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Abstract. The paper describes syntax, behavior and formal semantics
of a new class of timed automata, which are tailored for modeling the
behavior of real-time systems. A formal method for automatic generation
of programs is developed around this model. The method starts from
modeling the desired behavior of the system under design by means of
a UML-based state machine with the ability to measure time, and ends
up with a complete program written in one of the IEC 1131 languages.
The translation process is done automatically, and the semantics of the
resulting program is isomorphic to the semantics of the model.

1 Introduction

Control applications are usually reactive in that they must respond to a series
of events according to a strictly defined stimulus-response pattern. Finite state
machines (FSM) are one of the best known models that have been recognized
as useful to specify such requirements. The advantages of a classical FSM model
are conceptual simplicity and mathematical precision. The model is executable
and analyzable, and has the potential for automatic code generation. What is
missing in a classical finite state machine is the ability to model time.

Several time extensions to FSM have been developed and described in the lit-
erature. The most widely accepted models of timed automata [1,2] and timed I/O
automata [3] are used mainly for modeling and verification of time-dependent
behavior of state systems. Still another models of time triggered automata [4]
and PLC-automata [5,6] are used for code generation. Neither of these models
accounts for hierarchical structuring of states that is defined in the UML [7].

The goal of this paper is to present an original model of a finite state time
machine that extends the classical Moore automaton in the dimension of time.
The work is aimed at the development of programs for polling-type controllers,
i.e. programmable logic controllers (PLC) and their software-based counterparts,
known as soft-PLC. An early version of the model, described in [8], allowed for
only one running timer at a state (similar restriction holds for a PLC-automaton
[5,6]). What is new in this paper, is a support for several timers running at
each state, and a more formal treatment of the hierarchy of states and history
indicator defined in UML.

PLC controllers are used in industry for solving time- and safety-critical prob-
lems, like traffic or process control. A PLC controller is a device that has several
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inputs and outputs where sensors and actuators can be plugged in. The con-
troller executes in a cyclic manner, and every cycle consists of the following
three phases: Polling the inputs, executing the program and updating the out-
puts. Cyclic pattern of execution and the duration of each cycle introduce an
explicit granularity of time, which is measured and guaranteed by the operating
system. Output signals of the controller are discrete and change only at the edge
of two consecutive cycles of execution.

Programming of a PLC deals with the computing phase of the execution
cycle only. The core part of the computation relates to calculations of Boolean
conditions that define the next state of the controller and the values of two-
state output signals. The programming languages, standardized in [9], include:
Instruction List (IL), Structured Text (ST), Ladder Diagram (LD) and Function
Block Diagram (FBD).

A finite state time machine defines the algorithm for computing the output
signals of a controller with respect to input signals and time. Once the algo-
rithm has been defined, it can be verified and validated, and then converted into
a target program code automatically. Because the translation of the model is
formally proven, no further verification of the target program is necessary. It is
worth noting that FSM-based models are recommended by IEC for modeling
the behavior of safety related systems [10].

The paper is organized as follows. Sect. 2 provides the reader with a short
overview of the subset of UML-based statecharts that are used in the paper.
Sect. 3 gives a formal definition of finite state time machine that defines the
semantics of the statechart model. The process of converting a finite state time
machine into a program is described in Sect. 4. The description is illustrated
using a case study of a plant controller. Final remarks and plans for future work
are given in Conclusions.

2 UML Statecharts

PLC controllers are used in many real applications as part of a bigger system
that consists of several components coupled and working together. The required
behavior of such a system, and of all of its components, can be described by a
set of UML-based models [11]. The conceptual tool that is offered by UML to
model this part of processing, which is done by a PLC, is statechart – a model
that describes the states an object can have and how events (input signals) affect
those states over time.

Basically, statechart is a graph that shows how an object reacts to events
that originate in the outside world. It consists of states that capture distinct
modes of the object behavior and transitions between states that are caused
by events and accompanied with actions. The modeling concept is simple and
consistent with the theory of finite state machines. Relating this model to a
PLC one can note that events correspond to the occurrences of input signals
and actions correspond to changes of the output signals. States and transitions
between states are defined by a controller program.
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Modeling real systems that can have hundreds of states requires means for
managing the complexity. Therefore UML adds further elements to this simple
model:

– Hierarchy of states.
– Entry and exit actions of a state that are executed on entering and exiting

the state.
– Internal transitions that are handled without causing a change in state.
– Deferred events that are memorized for handling in another state.
– Guards, i.e. Boolean conditions that enable or disable transitions.
– Time events that correspond to the expirations of predefined periods of time.

