

Software Engineering Practices:
An Auditor’s Perspective

Krzysztof SACHA1
Warsaw University of Technology, Poland

Abstract. This report details part of the results of five software audits that were
done to evaluate various aspects of the quality in five very big software projects.
One result of our work was a method for software quality evaluation, which is de-
scribed in detail elsewhere. Another result was a review of the software engineer-
ing practices and methods that were used throughout those projects by the devel-
opment companies. The paper presents a survey of these practices and tries to an-
swer the question which software development paradigms, processes and methods
are used in the software industry and which of them can contribute to the final suc-
cess of the project more than the others.

Keywords. Software quality, quality evaluation, software engineering, software
development

Introduction

Software systems are used in many application areas in which a malfunction of the
system can be a source of serious losses or disturbances to the functioning of the soci-
ety. Examples of such application areas are not only command and control systems, but
also public administration, social insurance or post delivery services. The quality of
services offered in these areas depends heavily on the quality and dependability of
software systems that support the functioning of the appropriate public or private or-
ganizations (service providers).

Software development processes consist of a selection of methods and tools that
vary from project to project. It is interesting to know which of the methods described
in the literature are used in everyday practice and how do they work. The question is
vital, as research shows that the success ratio of the software projects is low, when
comparing to other branches of engineering. According to The Chaos study [1, 2] of
the Standish Group, in 1994 only 16% of projects were completed on-time and on
budget, 53% were challenged, i.e. completed but over-budget and over time estimates
and 31% of projects were cancelled. Ten years later The Chaos study reported 29% of
successful projects, 53% challenged, and 18% cancelled. Despite a significant im-
provement (Table 1), the success ratio of the software projects is still far from satisfac-
tion. Similar data can also be found in American Programmer [3].

1 Krzysztof Sacha: Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland; E-
mail: k.sacha@ia.pw.edu.pl

Table 1. Project resolution (source: The Chaos Study, The Standish Group)

Year of research* Successful Challenged Cancelled

1994 16% 53% 31%

2000 28% 49% 23%

2002 34% 51% 15%

2004 29% 53% 18%

* The data were published one year later

The methodology of The Chaos studies was based on questionnaires and inter-
views responded to by IT executive managers of over 50,000 IT projects (during 12
years of research), with the most important part aimed at discovering the key factors of
a project success or failure. The list of the most important factors that cause projects to
succeed changed over the years, and in 2004 was the following [2]: User involvement,
executive management support, clear business objectives, minimized scope, agile proc-
ess, experienced project manager, formal methodology, and standard tools and infra-
structure. Those results reflected a managerial point of view. More technically-oriented
aspects of the software processes and the development methods were outside the scope
of these surveys.

This paper relies on a different methodology. The results presented in this report
are based on the observations that I did during a series of audits and quality evaluations
of five big software development projects ($300 million the biggest) that were con-
ducted for public administration in Poland in the last five years. During those evalua-
tions, the evaluating team was positioned just between the customer and the develop-
ment company, and dealt with the deliverables of the projects. Therefore, the research
came closer to the technical level and was aimed at identification and evaluation of
processes and methods that were used by software developers in their work.

The goal of this paper is to summarize our observations pertaining to the software
processes and the development methods that are used by big development companies.
Because the contract awards for building the systems considered in the paper were
made through a competitive bid process with a participation of huge global companies,
we believe that the results of our observations are representative to the contemporary
IT market. According to our contracts we are not allowed to describe the details of
particular systems and the development of these systems. Therefore the paper does not
present a case study, but is a survey of practices that are used.

The main body of the paper is divided into five parts, the first of which provides
the reader with an overview of the characteristics and the context of projects and sys-
tems that were subject to our evaluation. The results of projects considered in this pa-
per are described, and related to major success/failure factors of The Chaos study in
Section 2. Development processes and methods used throughout these projects are
described in Section 3, and the evaluation of several process and product metrics is
given in Section 4. Section 5 refers to a specific aspect of the development that is best
visible to the customer of an IT contract, i.e. acceptance testing. Final remarks and
statistics are gathered in Conclusions.

