
An Approach to the Evaluation of Software Quality

Krzysztof Sacha

Warsaw University of Technology, Nowowiejska 15/19
00-665 Warszawa, Poland

k.sacha@ia.pw.edu.pl

Abstract. The paper describes a method, which we used to evaluate the ex-
pected quality of software that was developed for a huge governmental system.
The evaluation was done on behalf of the customer, lasted nearly two years and
was performed along with the software development process. The output that
was expected by our customer consisted of a quality assessment accompanied
by a set of recommendations on what to do in order to enhance the quality of
the product. The approach was based on a modification to GQM and was fo-
cused on the evaluation of the quality of methods, tools and the deliverables of
the project.

1 Introduction

The ultimate goal of software engineering is to find methods for developing high
quality software products at reasonable cost. As computers are being used in more
and more critical areas of the industry, the quality of software becomes a key factor of
business success and human safety.

Effective software quality evaluation and assurance requires models that describe
what the software quality is and how can it be traced back to the development proc-
ess. Two approaches can be followed to ensure software quality. One is focused on a
direct specification and evaluation of the quality of software product, while the other
is focused on assuring high quality of the process by which the product is developed.

The software industry is currently entering a period of maturity, in which particu-
lar informal approaches are specified more precisely and are supported by the appro-
priate standards. Quality characteristics of software products are defined in ISO/IEC
9126 [1]. For each characteristic, a set of attributes which can be measured is deter-
mined. Such a definition helps in evaluating the quality of software, but gives no
guidance on how to construct a high quality software product.

The requirements for a quality management system are defined in ISO 9001 [2].
All the requirements are intended for application within a software process in order to
enhance the customer satisfaction, which is considered the primary measure of the
software product quality. The quality management system, as defined by the standard,
can be subject to a certification.

This paper describes a method, which we used to evaluate the expected as well as
the actual quality of a huge software system that was developed in the years of 2003-
2004 to support Common Agriculture Policy of European Union in Poland (IACS –

Integrated Administration and Control System). Both of the two approaches, men-
tioned above, appeared to be too abstract for a direct application. Moreover, the qual-
ity of a software product cannot be evaluated unless the development of this particu-
lar product has been finished, and high quality of a software process does not neces-
sarily guarantee high quality of the product. Therefore we were pushed to look for a
more practical approach.

There are a few methods for selecting the metrics and collecting data that are rele-
vant for a particular purpose, described in the literature. The best known examples are
Goal Question Metric approach [3,4,5] and the Quality Function Deployment ap-
proach [6,7]. Both of the two methods represent the viewpoint of the software devel-
opment organization. Our approach was based on a modification to Goal Question
Metric approach. The modification was needed, because our assessment was done on
behalf of the customer, and not of the development company, and it had no other goal
in mind than just to evaluate the expected quality of the developed software.

The paper is organized as follows. Section 2 provides the reader with a short over-
view of the approach represented by ISO 9126, and Section 3 summarizes the ap-
proach of ISO 9001. The method that was used to evaluate the quality of the devel-
opment of the IACS software is presented in Section 4. Final remarks are gathered in
Conclusions.

2 ISO/IEC 9126 Overview

ISO 9126 [1] is concerned primarily with the definition of a quality model, which can
be used to specify the required product quality, both for software development and
software evaluation. The model consists of six quality characteristics, which are
intended to be exhaustive. Each quality characteristic is very broad and therefore it is
subdivided into a set of sub-characteristics or attributes. This quality model can be
applied in industry through the use of measurement techniques and related metrics.

All the six quality characteristics, defined in ISO 9126, are recapitulated below,
along with some comments.

Functionality is defined as the ability of the software product to provide functions
which meet stated or implied needs of the user. This is a very basic characteristic,
which is semantically close to the property of correctness, as defined in other quality
models [6]. If software does not provide the required functionality, then it may be
reliable, portable etc., but no one will use it.

Efficiency is a characteristic that captures the ability of a correct software product
to provide appropriate performance in relation to the amount of resources used. Effi-
ciency can be considered an indication of how well a system works, provided that the
functionality requirements are met. The reference to the amount of resources used,
which appears in this definition is important, as the traditional measures of efficiency,
such as the response time and throughput, are in fact system-level attributes.

