

ables. A sequence of states produced during the net execution, called a trace,
determines the behavior of the specification. This can be observed from the out-
side and interpreted by people or devices. The execution of a specification net is
indeterministic due to indeterministic scheduling. This implies that a specifica-
tion net has many traces and the meaning of a specification is characterized by
a trace set, including all traces that may be produced during the specification
net execution. The trace set of a specification can be subject to analysis and
validation against the user requirements. This includes also the requirement for
system safety.
The method for the specification analysis is based on the construction of the

reachability graph — a standard analysis technique developed for various kinds
of Petri nets. The initial marking of the net contains a single token in the terminal
place of each process. Due to the restrictions imposed on the net structure, the
entire net is conservative, hence bounded. Therefore, the reachability graph of
the net itself, i.e. without regarding variables, is finite.
Reachability graph of the specification can be analyzed in order to verify

the structural correctness of the interprocess communication. This involves ex-
amination of the reachability of selected net markings and verification against
deadlock. The Boolean expressions associated with arcs can influence the reach-
ability graph in such a way, that the arcs related to conditions which evaluate to
false become ineffective and can be removed. This enables the modeler to sim-
ulate various scenarios of the specification net execution by assuming different
values of particular expressions.

3 Example: Railroad Crossing

Consider a railroad crossing equipped with a semaphore (green — red) which
controls the movement of trains, and a gate (up — down) which controls the
road traffic. Both devices are controlled by a computer system which receives
and processes the information related to the train position. The semaphore is
red and the gate is up in the initial state of the crossing.
A specification of the railroad crossing control system can be split into four

parallel activities which can be modeled by a set of four parallel processes
(Fig. 1):



– keeping track of the current train position (places p1 . . . p3),
– deciding: red or green, and up or down (places c1 . . . c6),
– operating the semaphore (places s1, s2),
– operating the gate (places g1, g2).

All processes are cyclic and run forever. The processes communicate with
each other to maintain the required state of the railway devices. By convention,
arc expressions not shown explicitly in the figure are all equal to true.

-

V:=v
(save train data)

?
��
��
p3-

?
��
��
p2

?

v:=compute position?
��
��
p1

? x:=train position

�

X:=x
(save position)
?

��
��

��
��

c6

c4
train leaves(x)=false =true

HHj

HHj

?

?

��

��

���

���

g:=up

s:=green

?

?

��
��

��
��

c5

c3

?

?

s:=red

g:=down

?

?

HH

HH��
��
c2

=false train approaches(x)=true

?

?

��
��
c1 �

��
��
s2

?S:=s
(move semaphore)

���
��
s1

?
XXXXXz
�

�
�

��

?
���*

��
��
g2

?G:=g
(move gate)

���
��
g1

((((((((((((((

?
-�

��

?

���

Fig. 1. Transnet model of the railroad crossing control system (terminal variables cap-
italized, arc expressions in italics, comments in parenthesis)

The first process (p places) models the computation of the current train
position. The function compute position can be viewed as a simulator of the train
movement or as a procedure which receives the information from the railway
track system and maintains the real train position. When the computation is
finished, i.e. the place p2 is marked, the train position is offered to the next
process which decides on the necessary action. The communication between both



processes is organized in such a way that it cannot block the process which keeps
track of the train position — a token can always be moved from the place p2 to
p3, even if the place c1 is not marked at the moment.
The decision process (c places) starts with taking the new train position and

storing it as a value of the local variable x. Next, when the place c2 is marked,
the process evaluates Boolean expression train approaches, to check whether the
train is just approaching the crossing. If this is the case (train approaches=true),
two consecutive commands for closing the gate and displaying the green signal
on the semaphore are issued and passed to the device controllers. Otherwise
(train approaches=false), the token is moved to the place c4 and nothing other
is done. Thus, in both cases the token appears in the place c4. Afterwards, the
process evaluates Boolean expression train leaves, to check whether the train is
just leaving the crossing. If this is the case, two commands for displaying the red
signal on the semaphore and opening the gate are issued. Otherwise, the token
is moved to the place c6. In the last step the current train position is stored as
a value of the terminal variable X .

