
Software Environment for Market Balancing

Mechanisms Development, and Its Application
to Solving More General Problems

in Parallel Way

Mariusz Kamola

1 Institute of Control and Computation Engineering,
Warsaw University of Technology

2 NASK (Research and Academic Computer Network)
Mariusz.Kamola@nask.pl

Abstract. A new software that supports research on algorithms for re-
source allocation in multi-commodity markets is presented. Thanks to
a much more general data model used, and possibility of plugging in
external optimization engines, various solvers can be used to extend the
functionality of the platform. The software functionality is focused on
supporting researchers in the algorithm engineering process, facilitating
e.g. analysis and comparison of market strategies. An example appli-
cation of the software to travelling salesman problem, solved by many
agents, is presented.

1 Introduction

There exist many drivers for the growth of contemporary computation tasks
complexity. The most obvious of them is the increase of data collection, stor-
age and transmission capabilities of todays IT infrastructure. Less evident but
equally grave is the fact that isolated systems get more and more connected,
and start to exhibit completely different behaviour. Such phenomena are easy
to appear, quite easy to expect, hard to foresee, difficult to simulate and mostly
impossible to be described analytically. Networking and its intricate couplings
has become a fact.

Due to the nonpolynomial complexity of many network problems it is usually
very time-consuming, hence impractical, to look for their exact solutions. Let
us consider, for example, travelling salesman problem (TSP) whose exact brute-
force solving has complexity of O(n!), n being the number of vertices. A much
more common approach is to find a good heuristic algorithm, e.g. running in
polynomial time [10]. The process of finding a good heuristics is a problem of
its own, often consisting of tedious verifications of suites of similar algorithms,
varying in details, over a number of test problems, their reference solution known.
Managing data from such experiments in order to retrieve useful information can
present difficulties, especially if the heuristic algorithm is to be run in parallel.

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 231–241, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



232 M. Kamola

This paper presents capabilities of a novel software platform for agent-based
distributed simulation and its usability for prototyping control strategies. Orig-
inally, such control was to be executed over market entities sell/buy offers, in
order to achieve optimal allocation of transport network resources. However, it
can be equally well applied for coordinating threads of any parallel algorithm,
being particularly suitable for graph problems. In such generalized approach mar-
ket entities become workers processing parallelized tasks, and exchanging data
(formerly, ‘offers’) in a way managed by the coordinator (formerly, ‘resource
allocator’). The platform imposes a unified problem description and communi-
cation scheme, leaving modules implementation details to user’s choice — not
precluding further parallelism in their implementation.

The next section presents a formal complete model of all objects necessary
to describe the process of offering and market clearing, M3, presented in [2] and
exploited by its authors in a number of applications. Then comes the description
of the abovementioned software platform facilitating the research on algorithms.
Next, the analysis of applicability of the platform in a few more general research
scenarios is given, taking as an example the TSP problem solved in parallel by
partitioning the set of all possible salesman paths. The paper concludes with
studies of more advanced applications of the platform and the underlying prob-
lem description format, in research activities.

2 Multi-commodity Market Model

Multi-commodity market model, M3, is a method and format for a formal de-
scription of a market where trade of resources takes place. It has been initially
developed to describe offer structure in the energy market in Poland [3]. For
its generality it has been next used to model IP network bandwidth trade [4].
With the research platform atop it may be successfully used to model, solve and
investigate properties of virtually any graph problem.

M3 defines the following basic entities and relations between them:

– network nodes and arcs, describing the topology of the network where ca-
pacity trade takes place,

– market entities (users, providers) that offer or sell resources (capacity),
– resources being offered, with their proper attributes,
– offers, i.e. bindings of market entities and resources, offered or demanded at

a specific price.

It is also possible to define compound resources, i.e. containing simple resources
and other compound resources. Analogously, one can define simple and com-
pound offers and market entities. An UML graph representing offers is pre-
sented in Fig. 1, to show how flexible the M3 model is. However, one can use
it without being bothered by advanced features, like aggregation facilities. It is
possible to declare only key values, offeredPrice, min/maxValue and shareFactor
(1 for sell, -1 for buy offers), leaving other unset. The field acceptedVolume and
sell/buyPrice parameters in Commodity structure contain results of the market
balancing process.