1. Evaluated Projects

The projects under evaluation were typical on the IT market: The developed sys-
tems were going to deliver common services, the development contracts were awarded
through a competitive bid process and the development companies applied well known,
yet different, development methods and tools.

All the development companies were big and had strong market position. One was
a branch of a huge global company headquartered in US, while the other four were big
national companies ($500 million annual revenue the biggest) with strong international
cooperation. Therefore the observations described in this paper can be considered rep-
resentative of the global software development market.

The systems covered in this paper are the following:

• Integrated Information System for Social Insurance Institution that supports
individual accounts of all employees and all employers in the country.

• Integrated Administration and Control System (IACS) that supports direct
payments within the European Union common agriculture policy.

• Common Agriculture Policy System (CAPS) that supports intervention pur-
chase, storage and sale within the European Union common agriculture policy.

• Computerized Postal System that controls the process of transferring and
tracking of registered shipments across the country.

• District Level Elections Support System.

All of those systems cover the area of the entire country and influence the living
conditions of millions of people. Therefore, they fall into the category of big or very
big systems. A set of attributes to characterize the size of the information systems con-
sidered in this paper is given in Table 2.

Table 2. Size attributes of the information systems considered in the paper

Number of Social
Insurance IACS CAPS Postal

System Elections

Accounts 17 000 000 2 300 000 800 000

Documents per year 300 000 000 12 000 000 1 000 000 540 000 000*

Users 23 000 8 500 500 2 500 6 000

Sites 300 330 17 17 5 500

* 1 500 000 registered shipments per day

The attributes given above are not quite comparable. Nevertheless, we believe that
they characterize the size of an information system much better than traditional meas-
ures of lines-of-code or function points. In the first three cases the number of docu-
ments per year means the number of real documents that are sent by the customers and
that must be scanned and processed by the system. In case of the postal system this
number refers to the bulk of registered shipments that must be handled. The number of
sites equals to the number of local branches of the organization, each of which has

usually multiple users. However, in case of Election System those sites contained in
most cases a single user only.

In the final result, two of five systems considered in this paper were built within
the budget and schedule, in two cases the schedules were not met but the core elements
of the systems were deployed with an acceptable delay. One project failed completely
and did not provide the required services at the deadline. These statistics (40% of suc-
cess, 40% of challenged and 20% of failed projects) look a bit better than the data of
the Chaos study shown in the last two rows of Table 1.

The processes of building systems listed in Table 2 were subject to a number of
evaluations made on behalf of the customers or of the state institutions of control. One
of the evaluators was the Software Engineering Group at Warsaw University of Tech-
nology. The evaluation took place in the years of 2002-2004 and was based on an in
depth analysis of the deliverables of the particular development activities. The primary
goal of our evaluation was the assessment of the expected quality of software under
development in one case, and the evaluation of the quality of phases of the software
process in three cases; in one case we tried to find the reasons of a catastrophe.

The typical audit methodology, focused on the quality evaluation of the develop-
ment process [4, 5], could offer only a limited set of means for the quality evaluation of
the software product. Software quality evaluation methods described in the literature
[6-10] represented the software development organization point of view. Neither of
those methods fitted well into the environment of a software quality evaluation, which
was done on behalf of external authorities by people from the outside of the develop-
ment company. One difference was such that we had only limited access to the project
data, and the quality evaluation had to be based on an evaluation of the deliverables of
the software process that had been enumerated in the contract. Another difference was
such that we had no historical data of the manufacturer related to a set of similar pro-
jects. Therefore we had to develop a new method, which was based on a modification
to the GQM measurement model [6]. A detailed description of the methodology that
was developed by us for the purpose of evaluation can be found in [11, 12].

2. Project Success/Failure Factors

It is not easy to isolate and evaluate the influence of the key success factors, identified
in The Chaos [1] and cited in the Introduction, on the final result of a project. An at-
tempt of such an evaluation is given below.

(1) User involvement and (2) executive management support were high in all but
one project considered in this paper. The customer organizations that contracted the
systems created special departments to help the development companies and to super-
vise the project. In one case user feedback was missing; this project failed.

(3) Business objectives were clear in four of five cases: Because of a change in le-
gal regulations, the customer organizations could not function without a new support
system any more. These four systems were built and put into operation. In one case the
system was not indispensable for the customer organization; this project failed.