UML does not define any formal operational semantics for this model. There-
fore multiple approaches have been developed and described in the literature,
based on specification languages [12,13], graph transformations [14] or by con-
verting the model to hierarchical automata and providing a semantics by a
Kripke structure [15]. All those formalisms deal with a restricted subset of
UML statecharts, extensively use advanced mathematical formalisms and are
very hard to understand for software and control engineers.

The approach presented in this paper is much simpler and remains as close
to the model of a finite state machine as possible. The effects of the extensions
defined in UML on the semantics of a finite state machine are discussed in the
rest of this section.

Hierarchy of states. One way to capture the behavior of a complex system is
to describe its behavior using many levels of abstraction. UML offers hierarchical
statecharts, in which a state can have many sub-states nested to an arbitrary
level. Transitions between states can originate in and can lead to a state at an
arbitrary level of nesting. A simple example of a hierarchical statechart is shown
in Fig. 1.

Fig. 1. A hierarchical statechart

Hierarchy of states alone does not add any new semantics to the model, in
that a hierarchical diagram can always be converted into a “flat” one. In fact, an
automaton is always in one of the leaf states of the hierarchy. A transition that
originates in a super-state can be considered an abbreviated notation for a bunch
of transitions that originate in each of its internal sub-states. The meaning of
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a transition that leads to a super-state is also clear, because such a transition
leads to the initial sub-state of this super-state. For example, transition x from
state A to B in Fig. 1 stands for a pair of transitions: One from state A1 to B1
(the initial state of B) and the other one from state A2 to B1.

The problem lies in the history indicator (circled H in Fig. 1). A transition that
leads to such an indicator must enter the last sub-state on exit of a super-state.
This way the history indicator introduces a hidden memory, which stores the last
sub-state on exit of this super-state, which contains the history indicator. This
can be expressed in the “flat” model by multiplication of states. An algorithm
for flattening the hierarchy of states is described in Sect. 4.

Entry and exit actions. Entry and exit actions of a state can easily be reas-
signed to transitions that input or output the state. No new semantics to the
model is added.

Internal transitions. An internal transition is a transition that performs an
action without changing the state. This is equivalent to the concept of Mealy
automaton, whose output depends on the current state and the current input, as
opposed to Moore automaton, whose output depends on the current state only.
Both types of automata have been proved equivalent.

Deferred events. A deferred event is an event, which does not trigger any
action or transition immediately, but is stored in order to make a transition in
one of the future states. Such a feature violates the rule that the only memory
of an automaton is state. A state before observing a deferred event and the state
after this event has occurred are different states that can be modeled separately.

Guards. Guard conditions deal with the attributes of an object in object-
oriented modeling, and do not apply to modeling of PLCs.

Time events. A substantial extension to the model of a finite state machine
is the introduction of time. A time event originates inside the automaton, and
breaks the rule that the reaction of the automaton to an external event de-
pends on the current state only. An additional memory of timers that measure
the flow of time is needed. This feature will be treated in detail in the next
section.

3 Finite State Time Machine

Finite state machine is a recognized tool for defining the algorithms of processing
the enumerative sets of events. The automaton-like graphical models are formal,
as well as understandable to engineers and computer programmers. What is
missing in a classical finite state machine is the ability to model time. In this
section we define a new model of a finite state time machine that adds time to
the classical Moore automaton.

Definition. A finite state time machine is a tuple A = (S,Σ, Γ, τ, δ, s0, ε, Ω, ω),
where
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S is a finite set of states,
Σ is a finite set of input symbols,
Ω is a finite set of output symbols,
Γ is a finite set of variables called timer symbols,
τ : Γ → 2S ×R+ is an injective function, called timer function

(with projections denoted τS : Γ → 2S and τR : Γ → R+, respectively),
δ : S ×Σ × 2Γ → S is a partial function, called transition function, such

that: [(s, a,Θ) ∈ Dom(δ)] ⇔ (∀t ∈ Θ)[s ∈ τS(t)]
s0 ∈ S is the initial state,
ε ∈ R+ is the granularity of time,
ω : S → Ω is an output function.

Notation: R+ is the set of positive real numbers, Dom(δ) is the domain of
function δ. Cardinality of a set X will be denoted card(X), and an empty set
will be denoted φ.