Usability is a measure of the effort needed to learn and use a software product for
the purpose chosen. The scope of this factor includes also the ease of assessment
whether the software is suitable for a given purpose and the range of tolerance to the
user errors. The features that are important within the context of usability are ade-

quate documentation and support, and the intuitive understandability of the user inter-
face.

Reliability is defined as the ability of software to maintain a specified level of per-
formance within the specified usage conditions. Such a definition is significantly
broader than the usual requirement to retain functionality over a period of time, and
emphasizes the fact that functionality is only one of the elements of software quality
that should be preserved by a reliable software product.

Maintainability describes the ease with which the software product can be ana-
lyzed, changed and tested. The capability to avoid unexpected effects from modifica-
tions to the software is also within the scope of this characteristic. All types of modi-
fications, i.e. corrections, improvements and adaptation to changes in requirements
and in environment are covered by this characteristic.

Portability is a measure of the effort that is needed to move software to another
computing platform. This characteristic becomes particularly important in case of an
application that is developed to run in a distributed heterogeneous environment or on
a high performance computing platform, which lifespan is usually short. It is less
important if the application runs in a stable environment that is not likely to be
changed.

It can be noticed that the characteristics correspond to the product only and avoid
any statement related to the development process. This way the standard presents
a coherent model, which skips such features like e.g. timeliness, which can be de-
fined as the ability of a product to meet delivery deadlines. Although timeliness re-
lates closer to the process than to the product itself, it can influence the subjective
feeling of the customer. If a product is delivered late, then it may be of good quality,
but customers may consider it to be of lesser quality than the products delivered on
time [8].

3 ISO 9001 Overview

ISO 9001 [2] describes the requirements for a quality management system, which is a
part of the total manufacturing process. The standard is very general and applies to all
types of organizations, regardless of their size and of what they do. The recom-
mended practices can help both product and service oriented organizations and, in
particular, can be used within the context of software development and manufactur-
ing. ISO 9001 certificates are recognized and respected throughout the world.

Because of this generality it is not easy to map the recommendations of the stan-
dard into the practical activities that can be performed within a software process.
Moreover, the standard is intended to be used by the manufacturers and not by the
auditors that are hired by their customers. Therefore it contains many recommenda-
tions that relate to resource management process, which was completely outside the
scope of our evaluation. What we were expected to assess was the quality of products
of particular steps of the development process: analytical specifications, design docu-
ments, testing plans and procedures, user manuals and the resulting code. The actual
implementation of the testing process was also subject to our evaluation.

ISO 9001 does not define any particular model of quality. Instead, it adopts a sim-
ple approach that the quality of a product is measured by the customer satisfaction.
According to this approach, no quality characteristics are defined, and the only basis
for quality evaluation are the customer requirements. If those requirements are met,
then the product quality can be evaluated high. The lack of a quality model makes this
standard orthogonal to ISO 9126. There are no common points between the two, but
also no contradiction can be found.

The top level requirement of ISO 9001 is such that a quality management system
must be developed, implemented and maintained. All the processes and activities
performed within the scope of this system have to be documented and recorded for
the purpose of future review. A huge part of the standard relates to the processes of
quality planning and management, resource management, and continuous quality
monitoring, analysis and improvement. This part is not very helpful in evaluating the
quality of a specific software product under design.

The part, which relates directly to the body of a software project, is a section on
realization requirements. Basic requirements and recommendations that are stated
therein can be summarized as follows:

1. Identify customers’ product requirements, i.e. the requirements that the customer
wants to meet, that are dictated by the product’s use or by legal regulations.

2. Review the product requirements, maintain a record of the reviews, and control
changes in the product requirements.

3. Develop the software process, clarify the responsibilities and authorities, define the
inputs and outputs of particular stages.

4. Perform the necessary verification and validation activities, maintain a record of
these activities, and manage design and development changes.

All of those statements are very concrete and provide valuable guidelines for auditing
and evaluating the quality of a software process. Moreover, the stress that is placed
on the need to meet customer requirements helps in closing the gap between the qual-
ity of the software process and the quality of software itself.

4 Quality Evaluation Method

Quality evaluation methods described in the literature [3-9], represent the software
development organization point of view. However, there is a great difference between
the quality evaluation made for and by a software manufacturer and the evaluation
that is made for the customer.