(4) Minimized scope means a decomposition of one huge project into a series of
smaller projects, each of which can be completed within a shorter period of time and
smaller budget. Such a type of project planning was applied in two cases, however, in a
different way. In one case a huge centralized system was functionally decomposed into

a set of independent subsystems and modules coupled through a common database.
The development of the system was then divided into a series of projects, each of
which was restricted in scope to a subset of modules. This project has been delayed,
but went ahead despite significant evolution of the requirements.

In the second case a project of an inherently distributed system was decomposed
into two completely separate projects. One of them covered full functionality of a sin-
gle business site, while the second project, started after full completion of the first one,
covered the cooperation between the business sites. Both of these subprojects were
finished within time and budget.

(5) Agile process. There is confusion in understanding agility in The Chaos study.
None of the projects considered in this paper used an agile method, e.g. Scrum or XP
[13]. Public systems are contracted through a competitive bid process, which requires a
complete requirements specification available at the very beginning. Also the deadline,
the price and the number of iterations are always written into the contract. None of
these data is available at the beginning of an agile project. Therefore, I can hardly
imagine the use of an agile method to contracting and building a public system.

However, if one identifies agility with iterativeness of the development process,
then two of five projects were conducted this way. Both of these projects were finished
within time and budget.

 (6) Experienced project manager. In one case a system was built by a consortium
of a few independent companies, with no hierarchical dependencies defined between
them. The stakeholders discussed and agreed upon the schedule and the scope of tasks
performed by the development teams. This way a sort of collaboration management
was implemented, with no single project manager on top of the project structure. This
project failed. In the other cases project management responsibilities were clearly de-
fined and the results of those projects were much better.

(7) Strict methodology, though not very formal, was used in four of the projects.
All of them were ultimately completed. In one case no strict methodology was used.
This project failed.

(8) Standard software tools and infrastructure can resolve many technological
problems and allow the development team to concentrate on business aspects of the
application. In all but one project described in this paper, standard middleware was
used as the main integrating keystone of the application. In one case a proprietary mid-
dleware package was used. This project failed, and an improper functioning, or im-
proper usage, of this tool contributed to the defeat of the project.

There is one key factor missing in the list of 2004, which was present at the earlier
editions of the Chaos study. This is the clearness and stability of the requirements
specification. In two projects considered in this paper the requirements were stable;
these projects were finished successfully. In two other cases the requirements varied.
Both of those projects were delayed and over budget.

A detailed description of the final results of five projects considered in this paper
(Table 2) can be summarized as follows.

Integrated Information System for Social Insurance Institution has not been com-
pleted within the schedule and budget. In fact, it is still being built, with the time over-
run over 100%. However, the delay cannot be attributed to the methods that were ap-
plied during the project, but rather to the changes in the external environment of the
project. It was clear from the very beginning that a powerful, quite new information
system was indispensable to support the implementation of a very general reform of the

rules of social insurance system in the country. The starting day of the reform was
fixed by the government. A feasibility study of the system had been done, and the date
at which the development had to start (in order to have the system ready at the date of
reform) was known. However, the legislation process was late and when the develop-
ment-start-date arrived, the necessary legal acts had still not been passed by the parlia-
ment. At that point in time the decision either to start the development or not, created
the following risks:

• If they waited for the legislation, the time remaining for development would
shorten dramatically and the deadline could not be met.

• If they started the development process immediately, the risk appeared of im-
plementing requirements that differed from those ultimately present in the leg-
islation act.

There was no good answer to resolve this dilemma. In our case the project was
started on the basis of a draft version of the appropriate acts. Unfortunately, a parlia-
mentary election arrived and the new government changed the acts and the require-
ments of the information system significantly. An annex to the contract was signed
nearly one year after the development had been started and three years before the ex-
pected release of the system.

The final result of the project was not catastrophic, however. The core elements of
the system were deployed and started working five months after the deadline. Due to
the one year clearance of the social insurance payments, the delay appeared not essen-
tial to the success of the entire insurance reform. The legislation pertaining to social
insurance is still evolving and the remaining modules of the system are still being built.
The development used an Oracle-based structured method [14] and tools.