It can be noted from the above definition that a finite state time machine is
finite, and looks much like a Moore automaton with three additional elements:
Γ , τ , ε. The rationale that stands behind the timer symbols can be explained
as follows. The only memory of a Moore automaton is state. Adding time to
such an automaton adds an additional kind of memory that stores durations of
time intervals. This additional kind of memory is explicitly shown as a set of
timer symbols. A finite state time machine responds to input symbols and timer
symbols that appear when a time interval expires. Each timer symbol will be
converted in the implementation process into a timer device that measures time.

3.1 Execution of a Finite State Time Machine

Moore automaton models a device that cooperates with its environment. The ex-
ecution of an automaton starts in state s0. The environment generates a sequence
of input symbols a0, a1, . . . , ak, . . . and the automaton moves through a sequence
of states s0, s1, . . . , sk, . . . such that sk+1 = δ(sk, ak) for k = 0, 1, . . .. Each state
sk of the automaton corresponds to an output symbol qk = ω(sk). This way
the automaton responds to a sequence of input symbols a0, a1, . . . , ak, . . . with
a sequence of output symbols q0, q1, . . . , qk, . . ..

A finite state time machine adds to the model the dimension of time. Each
timer symbol t ∈ Γ is a variable, which takes values from the set R+. The current
valuation of a variable t is interpreted as the duration of a period of time.

Timer symbols in Γ can be set in an arbitrary order defined by a function:

t : {1 . . . n} → Γ where n = card(Γ )

Particular timers from Γ are now denoted t1 . . . tn.
The current value t̃ of timer symbols can be described as a vector of values:

t̃ : {1 . . . n} → R+ where n = card(Γ )

The current values of particular timers are denoted t̃1 . . . t̃n.
The execution of a finite state time machine starts in state s0, with the values

of all timers equal to 0. For a given state sk and a valuation of timers t̃k, k =
0, 1, . . ., there exists a set Θ of expired timers, defined as:
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Θ(sk, t̃k) = {ti ∈ Γ : sk ∈ τS(ti) and t̃ik ≥ τR(ti)}

The machine executes in state sk with the valuation of timers t̃k, k = 0, 1, . . .,
by taking an input symbol ak and moving to the next state sk+1 defined by the
transition function:

sk+1 = δ(sk, ak, Θ(sk, t̃k))

When the machine enters a state sk+1, k = 0, 1, . . ., time advances and the
values of timers change reflecting the elapsed time interval ε:

t̃ik+1 =

{

t̃ik + ε if sk+1 ∈ τS(ti) and sk ∈ τS(ti)
0 otherwise

When the valuation of timers t̃ changes, the set Θ of expired timers may
change as well. This way a finite state time machine can respond to the flow of
time, even if sk+1 = sk and ak+1 = ak. Please note that the last argument of δ
is a set of all timers expired in a given state and time, hence, no conflict exists
if several timers expire at the same time instant.

Each state sk of the automaton corresponds to an output symbol qk = ω(sk).
By that means the automaton responds to an input sequence a1, . . . , ak, . . . with
an output sequence q1, . . . , qk, . . .. The output symbol q0 = ω(s0) depends on
the definition of function ω only, and has no direct relation to any input symbol
of the machine.

Finite state time machine models a time-driven device, which advances time
with a fixed increment of ε time units. After each such increment the values of
timers and the machine state are updated as described by the transition function.
The device responds to a timed sequence of input symbols a1, . . . , aj, . . . that
occur at time ϑ1, . . . , ϑj , . . . [2]. The flow of time within the input sequence is
not synchronized to ε-increments of the machine. This means that a finite state
time machine may or may not capture a symbol aj of a timed input sequence,
if ϑj+1 − ϑj < ε.

3.2 Examples

Example 1. Consider a train-detecting sensor [5] that signals ‘a’ if a train is
approaching, ‘b’ if not, and ‘Error’ if a failure of the device has been detected.
The sensor can stutter for a time ∆t after a train has passed the sensor. The
control system is expected to filter the stuttering and to react on the ‘Error’
signal immediately.

The behavior of the required system can be described precisely using an au-
tomaton that could measure time (Fig. 2). The automaton starts in state N and
reads the input. If the train approaches, the input reads ‘a’ and the automaton
moves to state A. Now the input can stutter, but the automaton does not react
to signal ‘b’, until it has continued to be in state A at least through the period
∆t. Afterwards, if ‘b’ still holds, the automaton returns back to state N and
continues as before. If the input reads ‘Error’, the automaton moves to state X .
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Fig. 2. Filtering device with detection of errors

The notation in Fig. 2 shows that a transition can be enabled by a combination
of an input symbol and a timer symbol.