A manufacturer can define a set of metrics that describe particular quality charac-
teristics, measure and collect historical data from a set of similar projects, and com-
pare the current data with the ones taken from the historical database. The entire proc-
ess can be supported by computerized tools. Such an approach is focused on a direct
evaluation of the quality of a software product, and can be implemented using GQM
method (Goal – Question – Metric), described for the first time in [3] and developed
since that time by NASA. The set of goals or quality characteristics can be the same
or similar to the one defined in ISO/IEC 9126.

It is very difficult to a customer to follow this approach. One problem is such that
the customer has only limited access to the project data, and the quality evaluation
has to be based on an evaluation of the deliverables of the software process that were
enumerated in the contract. Another problem is such that the customer has no histori-
cal data related to a set of similar projects and can not compare the actual data to the
historical one. Therefore, the customer has no specific business goals, such as to
improve the software process, to use less resources or to enhance the (yet unknown)
software efficiency. After signing a contract it is the manufacturer who is responsible
for developing the software, while the customer wants only to be sure that everything
is done right.

4.1 Process-Centric Approach

The problems related to the interpretation of many quantitative metrics of software
quality pushed us towards the approach focused on the evaluation of the quality of the
development process. The rationale that stands behind this approach is based on a
hope that if things are done right, than the results will also be right. Since hope is not
the same as certainty, we tried to relate somehow the attributes of process quality to
the attributes of product quality defined in ISO 9126. An important advantage of such
a process-centric approach is that it gives the auditor an opportunity to formulate
recommendations on what to improve in the development process.

The method we developed was based on a set of criteria that characterize the qual-
ity of the software process or the quality of a product of a particular step of the soft-
ware process. The method was similar to GQM in that the evaluation of particular
criteria was based on a process of asking questions and giving answers to these ques-
tions. To avoid problems with the interpretation of data, the sets of questions were
limited to the ones that were meaningful for the user. To make the evaluation process
structured, we divided the problem space into six subject areas. The first subject area
corresponded to the development process itself, the next four areas corresponded to
particular activities within the process, and the last one dealt with the software docu-
mentation. This way the following areas were defined:

1. Software process and development methods.
2. The analysis and analysis products.
3. The design and design products.
4. The implementation and the code.
5. Testing process and test documentation.
6. User manuals.

It can be noted from the above list that the areas 2 – 5 cover all the activities that exist
in both: waterfall and incremental models of software development. The decomposi-
tion of the software process into the subject areas is then exhaustive.

Each subject area was covered by a set of criteria, organized along the paths of
traceability: from requirements to verification, from requirements to the design, and
from the design to the implementation. The majority of answers was qualitative.
Quantitative measures were also used, however, only in such cases in which the num-

bers could be meaningful for the customer. Sample criteria and questions that were
stated in particular subject areas, are discussed briefly in the next two subsections.
The mechanics of the quality evaluation is described in Section 4.4.

4.2 Software process and development methods

The main goals of the activities performed within this subject area are the identifica-
tion of methods and standards that were used throughout the development process
and the verification of the use of those methods with respect to completeness, read-
ability and traceability of the resulting products. In order to achieve these goals we
defined the following set of criteria, accompanied by the appropriate questions:

M1. Methods and standards: Which methods and standards were used throughout the
development process? How was the scope of the methods?

M2. Completeness of results: Which artifacts recommended by the methods have
been created? Is the set of artifacts sufficient? Are the results documented prop-
erly?

M3. Readability and modifiability of the documentation: Are the created documents
readable and modifiable?

M4. Traceability of the documentation: Are the documents created in subsequent
steps of the development process traceable?

As can be seen from the above list of criteria, the evaluation within this subject area
was focused on formal aspects of the development in that it did not include an in
depth analysis of the contents of the documents created.

The criteria correspond to the recommendations of ISO 9001, which state that a
software process shall be developed, the outputs of particular activities shall be de-
fined, and the results shall be recorded. The criteria have also a clear relation to the
quality characteristics defined in ISO 9126, because the completeness of results to-
gether with readability, modifiability and traceability of the documentation promotes
the maintainability and portability of the software product.