�



�
	p3c4s1g1

������9
XXXXXXz

�



�
	p3c4s1g2

������)
Q

QQs
G=g(down)

�



�
	p3c4s2g1

�
��+

S=s(green)
HHHj

�



�
	p3c4s2g2

������9 �
�	

S=s(green)
PPPPPPq
G=g(down)

�



�
	p3c3s1g1

?
s=green

PPPPq

�



�
	p3c4s1g1

�����9

�



�
	p3c3s1g2

������)
s=green Q

QQs
G=g(down)

XXXXXXz

�



�
	p3c1s1g1

����

�



�
	p3c2s1g1

�����
Q

QQs
g=down

PPPPPPq

�



�
	p2c1s1g1

�
��+

Q
QQs
x=train position

�



�
	p1c1s1g1
(Initially: G=up, S=red)

?
v=compute position

G is still up

Fig. 2. Part of the reachability graph of the railroad control system

The remaining two processes are device controllers: of the gate and of the
semaphore. The gate controller (g places) waits for a command (place g1 marked),
and after receiving the command and storing it as a value of the local variable
g (place g2 marked) it operates the gate accordingly (G=g). Thus, the value of
the terminal variable G reflects the current state of the gate. The semaphore
controller (s places) is nearly identical.



��
��

��
��

c6

c4
train leaves(x)=false =true

HHj

HHj

?

��

���

���

g:=up

s:=green

?

?

��
��

��
��

c5

c3

?
s:=red?

HH

?
ack?

��
��
c7

?
g:=down?

HH��
��
c2

=false train approaches(x)=true

?

��

?

��
��
s2

?S:=s
(move semaphore)

���
��
s1

?
XXXXXz
�

�
�

��

?
���*

��
��
g2

? G:=g
(move gate)

�
��
��
g0

?
?

��
��
g1

((((((((((((((

?
-�

��

?

��� ?

��
��
g3

is down=true

?

@
@@R

?
=false

?

��
��
g4

?

Fig. 3. Part of the modified Transnet model of the railroad crossing control system

It can be noted that the model preserves the parallelism inherent to the prob-
lem: the train, the semaphore and the gate are separate devices which operate
concurrently, and concurrently with the decision process. A similar problem of
modeling a railroad crossing control system by means of Petri nets was consid-
ered in [10]. Comparing both models one can note, that Transnet model closer
relates to a real design of the control software than to an abstract description of
the requirements.

The requirement for safe operation of the railroad crossing devices can be
formulated in such a way, that no valuations of terminal variables in which
G=up and S=green should appear in any trace of the specification. At the first
glance it could seem that this requirement is fulfilled by the specification in
Fig. 1, as the commands for moving the gate down and for displaying the signal
green are issued by the decision process consecutively and in the right order.
However, a look at the reachability graph (Fig. 2) shows, that a scenario of the
net execution is possible which leads directly to the dangerous valuation. The
un-safe behavior of the specification results from the possibility of internal delay
in both device controller processes.



Two solutions can be suggested to eliminate the possibility of reaching the
dangerous state, both of which result in a change to the process structure. The
first one requires that the gate and the semaphore processes are combined to form
a single and sequential control process which can guarantee proper sequencing
of the device operation. The other solution is based on a feedback from the gate
— the device should be able to signal that the state down has been reached.
This can be modeled (Fig. 3) by extending the specification net and adding
new transitions which synchronize the decision process with the gate controller
(synchronization by transition ack which can fire only if is down=true).

The dangerous valuation can be reached in the specification in Fig. 1 also in
case when the train leaves the crossing. The nature of the problem is similar to
the previous one so the solution is also similar — the semaphore should be able
to signal the red state, and the decision process should postpone opening the
gate until the moment in which displaying the red light has been acknowledged.

When the modifications to the model are finished, the correctness of the fi-
nal specification can formally be proved. Part of the reachability graph shown
in Fig. 2 which has been modified in order to reflect changes made to the speci-
fication, is depicted in Fig. 4. The un-safe valuation of terminal variables G and
S can never be reached.

�



�
	p3c4s1g1g4

����)
PPPPq

�



�
	p3c4s2g1g4

����) S
Sw

S=s(green)

�



�
	p3c3s1g1g4

����) S
Sw

s=green

�



�
	p3c7s1g1g3

����) �
�/

(is down=true): ack

�



�
	p3c4s1g2g4

PPPPq

�



�
	p3c7s1g0

����) �
�/

�



�
	p3c4s2g2g4

S
Sw

S=s(green)
PPPPq

�



�
	p3c7s1g2g4

����) �
�/

G=g(down)

�



�
	p3c3s1g2g4

S
Sw

s=green
PPPPq

�



�
	p3c7s1g2g3

����) �
��+(is down=false)

HHHHj
(is down=true): ack

�



�
	p3c2s1g1g3

����) �
�/

(train approaches=true): g=down

?x=train positionG was set to
down earlier

G was not set but it
had been down before

Fig. 4. Part of the modified reachability graph of the railroad control system of Fig. 3