Formal definition of the filtering device can be written as follows:

S = {N,A,X}
Σ = {a, b,Error}
Ω = {no approach, approach, don’t know}
Γ = {t}
τ : τ(t) = ({A}, ∆t)
δ : δ(N, a, φ) = A δ(N, b, φ) = N δ(N,Error, φ) = X

δ(A, a, φ) = A δ(A, b, φ) = A δ(A,Error, φ) = X
δ(A, a, {t}) = A δ(A, b, {t}) = N δ(A,Error, {t}) = X
δ(X, a, φ) = X δ(X, b, φ) = X δ(A,Error, φ) = X

s0 = N
ω : ω(N) = no approach ω(A) = approach ω(X) = don’t know

The granularity of time ε defines the responsiveness of the system. The re-
sponse on the output to a change of the input signal cannot be guaranteed
earlier than after time ε. The length of the acceptable delay has not been de-
fined in [5].

Example 2. Consider a timed automaton [2], which measures time using two
clocks: t1, t2 (Fig. 3). Clock t1 is reset and starts measuring time when the
automaton moves from s0 to s1 reading input a. A check (t̃1 < 1) in state s2
allows for a transition from s2 to s3 only within 1 time unit after processing a.
A similar mechanism of starting clock t2 while reading b and checking its value
while reading d ensures that the delay between b and the transition from s3 to
s0 is always greater than 2.

Fig. 3. Timed automaton
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A definition of the equivalent finite state time machine can be the following:

S = {s0, s1, s2, s3}
Σ = {a, b, c, d}
Γ = {t1, t2}
τ : τ(t1) = ({s1, s2}, 1) τ(t2) = ({s2, s3}, 2)
δ : δ(s0, a, φ) = s1 δ(s0, ξ, φ) = s0 for all ξ ∈ {b, c, d}

δ(s1, b, Θ) = s2 δ(s1, ξ, Θ) = s1 for all Θ ⊆ {t1}, ξ ∈ {a, c, d}
δ(s2, c, φ) = s3 δ(s2, c, {t2}) = s3
δ(s2, c, {t1}) = s2 δ(s2, c, {t1, t2}) = s2

δ(s2, ξ, Θ) = s2 for all Θ ⊆ {t1, t2}, ξ ∈ {a, b, d}
δ(s3, d, φ) = s3 δ(s3, d, {t2}) = s0

δ(s3, ξ, Θ) = s3 for all Θ ⊆ {t2}, ξ ∈ {a, c, d}
s0 = S0
ε = 1

Output elements Ω,ω do not exist in timed automata and can be defined
arbitrarily.

4 Program Generation

PLC controller is a device that cooperates with its environment through a set
of input and output signals. The controller executes in a loop, which begins
with polling the inputs and ends up with setting the output signals. What can
be observed from the outside of the controller is a sequence of output signals,
yielded in response to a sequence of the input signals. Cyclic execution of a
controller can be described in a pseudo-code, which creates a reference model
for PLC execution:

state = initial state();
loop forever {

input = poll the input();
timers = set timers(state,active timers());
state = next state(state,timers,input);
output = count output(state);
set the output(output);

}

The operating system of a PLC controls the flow of time and executes the
following actions:

– sets the initial state (initial state),
– executes the loop (loop forever),
– sets the output (set the output) and polls the input (poll the input) just

between the two consecutive loop cycles,
– controls time flow and sets the expired timers (set timers).
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What the programmer must do is to write a code for:

– selecting the active timers (active timers),
– calculating the next state of the controller (next state),
– calculating the output (count output).