4.3 Analysis and analysis products

The main goals of the activities performed within this subject area are the identifica-
tion of methods and models that were used throughout the analysis and the verifica-
tion of the use of those methods with respect to correctness, completeness and verifi-
ability of the resulting documents and other products. In order to achieve these goals
we defined the following set of criteria, accompanied by the appropriate questions:

A1. Completeness of sources: Which sources of information were used throughout
the analysis? Was the selection of legal regulations complete?

A2. Consistency of the analysis model: Is the business model created during the
analysis consistent with legal regulations that have been identified in criterion
A1?

A3. Completeness of the analysis model: Is the created analysis model complete in
that it comprises all the business procedures defined by the legal regulations? Is
the list of possible scenarios complete?

A4. Completeness of the context definition: Is the set of input data sufficient to
achieve the business goals of the system? Is the set of output data complete with
respect to business and legal requirements?

A5. Completeness of the functionality: Are the functional requirements complete in
that all the business procedures identified in criterion 3 are supported by the ap-
propriate functions of the software?

A6. Usability of the user interface prototype: Is the prototype complete and ergo-
nomic?

A7. Correctness of the data model: Is the data model complete and consistent? Is the
data model consistent with the business procedures? Does the data model com-
ply with the best engineering practices?

A8. Completeness of the non-functional requirements: Are the non-functional re-
quirements complete in that they define the expectations related to the security
of data, response time, throughput and reliability?

A9. Verifiability of the non-functional requirements: Are the non-functional re-
quirements defined verifiable (testable)?

A10. Credibility of the verification: How is the coverage of business procedures by
the test scenarios? Is the performance testing sufficient? How is the credibility
of the testing procedures?

As can be seen from the above list of criteria, questions and metrics, the evaluation
within this subject area is focused on the contents of the analytical products. The
sequence of criteria moves along a path: From sources of information to business
model, from business model to functions and efficiency, from functions and effi-
ciency to verification and validation. The set of criteria is in good relation to the set of
quality characteristics defined in ISO 9126. The correspondence between the two is
shown in Table 1. Portability is not included in the table, because this feature was not
considered a significant premise in the environment of IACS project.

Table 1. A relation between the analysis criteria and the quality characteristics of ISO 9126

Quality characteristic Criteria
Functionality A1 ... A7
Efficiency A8, A9
Usability A7
Reliability A8 ... A10 (also M1)
Maintainability A4 ... A6 (also M2 ... M4)

4.3 Design and design products

The main goals of work within this subject area are the identification of methods and
models that were used throughout the design, the verification of the use and the qual-
ity of those methods, and the verification of traceability of the design products with
respect to the analysis products. In order to achieve these goals we defined the fol-
lowing set of criteria, accompanied by the appropriate questions:

D1. Traceability of the design: Which design artifacts have been created? Could the
design artifacts be traced back to the analysis documents or to another sources
of information? Which standards and design patterns have been applied?

D2. Functional completeness of the design: Are all the functions identified during
the analysis assigned to the software modules? Is the functionality of each soft-
ware component clearly defined?

D3. Completeness of the data inputs and outputs: Are all the input data items read
by the software modules? Are all the output data items created by the software
modules?

D4. Behavioral completeness of the design: Which events (exceptions, breakdowns,
etc.) are described in the design documents? Is the behavior of the system al-
ways predictable?

D5. Non-functional completeness of the design: Which characteristics (performance,
reliability, safety, security, etc.) are described in the design documents? Is the
description exhaustive and convincing?

D6. Non-functional correctness of the design: Are the performance characteristics
guaranteed by design? Is software design based on state-of-the-art technology?

D7. Correctness of the data base design: Are the transactional requirements defined?
Are the efficiency requirements considered? Does the data base design comply
with the best engineering practices? Is the validation of data integrity sufficient?

D8. CASE Tools: Which CASE tools have been used? Are those tools appropriate
for the project size? Are the tools used consistently throughout the project?

As can be seen from the above list of criteria and questions, the evaluation within
this subject area is focused on the contents of the design documents. The set of crite-
ria is in good relation to the set of quality characteristics defined in ISO 9126. The
correspondence between the two is shown in Table 2.

Table 2. A relation between the design criteria and the quality characteristics of ISO 9126

Quality characteristic Criteria
Functionality D1 ... D4, D7, D8
Efficiency D4 ... D8
Usability D3
Reliability D4, D5, D6
Maintainability D1, D7, D8

4.4 Evaluation process

Input data to the quality evaluation process consisted of all the documents that had
been created in the entire software development cycle. These included:

- a business model developed in the inception phase,
- early analysis model of the elaboration phase,
- the set of analysis and design models created in the construction phase,
- the code and the complete set manuals,
- test plans and test reports (plus the observation of the testing process).