4 Analysis Techniques

The analysis of Transnet specification is based on the analysis of a modified
reachability graph of the net. The graph consists of nodes which correspond to
the markings of places, and arcs which correspond to transition firings. Boolean
arc expressions can influence the shape of the reachability graph in that they
can control the firing of transitions which have a common input place. To reflect
this influence, each arc of the modified graph is labeled with a name of the firing
transition and a name of the Boolean expression which must have evaluated to
true in order to enable the firing transition.
It can be noted that the modified graph with all Boolean expressions evalu-

ated to true is identical to the classical reachability graph, i.e. the graph with no
arc expressions at all. Such a graph represents an indeterministic net in which
all conditions in all alternative branches can eventually be fulfilled. The analysis
of this graph can help in detecting deadlock conditions due to improper process
communication and synchronization. Deadlock can involve the entire specifica-
tion net or a group of processes (livelock).
The existence of arc expressions extends the scope of analysis and enables the

modeler to simulate various scenarios of the specification net execution. This can
be done by assuming different values of particular arc expressions, and removing
from the reachability graph those arcs which correspond to expressions which
have evaluated to false. After the removal of selected arcs, the process of graph
analysis can be repeated.
The application of the modified reachability graph analysis can be demon-

strated using the example railroad crossing control system from the previous
section. Consider, e.g., that the gate broke down and cannot be closed (i.e. it
remains always in up position). This means, that the value of the arc expression
is down always evaluates to false, and the respective arcs (bold in Fig. 4) should
be removed from the modified reachability graph. The remaining graph is safe in
that green signal can never be displayed, but at the same time it has a livelock:
the decision process is blocked with the token held in the place c7.
The analysis of the modified reachability graph can be used to verify cor-

rectness of the control flow within the specification. In those cases when the
processing of data is based on enumerative substitution of values, the reachabil-
ity graph can also help in the analysis of the results of data processing. This was
the case illustrated in the previous part of this section. Otherwise, the processing
of data can be validated according to the concept of rapid prototyping.
The specification described in the form of an extended Petri can be executed

by simulated execution of the net. Starting from the initial net marking and an
initial valuation of terminal variables, a complete trace of the specification can
be computed. Due to the inherent parallelism of Petri net the computation is in-
deterministic. Hence, the experiment can be repeated many times, thus allowing
the modeler to investigate different scenarios of the execution. This way the be-
havior of the specification can be studied and validated. The validation process
can include safety requirements which can be described by a set of prohibited
values of terminal variables.



5 Timing aspects

Still another extension introduced by Transnet to Petri nets is a mechanism
for modeling the flow of time and specifying timing constraints. The extension
is very simple and consists of time constants assigned to arcs which lead from
places to transitions. The meaning of a time constant ∆t is such, that a token
must reside in the input place of the arc at least through the time ∆t until it
can enable the transition pointed by the arc. An arc without an associated time
constant is assumed to have the default time value equal to zero.

��
��

��
��

c6

c4
train leaves(x)=false =true

HHj

?

��

���

���

g:=up

s:=green

?

?

��
��

��
��

c5

c3

?
s:=red?

HH

?
ack?

��
��
c7

?
g:=down?

HH��
��
c2

=false train approaches(x)=true

?

��∆t

?alarm

AAU

���

?

XXXz

��
��
s2

?S:=s
(move semaphore)

�
��
��
s1

?
XXXXXz
�

�
�

��

?
���*

��
��
g2

? G:=g
(move gate)

���
��
g0

?
?

��
��
g1

((((((((((((((

?
-�

��

?

��� ?

��
��
g3

is down=true

?

@
@R

?
=false

?

��
��
g4

?

Fig. 5. Part of the model with a timeout

The applications of this time model in Transnet are twofold. First, it is used
to define timeouts for potentially infinite operations. Consider, e.g., the model
of a railroad crossing system shown in Fig. 3. It has been demonstrated in the
previous section that a breakdown of the gate in its up position can block the
decision process forever, with a token held in the place c7. To resolve this live-
lock of the net, an additional transition is needed to react to the damage (the
transition labeled alarm in Fig. 5). However, the additional transition should



not fire during a regular functioning of the system — this can be forced by as-
signing a timeout value to the arc which joins the place c7 with the added alarm
transition.
The second application of time constants is to model the evaluation time of

a function associated with a transition within a process net. One can note that
such an evaluation time ∆t can be modeled by a construction shown in Fig. 6.
Comparing Transnet model of time to other simple models, which assign time