The story of IACS system was a bit similar. The system had to be built because of
the accession of Poland to the European Union (EU). The date of the accession was
agreed upon, but very detailed negotiations related to the Polish benefits of the com-
mon agriculture policy of EU lasted nearly to that date. As result, the development of
IACS started on the basis of a draft version of the agreement. When the final agree-
ment appeared different, an annex that changed the requirements was signed two and a
half year after signing the original contract. The core elements of the modified system
were released about half a year later, just in time to enable farmers to benefit from the
common agriculture policy. However, a few auxiliary elements of the system were
built much later. The system was built using RUP-based object-oriented methods [15].

Two systems: CAPS and Post Delivery Support System were developed in time
and within the budget. Both of the two had well established requirements specifications
that did not change during the development process. The development processes relied
on Oracle-based methods and tools, however, use case specification was also created in
one of these two projects.

The District Level Elections Support System crashed at the date of election. Inves-
tigation showed the lack of proper project management, the lack of sound methodol-
ogy, and significant technological problems.

The lesson, which I learned from the above stories, is such that the key factors of
success are user feedback, competent project management and a stable requirements
specification. If the requirements evolve, then restricting the scope of the project and
adding a dose of agility to the development process can create a good base to cope with

the problem. The development methods are less important, provided that a certain level
of technology competence is preserved. Such a conclusion matches quite well the con-
clusions of the Chaos studies [1] cited in the Introduction.

3. Software Processes and Development Methods

There are two major approaches to software development and two groups of methods
that are currently used by the development companies on the IT market: Structured
approach and object-oriented approach. The methods of both groups can be used
within the framework of various software processes. Two of these processes that
dominate nowadays in the industrial practice are waterfall model [14], and incremental
and iterative RUP software process [15].

Software systems that are considered in this paper were created using various com-
binations of a software process and a development method. We identified both of these
two constituents of the development process using the following metrics [12]:

• A list of methods declared in the contract and in the analytical specification.
• A mapping from the steps of the software process into the set of methods.
• A list of artifacts and a mapping from the set of artifacts to the set of methods.
• Qualitative evaluation of the deliverables of the particular steps of the process.

The results of the evaluation are shown in Table 3. Two projects were conducted
using structured methods and tools, one project relied on an object-oriented methodol-
ogy and in one case a mixture of methods was used. This data is in quite a good corre-
lation with data of The Chaos study, which reported that 70% of projects developed
from scratch in 2000 used structured methods and languages, while the other 30% was
based on object-oriented methods and models.

Table 3. Processes and methods used in the development of software

 Structured methods Object-oriented methods ad hoc

Waterfall process 2.5* 0.5*

RUP process 1

ad hoc 1

* One project started with an object-oriented use case model, but was continued using structured methods.

The use of the waterfall model did not necessarily mean that the entire system was
developed, implemented and deployed within a single sequence of consecutive steps.
On the contrary, the system under development was usually decomposed into a set of
functionally independent subsystems that were built independently of others. The sys-
tem could then be integrated by the manufacturer and deployed at the customer’s site in
one step (as an entity). However, it could also be constructed incrementally, with par-
ticular subsystems created and deployed within separate runs of the waterfall process.

The initial requirements statement, which began the development of systems con-
sidered in this paper, consisted mainly of legal acts passed by the national parliament

or by the European Union, accompanied by several business demands and constraints.
In all cases the requirements analysis began by doing the context analysis, which led to
a definition of the context schema that documented the external systems, organizations
and users, and the required inflows and outflows of the developed system. The ex-
pected size and frequency of those inflows and outflows were estimated. The values of
those estimates corresponded to the number of ‘documents per year’ in Table 2.

The kind of methods that were used to perform the analytical activities, or steps,
varied from project to project. We identified and evaluated those methods using a set
of metrics, which can be exemplified by the following samples [12]:

• A list of methods declared for the project.
• A mapping from the steps of the software process into the set of methods.
• A mapping from the set of user documents and reports identified in the acts to

the set of inflows and outflows.
• An evaluation of the analytical products.