Because of the incremental nature of the development, part of the documents circu-
lated in several versions, issued in a sequence of subsequent increments.

The evaluation process was decomposed into the areas listed in section 4.1 and
structured according to the set of criteria exemplified in sections 4.2 and 4.3. The
analysis that was done within the context of a particular criterion was guided by the
set of questions. Sometimes, a compound area was decomposed into sub-areas and
the questions were stated and answered separately for particular groups of artifacts.
For example, the evaluation of the criterion 1 of section 4.2 (Methods and standards)
was decomposed into a review of the software process, analysis methods, design
methods, implementation methods and tools, testing methods, and documentation
standards.

The answers to the questions were, in general qualitative, formulated usually in
terms of a ranking: good, satisfactory, bad. Quantitative metrics were also used, how-
ever, only in such cases in which the results could be meaningful to the user. An
example of such a metric is the coverage of use case scenarios by test scenarios.

The evaluation report was structured in accordance with the areas and the criteria.
The results of the evaluation within a particular area were concluded in the form of
two sections: Risks for the project and recommendations to the project. The risk sec-
tion summed up the ‘bad’ answers and related the deficiencies to the quality charac-
teristics of ISO 9126. For example:

- The lack of functions that support certain business procedures creates the risk that
the functionality of software will not be met.

- The lack of readable design models creates the risk that the maintainability of
software will be low.

The recommendation section advised what to do in order to avoid the risks identified
in the evaluation process and described in the previous section. An advice related to
the first point above could, for example, be: Define the functionality that is missing.

5 Conclusions

This paper describes a practical method that can be used to evaluate the expected
quality of software under design. The evaluation process does not refer directly to the
existing standards, however, it is consistent with the basic elements of the quality
models of both ISO 9001 and ISO 9126. The mechanics of the evaluation is based on

a set of criteria that are decided by stating questions and finding answers to those
questions. The collection of criteria is structured into a set of subject areas that ex-
haustively cover the set of activities that exist in the most popular software processes:
Phases of the waterfall model or activities of the RUP incremental process.

The method was used successfully in evaluating the quality of software products
during the development of IACS system. The evaluation was performed on behalf of
the customer and not the manufacturer of the system. The criteria and questions that
guided the evaluation process allowed for a systematic, in depth analysis of the deliv-
erables of the particular development activities. As result, several risks were revealed
and identified. The recommendations helped in avoiding the risks in the final product.
IACS system was build and certified for use within the deadline.

The advantages of the method can be summarized as follows:

• The method does not depend on any particular software process or method that can
be used in the development of software.

• The results of the method, i.e. the answers to the questions that are stated in the
evaluation process, are readable and meaningful to the customer.

• Negative answers to particular questions can easily be translated into recommenda-
tions on what to change in order to enhance the quality of products.

The method is simple in use, does not relay on any historical data, and need not be
supported by a computerized tool.

References

1. ISO/IEC 9126-1: Software engineering – Product quality. ISO/IEC (2001)
2. ISO 9001: Quality management systems – Requirements. ISO (2001)
3. Basili V.R., Weiss D.M.: A Methodology for Collecting Valid Software Engineering Data,

IEEE Transactions on Software Engineering, Nov. (1984)
4. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach. In: Ency-

clopedia of Software Engineering, Wiley-Interscience, New York (1994)
5. Solingen, R., Berghout, E.: The Goal/Question/Metric Method, McGraw-Hill (1999)
6. Fenton, N: Software Metrics: A Rigorous Approach, Chapman and Hall (1993)
7. Haag, S., Raja, M.K., Schkade, L.L.: Quality Function Deployment Usage in Software

Development. In: Communications of the ACM, 1 (1996) 41-49
8. Horgan G., Khaddaj, S., Forte P.: An Essential Views Model for Software Quality Assur-

ance, ESCOM-SCOPE 99 (1999)
9. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying Software Engineers: Data Collection

Techniques for Software Field Studies, Empirical Software Engineering, 10 (2005) 311-341