constants to transitions [4] or to places [5], one can note that Transnet model
is equally simple, but more expressive. Time constants assigned to arcs can
easily model timed transitions (e.g. as in Fig. 6) and timed places. The converse,
however, is not true, as the semantics of a timeout can be described by means of
time constants assigned neither to places nor to transitions. Moreover, Transnet
model of time allows the firing time of a transition to be related separately to
the time instants in which tokens are being deposited in each of the input places
of this transition.
On the other hand, Transnet model of time is slightly less expressive, but

much more simple, than the model proposed in [6] in which time intervals are
assigned to transitions. This results from the fact, that Transnet model can
describe only lower (but not upper) bound imposed on the firing time of a
transition. Such a model matches the characteristics of programming languages
and operating system which provide the tools for timeout operations, but do not
provide any means to guarantee the upper bound of the execution time.

- -��
��

- -
start the function f

the evaluation of

∆t

y=f(x)

Fig. 6. Evaluation time of a function f(x)

Transnet model of time can be defined formally as a finite extension to Petri
nets. Having such a definition one can use time-extended Petri net throughout
the analysis process, instead of a classical Petri net.
Formally, Petri net can be defined [3] as a four-tuple C = (P, T, I, O) com-

posed of a finite set of places P , a finite set of transitions T , an input function
I : T −→ 2P , and an output function O : T −→ 2P . It is assumed that the sets
P and T are disjoint. A graphical interpretation of both functions is such that
the function I defines the arcs which lead from places to transitions, while the
function O defines the arcs which lead from transitions to places.
A marked Petri net is a pair (C, µ0) composed of a Petri net C and an initial

marking µ0 : P −→ N which assigns natural numbers (with zero) to places. A
number µ0(p) is interpreted as a number of tokens in the place p. The marking of
Petri net can be changed as result of a transition firing. A transition t is enabled
in a marking µ if:

µ(p) ≥ #(p, I(t)) for all p ∈ P



where #(p, I(t)) equals 1, if p ∈ I(t), or 0, if p ∈\ I(t). A transition t enabled in
a marking µ can fire. Firing the transition t leads to a new marking µ′ defined
as follows:

µ′(p) = µ(p)−#(p, I(t)) + #(p,O(t)) for all p ∈ P

A marked Petri net is bounded if the set R(C, µ0) composed of all markings
which can be reached from µ0 by firing transitions is finite. The property of
boundedness is of practical importance, as it guarantees, that the net can be
analyzed completely by an exhaustive search through the set R(C, µ0).
Petri net with timeouts is a three-tupleK = (C, µ0, τ0) composed of a marked

Petri net (C, µ0) and a function τ0 : P ×T −→ R which assigns rational numbers
to arcs leading from places to transitions. A number τ0(p, t) is interpreted as a
time value which has been assigned to the arc from place p to transition t.
A state of a Petri net with timeouts can be defined as a pair s = (µ, τ) com-

posed of a marking µ and a vector of time values τ . The marking µ describes the
current distribution of tokens among places. The vector τ describes the current
(residual) values of time intervals associated with particular arcs. The size of the
vector τ is equal to the number of arcs leading from places to transitions. An
entry τ(p, t) is a rational number which is:

– not defined, if the arc (p, t) is closed, i.e. no token resides in the place p,
– zero, if the arc (p, t) is open, i.e. the place p has continued to be marked
with a token at least through the time interval τ0(p, t),
– equal to the length of the time interval remaining for opening the arc, if the
arc (p, t) is active, i.e. the place p is marked with a token, but not open, as
yet.

The execution of a Petri net with timeouts is controlled by the net marking
µ and the values of the time intervals in τ . The net executes by shifting time
intervals and firing transitions. A transition t is enabled in a state s = (µ, τ) if
it has all input arcs open, i.e.:

τ(p, t) = 0 for all p ∈ I(t)

Let s = (µ, τ) be a state of a Petri net with timeouts. The next state s′ =
(µ′, τ ′) can be computed in two steps:

1. If a transition t is enabled in s, then the computation moves to the step 2. If
no transitions are enabled in s and ∆t is the shortest non-zero time interval
in τ , than the execution of the step 1 remains the marking µ unchanged,
and shifts all time intervals in τ by subtracting the value ∆t. Formally, step
1 computes for all p, t:

new τ(p, t) =

{

τ(p, t) −∆t if τ(p, t) 6= 0
0 otherwise

The elements of t which were not defined before executing step 1, remain
undefined. Step 1 repeats until a transition becomes enabled or all arcs in τ
become open or closed.