4.1 Defining a Finite State Time Machine for an UML Statechart

The required behavior of a PLC program is defined by means of a hierarchical
statechart (Sect. 2). The hierarchy of states can be described as a pair H =
(Sc, h) where:

Sc is a finite set of states of the statechart,
h : Sc→ 2Sc is a partial function, such that:

(∃sc0 ∈ Sc)(∀sc ∈ Sc)[sc0 /∈ h(sc)] – there exists a root of the hierarchy,
(∀sc 6= sc0)(∃sc′ ∈ Sc)[sc ∈ h(sc′)] – each but root state has a super-state,
(∀sc, sc′ ∈ Sc)[h(sc) ∩ h(sc′) = φ] – the sets of sub-states are disjoint,

It can be proved that a hierarchy of states H is a directed tree graph. Function
h assigns a set of sub-states to each super-state. The root state sc0 of the tree
encircles the entire hierarchy and usually is not shown in the graphical diagram
of a statechart. The set of leaves of the tree can be defined as:

L = {sc ∈ Sc : h(sc) = φ}

A compound state s of the hierarchy is a partial function, defined for each sc /∈ L:

s : Sc→ Sc such that: (∀sc /∈ L)[s(sc) ∈ h(sc)]

It can be proved that for each compound state s ∈ Sc there exists only one
path P s = sc0 . . . scn from the root state to a leaf state such that sci ∈ h(sci−1)
for i = 1 . . . n. Path P s will be called an active path in s, and the leaf state at
the end of P s will be called an active state, denoted sc(s).

The hierarchy of states is coded into the states of bits (flip-flops) inside the
PLC controller. The coding algorithm traverses the hierarchy in a top-down
manner and assigns a separate group of bits to code the sub-states of each
super-state. The result is a vector of bits, capable of storing all possible values
of function s. A valuation of bits within this vector represents a compound state
s of the hierarchy. Each such valuation is also a state s of the equivalent “flat”
finite state time machine. This way the set S of states of the finite state time
machine consists of all compound states of the hierarchy.

For example, only one bit is needed at the highest level of the hierarchy in
Fig. 1 to distinguish the states A and B, one additional bit to code the sub-states
A1 and A2 that are nested within the state A and another two bits to code the
sub-states B1, B2 and B3 within the state B. Such a 4-bit coding covers all
the possible states within the hierarchical state diagram. At the same time each
particular combination of the four bits defines an individual state of a “flat”
finite state time machine.

The other elements of a finite state time machine A = (S,Σ, Γ, τ, δ, s0, ε, Ω, ω)
are defined in the following way:
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– the set of input symbols Σ corresponds to the set of events that are assigned
to transitions within the UML state diagram,

– the set of timers Γ corresponds to the set of time events within the statechart
and the timer function τ is derived from the definitions of those time events,

– transition function δ captures all the transitions defined within the UML
statechart in such a way that:
1. Each transition of a statechart from a state sc ∈ Sc adds to the domain

of function δ one element for each leaf state sci that is nested at an
arbitrary level within this state sc; each such element is a triple (s, a,Θ),
in which s ∈ S has the active state sc(s) = sci.

2. The value of function δ for such an element is a new state s′ ∈ S such
that the active state in path P s′ is the initial state s0(sc

′) of the target,
if the target is a state sc′ ∈ Sc, or is a sub-state s(sc′) of the target, if
the target is a history indicator within a state sc′.

– the state s0 is the coded initial state of the UML statechart,
– the set of output symbolsΩ and the output function are derived from actions

that are defined within the UML statechart.

Granularity of time ε is the only element that must explicitly be added to the
model, as UML state diagram is not of discrete type. However, as pointed out
in Sect. 3.1, granularity of time defines a constraint for the timing within the
timed input sequence, which is generated by the environment.

4.2 Mapping of a Finite State Time Machine into a PLC Program

The semantics of a PLC program, i.e. the meaning within its application domain,
is a mapping, which converts a sequence of input signals into a sequence of output
signals. If we establish a mapping between the input signals of a PLC and the
input symbols of a finite state time machine, and another mapping between the
output signals of a PLC and the output symbols of a machine, we can think
about a finite state time machine as of a model of a PLC program.

The behavior of a PLC program is defined formally within the reference model
by the semantics of its programming language, which may be one of the IEC
1131 languages [9], e.g. ladder diagram or structured text. The behavior of a
finite state time machine has also been defined formally in Section 3.1. By that
means a method for translating a high level abstract model of finite state time
machine (S,Σ, Γ, τ, δ, s0, ε, Ω, ω) into a PLC program can formally be defined.
The method consists of the following steps:

1. Mapping of sets S, Γ,Σ,Ω into states, timers, input signals and output sig-
nals of a PLC.

2. Defining function active timers consistently with function τ .
3. Defining function next state consistently with function δ.
4. Defining function count output consistently with function ω.
5. Code generation.