The analysis of the required behaviour of systems under development was done in
two of five cases using object-oriented use case method, while in another two cases a
hierarchy of functions was built. Data structures were modelled at this stage of devel-
opment using entity-relationship diagram notation (ERD) or class diagrams created
from the conceptual perspective. In one case the requirements analysis was performed
intuitively, without being specified in any formal document.

Detailed analysis and design relied in three cases on a principle of structured func-
tional decomposition. The initial requirements statement was subject to a critical re-
quirements analysis, which led to a multi-level hierarchy of functions. The flows of
data between the functions at each level of the hierarchy were defined and documented
by means of data flow diagrams. The structure of data that was stored and passed
within the system was modelled using entity-relationship diagrams. The processing
assigned to each particular function was documented by means of flowcharts and tex-
tual specifications, accompanied by paper-based prototypes of the user interface
(screenshots). Program structure and data base structure were derived from the above
models using Oracle-based methods and tools [14].

Object-oriented analysis and design was based on the RUP methodology. First, the
use case method was applied within a two-step process. In the first step business actors
and procedures were identified, and the scenarios together with the pre- and post-
conditions of those procedures were defined and documented. In the second step the
definitions of actors were refined, and the user functions that were to be implemented
by the system were derived and specified. The specification of a user function included
a set of alternative scenarios, a definition of exceptions and exceptional actions, and
the conditions to start and stop each particular function. The structure of data that was
identified within the application domain was modelled using class diagram notation,
and the behaviour of the most important classes was described by means of state transi-
tion diagrams.

Then, the logical structure of the application was designed using patterns [16] and
documenting the results by means of class and interaction diagrams. Finally, physical
components were defined and implemented. According to our observations the domi-
nating implementation languages were SQL, Java and C++.

4. Evaluation of Methods

It was a superficial similarity between the final results of the analysis done by
means of structured and object-oriented methods. In both cases a set of functions was
defined, accompanied by a set of ERD or class diagrams. There was, however, one big
difference between the two.

Hierarchy of functions and data flow diagrams resulted from a functional decom-
position of the required processing. The top level functions within the hierarchy were
nearly independent, as they referred to different business processes at the customer
organization. The second-level functions had also very limited interplay, as they re-
ferred to different aspects and procedures within a given business process. The hierar-
chy of functions was then converted into the hierarchy of subsystems and modules, in
which the top-level functions became subsystems that were developed independently,
and the second level functions became modules of those subsystems. An advantage of
such a development process was a good traceability of the design to the analysis. A
disadvantage was such that the functions did not correspond directly to the business
procedures at the customer organization and were not very useful in defining the ac-
ceptance testing scenarios.

The set of user functions, identified by means of the use case method, did not cre-
ate any hierarchical structure. Such a flat and huge set of functions (about five hun-
dreds in IACS) was nearly useless for the design purposes. Instead, a class model was
developed with several thousands of classes. The classes were packed into packages
that had very little to do with the initial user functions. As result, traceability from the
design to the analysis was poor, and we found the verification of the design with re-
spect to the analysis very difficult.

The advantages of using the use case method were: Completeness of the functional
requirements and direct support of the acceptance testing process. The analytical arte-
facts that were created consisted of:

• Use case specifications and preliminary data model.
• A working prototype of the user interface.
• Preliminary test plan, closely related to the use case scenarios.

In this package the use case scenarios defined precisely the desired behaviour of
the software, the prototype enabled the user to play with the (non-existing yet) soft-
ware, and the test scenarios defined the verification method of the requirements. Usu-
ally, test scenarios corresponded directly to the respective use case scenarios. Prelimi-
nary data model (class diagrams) created a bridge towards future design activities.

Our evaluation of the quality of functional requirements specification in struc-
tured as well as object-oriented version was, in general, positive. Unfortunately, this
positive evaluation did not spread out on the area of non-functional requirements.
Performance requirements were, in general, not stated clearly during the analysis.
Sometimes, an estimation of the number and the volume of input documents were
given. Quantitative metrics, like response time or throughput measured in transactions
per time unit [17], appeared in the specification of one system only. Instead, arbitrary
(usually high) requirements for the performance of hardware were sometimes formu-
lated.