2. If a transition tj is enabled in s, then the next step s
′ is computed for all

p, t as follows:
a) µ′(p) = µ(p)−#(p, I(tj)) + #(p,O(tj))
b)

τ ′(p, t) =















τ0(p, t) if t = tj and µ′(p) ≥ #(p, I(tj))
τ0(p, t) if µ(p)−#(p, I(tj)) < #(p, I(t))

and µ′(p) ≥ #(p, I(t))
τ(p, t) otherwise

It can be noted that states (µ, τ) of a Petri net with timeouts which have the
same marking µ can differ from each other only with respect to the values held
in vector τ . But from step 1 above results, that those values can never exceed
the values stored in the initial vector τ0. Because all values are rational numbers,
hence the number of different values of vector τ is also finite. This leads to the
following:

Theorem 1. A Petri net with timeouts (C, µ0, τ0) has bounded number of states
if and only if marked Petri net (C, µ0) is bounded.

The theorem is mathematically interested and shows that the analyzability
of a Petri net with timeouts relays on the analyzability of the underlying marked
Petri net. However, the practical implications are less important, as the state
space of Petri net with timeouts is significantly larger than the one of classical
Petri net.
It is interesting to observe, that the same proof and the same remark apply

to a similar theorem in [6].

Conclusions

Transnet is a method for describing real-time computer systems. It can be used
during the specification and preliminary design steps of the software life cycle as
well as during the software verification phase [9]. Transnet model of the software
structure can also be used for the analysis and the verification of safety. The
method offers a formal notation for defining safe and un-safe states of the system
and a technique for the software simulation and analysis.
To be practical, the method has to be supported by a set of software tools

for creating, analyzing and executing the specification. Central element of the
Transnet CASE system is a data base which stores a description of the specifica-
tion under development. The description can be introduced into computer files
by means of a graphical Petri net editor or textual editor. Management tools
include decompilers and a browser which can look through the data base and
produce a report including the list of processes, the list of exchange transitions,
data types, etc.
The net analyzer enables the modeler to build a reachability tree of a Petri

net and to answer questions related to deadlock and reachability of selected



markings. The net analyzer does not evaluate functions. However, it can be
instructed to assume particular values of arc expressions and to modify the tree
by removing the arcs associated with expressions assumed false.
The net simulator executes the full model of a specification, taking into ac-

count data processing functions as well as time values. The problem of coping
with huge volume of data produced during the simulation has been solved by
exploiting the concept of validation points. A validation point can be identified
by a particular net marking or submarking which determine strict points in the
net execution. For each validation point a list of variables can be defined. When
a validation point is reached during the net execution, the current time and the
values of variables are recorded for further analysis.
The drawback of the current CASE system is that it consists of a set of

separate programs, part of which have been implemented under DOS and part
under Windows. Our current work is directed towards the unification of the
system and shaping them in a coherent development environment, with a unified
window-based user interface.

Acknowledgments

I wish to thank the anonymous reviewers, who provided comments and sugges-
tions that improved this paper.
The work has been supported by a Warsaw University of Technology statu-

tory grant 504/036, 1998.

References

1. IEC 1508 (draft). Functional Safety: Safety-Related Systems, IEC (1995)
2. Cegiela R., Sacha K., Zalewski A.: Task A3: Safety Analysis for the Software Do-
main. Copernicus Joint Research Project CP 94 1594 on Integraton of Safety Anal-
ysis Techniques for Process Control Systems. IASE. Wroclaw (1997)

3. Peterson, J., L.: Petri net theory and modeling of systems. Prentice-Hall Inc. (1981)
4. Ramchandani C.: Analysis of asynchronous concurrent systems by timed Petri nets.
Massachusets Inst. Technol. Tech. Rep. 120 (1974)

5. Coolahan J. E., Roussopoulos N.: Timing requirements for time-driven systems
using augmented Petri nets. IEEE Trans. Software Eng. SE-9 (1983) 603–616

6. Berthomieu B., Diaz M.: Modeling and Verification of Time Dependent Systems
Using Time Petri Nets. IEEE Trans. Software Eng. 17 (1991) 259–273

7. Jensen K.: Coloured Petri Nets. Advances in Petri Nets 1986. Brauer W., Riesig
W., Rozenberg G. (eds) Springer-Verlag. (1987)

8. Ghezi C., Mandrioli D., Morasca S., Pezze M.: A unified high-level Petri net for-
malism for time-critical systems. IEEE Trans. Software Eng. 17 (1991) 160–172

9. Sacha K.: Real-Time Software Specification and Validation with Transnet. Real-
Time Systems Journal. 6 (1994) 153–172

10. Leveson N. G., Stolzy J. L.: Safety Analysis Using Petri Nets. IEEE Transactions
on Software Engineering. (1987)