The mappings of sets S, Γ,Σ,Ω into states, timers, input signals and output
signals of a PLC can be arbitrary one-to-one mappings.
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5 Case Study

A bottling line (Fig. 4) consists of a bottle supply with a gate, a conveyor system,
a scale platform and a bottle-filling pipe with a valve. Bottles to be filled are
drawn one by one from the supply of bottles and moved to the scale platform
by the conveyor. As soon as the bottle is at required position, a contact sensor
attached to the platform is depressed and the bottle-filling valve is opened. The
scale platform measures the weight of the bottle with its contents. When the
bottle is full, the bottle-filling valve is shut off, and an operator manually removes
the bottle from the line. Removing the bottle releases the contact sensor, and
the entire cycle repeats automatically.

Fig. 4. Bottling line

The current line status is described by a set of two-state signals issued by the
plant sensors and switches:

S start the line: A manual signal that enables the repetitive line operation;
P suspend the line: A manual signal that suspends temporarily the bottling

process;
R bottle ready: A signal from the electrical contact of the platform sensor;
F bottle full: A signal issued by the scale.

The controller reads the current line status and yields the three control signals:

G open the gate of the bottle supply (a pulse signal of the length ∆t1);
T start the conveyor;
Z open the bottle-filling valve.

There are three different modes of control of the bottling line: Working (reg-
ular line operation), Blocked (when something went wrong) and Suspended (a
maintenance mode). Particular modes of control are modeled as states of a stat-
echart (Fig. 5). Working mode is a super-state, which has four sub-states nested
that correspond to the particular phases of the bottling line operation.

The process of building the requirements specification, safety analysis and the
optimization of the model, is described and discussed in detail in [8,16].
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Fig. 5. Optimized state diagram of a bottling-line

5.1 Finite State Time Machine

A selected coding for states and output signals is shown in Table 1. There are six
states at the lowest level of nesting shown explicitly in Fig. 5 and listed in Table 1.
However, the history indicator adds an additional implicit memory of the former
sub-states of the state Working that are to be re-entered from Suspended. Hence,
there are in fact four sub-states nested in the state Suspended that correspond
to sub-states of the state Working.

Table 1. The coding of states (flip-flops: M1, M2, M3, M4, output signals T, G, Z)

M1 M2 M3 M4 Bottling line state T G Z

0 0 Blocked 0 0 0

1 0 0 0 Stopped 0 0 0
1 0 0 1 Gate Open 1 1 0
1 0 1 1 Moving 1 0 0
1 0 1 0 Bottle Filling 0 0 1

1 1 ∗ ∗ Suspended 0 0 0

Finally, there are nine states, sixteen input symbols, three output symbols
and two timers in the finite state time machine, which defines the semantics of
the state diagram in Fig. 5. These sets together with the timer function and the
transition function are defined below:

S = {Blocked, Stopped, GateOpen, Moving, BottleFilling,Suspended-Stopped,
Suspended-Open, Suspended-Moving, Suspended-Filling}

Σ ={S · P · R · F, S · P · R · F , S · P · R · F, S · P ·R · F , . . . , S · P · R · F}
Γ ={t1, t2}
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τ : τ(t1) = ({GateOpen}, ∆t1)
τ(t2) = ({BottleFilling}, ∆t2)

δ : δ(Blocked, S, φ) =Stopped
δ(Stopped, P, φ) =Suspended-Stopped
δ(Stopped, S · P ·R, φ) =GateOpen
δ(GateOpen, P, φ) =Suspended-Open
δ(GateOpen, P, {t1}) =Suspended-Open

δ(GateOpen, P , {t1}) =Moving
δ(Moving , P, φ) =Suspended-Moving

δ(Moving , P · R, φ) =BottleFilling
δ((BottleFilling , P, φ) =Suspended-Filling
δ(BottleFilling , P, {t2}) =Suspended-Filling
δ(BottleFilling , P ·R · F, φ) = Stopped
δ(BottleFilling , P ·R, φ) =Blocked
δ(BottleFilling , P , {t2}) =Blocked

δ(Suspended-Stopped, P , φ) =Stopped
δ(Suspended-Open, P , φ) =GateOpen
δ(Suspended-Moving , P , φ) =Moving
δ(Suspended-Filling , P , φ) =BottleFilling

In all other cases δ(s, a) = s and δ(s, a,Θ) = s. These transitions are not
shown in Fig. 5. The usual Boolean notation for the subsets of input symbols is
used in the above definition of the function δ, e.g.: S · P · R represents the set
{S · P · R · F, S · P ·R · F}.