Security requirements were described in an extensive, but qualitative and untesta-
ble way. A typical requirement was such that the system should use “the most effective
and up to date tools in order to guarantee perfect protection of data and other re-
sources”. The position and length of the security requirements showed, however, that
the customers were aware of the threat and were willing to spend money on the protec-
tion mechanisms.

The only kind of non-functional requirements that was stated in a clear and test-
able way was availability. The following metrics were used to define the required reli-
ability and availability of the developed software systems:

• The percentage of time during a year that the system services must be avail-
able.

• The maximum time for recovery after a crash.
• The minimum period of time, within which a local server must provide the re-

quired functionality after a break to the communication links to a central
server.

• The ability of process migration in case of hardware break down.
• The ability of re-running all the transactions that were lost as result of hard-

ware break down.

The first three metrics were written into a service contract between the customer
and the manufacturer of software. Test cases to verify the last two metrics were built
into the test plans of the acceptance testing phase.

Comparing the quality of the four systems and their development processes, we
did not observe definite superiority of one approach over the other. However, any kind
of methodology worked better than ad hoc development that did not adhere to any
method or standard and eventually led the project to a total collapse.

A surprising observation was instability of the development progress exposed by
the RUP process. The development was driven by a use case model, which was created
in the elaboration phase, and then used to plan the incremental development of the
software in the construction phase. The construction phase started with the core re-
quirements (a set of core use cases), and proceeded in such a way that the consecutive
increments added functionality to the previously developed part of the software. It was
said [15, 18] that this should lead to a stable architecture and modules.

In order to measure the stability of the development progress we counted the files
of the source code that had been issued in the consecutive iterations, and compared the
size of files that had the same name. If names and sizes of two files were the same, we
assumed that the code in those files had not been changed. If the names were the same,
but the sizes were different, we assumed that the code was retained with modification.
Then, we calculated the following metrics:

• The percentage of files that were retained without modification in the next
consecutive iteration.

• The percentage of files that were retained without modification in the final
product.

• The percentage of files that were retained, but modified, in the final product.

The values of metrics, calculated for two components (subsystems) of the IACS
system are shown in Figures 1 through 3. One of these components was responsible for
collecting submissions and handling direct payments within the European Union com-
mon agriculture policy. The other component was responsible for the identification and
registration of bovine animals. (There were also other components in IACS, such as:
geographical information subsystem, accounting component, farm and animals data
bases.) The characteristics of code of the two components are given in Table 4.

Table 4. Characteristics of the sample components of IACS

Characteristic Payments Animals

Number of classes 1 879 2 370

Number of lines of code 277 948 288 873

Number of lines of comment 82 343 60 410

A relation of comments to code 29.63% 20.91%

Percentage of classes with the relation of comments to code less than 10% 4.00% 33.50%

Percentage of classes with no comments 0.11% 12.57%

Percentage of classes with cyclomatic complexity [19] of a method ≥ 10 6.44% 6.82%

Percentage of classes with cyclomatic complexity [19] of a method ≥ 20 1.54% 1.54%

The stability metrics showed that the integration of code after a subsequent itera-
tion required usually deep modification to that part of software that had been con-
structed and released earlier. The scope of changes to the code, which we measured
between two consecutive increments, exceeded in average 40% of the total size of the
existing code (Figure 1). Percentage of code that was retained without modification in
the final product increased from iteration to iteration, but was well below 50% in the
first half of the development process.

Figure 1. Percentage of code retained without modification in the next iteration

 I II III IV V iteration number

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

First component

Second component

One explanation of this phenomenon is such that the method was not clearly un-
derstood by the developers and was misused. The other one is such that the partitioning
of the developed software system driven by the use cases violated the rules of modu-
larization: A particular increment of software did not constitute an internally consistent
module with relatively weak interfaces to its environment. Instead, just the opposite
was true, and the subsequent increments that were added within the loop of the con-
struction phase, were strongly interrelated to the previously constructed part of soft-
ware. The integration of such strongly related components imposed huge refactoring of
the existing code.