5.2 Program Generation

Each timer symbol of a finite state time machine is implemented within a PLC
controller by a separate timer block of a ladder diagram. A Boolean condition
that sets a timer depends on the coding of this state, which is assigned to the
timer by the timer function τ . For example, the conditions to set timers t1 and
t2 are the following:

(a1) Set t1 = M1 ·M2 ·M3 ·M4
(a2) Set t2 = M1 ·M2 ·M3 ·M4

The transition function of a finite state time machine defines conditions to
set or reset flip-flops. It is implemented by a sequence of Boolean expressions
that depend on the coding of states, input signals, timers, and the definition
of function δ. A complete sequence of Boolean expressions that implement the
transition function is as follows:

(b1) Set M11 = S ·M1 ·M2
(b2) Set M12 = P ·M1 ·M2
(b3) Set M13 = P · t1 ·M1 ·M2 ·M3 ·M4

(b4) Set M14 = S · P · R ·M1 ·M2 ·M3 ·M4
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(b5) Res M11 = (P · R+ P · t2) ·M1 ·M2 ·M3 ·M4

(b6) Res M12 = P ·M1 ·M2
(b7) Res M13 = P ·R · F ·M1 ·M2 ·M3 ·M4 + S ·M1 ·M2
(b8) Res M14 = P ·R ·M1 ·M2 ·M3 ·M4 + S ·M1 ·M2
...................................................
(c1) M1 = M11
(c2) M2 = M12
(c3) M3 = M13
(c4) M4 = M14

The expressions to set timers are placed in the sequence before the expressions
that implement the transition function. This way the values of timers are updated
as soon as possible after entering a new state. Moreover, they are stable during
the entire program execution cycle.

Fig. 6. A part of the program for a bottling line controller

Output function defines conditions to set or reset the output signals in relation
to the current state of the finite state time machine. A sequence of Boolean
expressions that implement the output function can be defined as follows:

(d1) G = M1 ·M2 ·M3 ·M4

(d2) Z = M1 ·M2 ·M3 ·M4
(d3) T = M1 ·M2 ·M3 ·M4 +M1 ·M2 ·M3 ·M4 = M1 ·M2 ·M4
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The sequence (a1) . . . (d3) of Boolean expressions, generated by an automatic
tool from a statechart, or a set of statecharts, defines in all detail a program for
a PLC. Such a program can be expressed in the language of a ladder diagram
or an instruction list [9,17].

Each expression is converted into a single line of the ladder. Disjunction of
terms is represented by parallel branches within the line, while conjunction of
symbols is represented by serial connection of elements within a given branch.
Negation of an argument is implemented by a normally closed contact. Each
timer symbol is implemented by a separate timer provided by the language. A
part of the program for a bottling-plant controller is shown in Fig. 6.

Finite state time machine can also be implemented using a procedural lan-
guage, e.g. C. A description of such a conversion is outside the scope of this
paper.

6 Conclusions

This paper describes an original extension to Moore automata, which is aimed
at the modeling of time. The extended model is translatable, and can be used
as a basis for automatic code generation. The paper describes a formal defini-
tion of a finite state time machine and a method for building the implemen-
tation. The application of the model and the method is illustrated by a case
study of a bottling line controller. The advantages of the method are: Formal-
ity, simplicity, ability of automatic code generation and the potential for formal
analysis.

A disadvantage is complexity that results from exponential growth of the sets
of input symbols and states. However, the concept of input symbol helps in mak-
ing the specification unambiguous, and the concepts of hierarchical state diagram
and history indicator make part of the state space invisible to the modeler. The
full size of the state space appears only at the level of a finite state time machine.
Appropriate representation can make automatic verification of systems of 1020

states feasible [18].
The method described in this paper has been devised mainly for didactic

purposes and has been extensively used within the control systems lab in order
to implement programs for PLC controllers. The experience is such that the
method helps the students in bridging the gap between their math knowledge
and C programming skills at one side, and the reality of industrial control at
the other. The first version of a tool for automatic program generation (ladder
diagram for PLC) is currently being tested.

The plans for future work are aimed at extending the model towards concur-
rent operations that are allowed in the UML-based statecharts. Moreover, we
are working on methods of model verification, preferably using UPPAAL model
checker [19].

The size of code generated in procedural languages and the accuracy of time
in generated code are open problems that are still waiting for research.
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