Figure 2. Percentage of code (issued in an iteration) retained in the final product

Figure 3. Percentage of files retained with modification in the final product

A major problem, which we observed in relation to such a development practice,
pertained to the acceptance testing that was done after each iteration. The modifica-
tions to the code that had been released earlier made the development process unstable

 I II III IV V iteration number

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

First component

Second component

 I II III IV V iteration number

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

First component

Second component

in that some errors that had appeared and had been fixed in an earlier version of the
software, re-appeared again in a subsequent release of the same software component.
Such a phenomenon was particularly disappointing for the customer, who wanted to
use the existing part of the system that had been released in the latest iteration.

A minor problem was the scope of verification that was needed after each iteration
of the software construction process. Because the modifications affected all kinds of
development artefacts: Analytical, design and code, the same artefact, e.g. a sequence
diagram, had several versions that had to be evaluated many times in a sequence.

5. Acceptance Testing

All the weak and strong points of the requirements specification, described in Section
4, were reflected in the artifacts prepared for acceptance testing. The well defined func-
tional requirements were converted into well defined test scenarios, composed of test
cases defined in terms of input data, output data and evaluation criteria. The set of test
scenarios created a test plan with defined schedule and allocated resources (a testbed
and a test team). Similarly, the lack of well defined non-functional requirements re-
sulted in poor quality of non-functional testing.

A unit of acceptance testing was an “application”, i.e. a functional module of a
system. The scope of the application was defined by a set of functions (system use
cases) that was subject to testing. We assessed the test plan of an application and the
actual testing process using the metrics similar to the following:

• The coverage of functions by test cases.
• The coverage of functions by the sets of test data.
• The coverage of non-functional requirements by test scenarios.
• Qualitative evaluation of the actual test procedure.

The range of values of the first two metrics that we measured for a set of applica-
tions of a system is given in Table 5. The values below 1 were definitely too low and
warned about those cases, in which only the main runs of functions were tested. The
values above 1 could be confronted with the number of runs of the tested functions.

Planning of acceptance testing was the step of the development process in which
the application of use case method appeared particularly beneficial. Use case scenarios
could nearly directly be converted into test scenarios, and the coverage of the main and
alternative use case scenarios by test scenarios was one of the best understood metrics
that could characterize the quality of the testing process.

Table 5. Measured values of test coverage metrics

Metric Range Average value

Number of: Test cases / Functions 0.70 ... 7.00 2.34

Number of: Data sets / Functions 0.67 ... 15.00 3.80

The most important shortcomings that we found in test plans of the acceptance
testing were the following:

• Low coverage of functional requirements by test scenarios – the set of tests
offered by the development company covered sometimes the main scenarios
of the use cases only, while neglected at least part of the alternative scenarios
and exceptions (Table 5).

• Incomplete definition of the actual system state at the start of the testing proc-
ess – this included the lack of component version numbers, lack of a specifi-
cation of the initial contents of the data base and of a specification of devia-
tions from the target hardware architecture.

• Imprecise definition of the expected test results – in some cases the expected
results were defined by a statement “Correct results of the computation.”

The first of the above listed shortcomings (low coverage of tests) decreased the
credibility of the acceptance testing process. The second one affected reproducibility of
the test results and made the analysis of the current project status difficult when a total
disaster happened. The last drawback disorganized the testing process and provoked
discussions about whether or not the results that had been obtained were correct, which
was not always obvious.

Despite the shortcomings described above, the evaluation of the quality of the
functional part of the test plans was positive. The evaluation of non-functional part
looked, however, much worse. The lack or precise definition of performance and other
non-functional requirements led to the lack of systematic tests within the test plan. The
evaluation criteria offered by the development company could not be traced back to the
requirements, but rather reflected the “achievements” of the actual design and imple-
mentation. If the data was questioned by the customer, a negotiation process was
started at the level of the Steering Committee of the project. In one case the perform-
ance tests had to be developed by our team.

The way in which the acceptance tests were executed showed that the customers
made a significant effort in order to make this process credible. In all but one case the
testing process was planned in the project schedule, the test procedure was defined and
the necessary resources were allocated.

The mechanics of testing was not uniform. In one case the testing process was cen-
tralized and all tests were executed in sequence on a single workstation with the results
being displayed on a screen by a computer projector, and evaluated by the commission.
In other cases the tests were performed by testers sitting on a set of individual worksta-
tions. All the events that occurred during the testing process were formally recorded in
a log and the errors revealed were classified according to their importance, and submit-
ted for fixing according to a predefined procedure.

6. Conclusions

The observations related to software development that are presented in this paper are
based on the analysis of project documentation and evaluation of metrics exemplified
in the previous sections of the paper. Not all of those metrics are quantitative, i.e.

evaluate to a numerical value [10]. However, many of them are formal, i.e. take the
form of a mapping between the sets of artefacts or documents.

The results of our work confirmed the results of the survey [1]. Even though the
number of projects in our research was small, we could observe a good correlation
between the key success factors identified in [1] and the results of the projects evalu-
ated within the scope of our research.

Another result of our study was an observation of a gap between the scope of uni-
versity courses in software engineering and the reality of the software industry. The
majority of software engineering courses are concentrated on object-oriented methods,
while structured methods are usually considered obsolete. The reality is different, and
structured methods still occupy at least half of the software development market.

Some numerical data that were collected during our study in order to characterize
the current practices in software engineering are shown in Table 6.

Table 6. The observed characteristics of the software projects

Characteristic Values

Software process waterfall – 3
iterative – 1

Development methodology structured – 2.5*
object-oriented – 1.5*

Use of CASE tools upper case – 4
lower case – 5

Data base architecture centralized – 5

Quality of functional testing adequate – 3
low coverage – 1
lack of tests – 1

Quality of non-functional testing adequate – 1
low coverage – 3
lack of tests – 1

* One project started with an object-oriented use case model, but was continued using structured methods.

References

[1] The Chaos Report, Standish Group International, Inc, West Yarmouth, MA (1995, 2001, 2003)
www.standishgroup.com.

[2] Hartmann, D.: Interview: Jim Johnson of the Standish Group, http://www.infoq.com/articles/Interview-
Johnson-Standish-CHAOS

[3] American Programmer, 5 (1996).
[4] CISA Review Manual. Information Systems Audit and Control Association, (2002).
[5] ISO 9001: Quality management systems – Requirements. ISO (2001).
[6] Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach. In: Encyclopedia of

Software Engineering, Wiley-Interscience, New York (1994).
[7] Erikkson, I., McFadden, F.: Quality Function Deployment: A Tool to Improve Software Quality. In:

Information & Software Technology, 9 (1993), 491-498.
[8] Haag, S., Raja, M.K., Schkade, L.L.: Quality Function Deployment Usage in Software Development.

In: Communications of the ACM, 1 (1996), 41-49.
[9] Fenton, N: Software Metrics: A Rigorous Approach, Chapman and Hall (1993)

[10] Lethbridge, T.C., Sim, S.E., Singer, J.: Studying Software Engineers: Data Collection Techniques for
Software Field Studies, Empirical Software Engineering, 10 (2005), 311-341.

[11] Sacha, K.: Evaluation of Software Quality. In: K. Zielinski, T. Szmuc (eds.) Software Engineering:
Evolution and Emerging Technologies, IOS Press, Amsterdam (2005), 381-388.

[12] Sacha, K., Evaluation of Expected Software Quality: A Customer’s Viewpoint, in. L. Baresi, R. Heckel
(eds) Fundamental Approaches to Software Engineering, LNCS 3922, Springer-Verlag, Berlin Heidel-
berg (2006), 170-183.

[13] Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, Addison-Wesley (2000).
[14] Rodgers, U.: Oracle: A Database Developer's Guide, Prentice-Hall (1998).
[15] Kruchten, P.: Rational Unified Process: An Introduction, Addison-Wesley Longman (2003).
[16] Gamma, E., Helm, R., Johnson, R., Vlissides J.: Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley (1995).
[17] ISO/IEC TR 9126-2: Software engineering – Product quality – Part 2: External metrics. ISO/IEC

(2001).
[18] Fowler, M., Scott, K.: UML Distilled, Addison-Wesley Professional (1997).
[19] McCabe, T.J., A Complexity Measure, IEEE Trans. on Software Engineering, SE-2, 4 (1976), 308-320.