Software Environment for Market Balancing Mechanisms Development 233

M
ar

ke
tE

n
ti

ty

u
r
l

n
a
m
e

r
o
l
e O

ff
er

o
f
f
e
r
e
d
P
r
i
c
e

a
c
c
e
p
t
e
d
V
o
l
u
m
e

1 n

O
ff

er
S

ta
tu

s

n
a
m
e

n
n

O
ff

er
S

ta
tu

sD
u

ra
ti

o
n

O
ff

er
S

ta
tu

sD
u

ra
ti

o
n

P
er

io
d

s
t
a
r
t
T
i
m
e

e
n
d
T
i
m
e

G
ro

u
p

in
g

O
ff

er

g
r
o
u
p
i
n
g
F
u
n
c
t
i
o
n
N
a
m
e

g
r
o
u
p
i
n
g
C
o
s
t

1

n

n

n

S
ys

te
m

C
o

n
st

ra
in

t

V
o

lu
m

eR
an

g
e

m
i
n
V
a
l
u
e

m
a
x
V
a
l
u
e

n

1

E
le

m
en

ta
ry

O
ff

er

s
h
a
r
e
F
a
c
t
o
r

C
o

m
m

o
d

it
y

m
i
n
B
a
l
a
n
c
e

m
a
x
B
a
l
a
n
c
e

s
e
l
l
P
r
i
c
e

b
u
y
P
r
i
c
e

B
u

n
d

le
d

O
ff

er

1

n

n

n

C
o

m
m

o
d

it
yS

h
ar

e

s
h
a
r
e
F
a
c
t
o
r

n
1

V
iu

rt
u

al
C

o
m

m
o

d
it

y

g
r
o
u
p
i
n
g
C
o
s
t

1 n

G
ro

u
p

in
g

C
o

ef
fi

ci
en

t

c
o
e
f
f
i
c
i
e
n
t
V
a
l
u
e

1

n

Fig. 1. Relations between offers and other key elements of M3 model: market entities
and commodities. The model allows defining complex offers recursively.



234 M. Kamola

At first, one can perceive the M3 model merely as a tool for network problem
definition, containing placeholders for attributing nodes or arcs with parameters.
M3 defines only the minimum set of those attributes the ones needed in M3

original applications. Those are defined in XSL dictionary files and, in fact,
define the M3 generic model completely. Concretisation of the generic model for
a specific network (e.g. power grid or IP, or road network) is done by specifying
extra node/arc attributes in network kinds XML file. Analogously, any specific
data type describing market entities or offers can be made in proper XML files.

Having concretised the generic type, one can place the data regarding network
topology, market entities and offers in appropriate three files. The content of
these files defines one market case. Also, it contains placeholders where the
solution (resources allocation and resource prices) can be put into. XML has
been chosen as a format for M3 because it makes possible easy transformation of
network problems into formats supported by standard optimisation solvers e.g.
GAMS, AMPL. This is done by means of XSLT [8].

3 The Platform for Research on Bidding and Resource
Allocation Strategies

Good structural design and contemporary technology made M3 quite popular in
the local academic environment. A number of authors used it, mostly in pursuit
of developing engines for clearing the market [5], [6]. However, due to variety
of approaches to the problem (especially, various assumptions), their results
were hardly comparable. It was only recently when they realised that creating
a common research environment would be a good idea in several aspects. The
major assumption was to store each numerical result in a common database in
order to be capable of performing searches, queries and comparisons. This led
to work on the formulation of a number of quantitative criteria for ranking the
resource allocation algorithms in case of bandwidth trading scenario: economic
(total transaction surplus, competition level for network resources) and technical
ones (length of allocate network paths, ratio of contracted bandwidth to offered
bandwidth) [7].

The platform implementation makes use of many technologies currently being
considered industrial standards. The reason for using such standards was to make
the platform itself a proof of concept for a to-be commercial trading system.
There are three main use cases of the platform:

– Experiment definition. A mechanism designer prepares a set of M3 files de-
scribing the simulation task. Also, the designer implements, if needed, own
appropriate resource allocation mechanisms and user agents (or endpoint
application for human users acting as agents, cf. Fig. 2).

– Simulation. A chosen experiment is being run: solver and agents’ processed
are spawned and they communicate alternately with the platform. The re-
sults are being stored into the database.

– Result analysis. A selected set of experiment results is selected, by advanced
query, from the database. Their results are being compared and displayed in
the GUI.



Software Environment for Market Balancing Mechanisms Development 235

The software was created using technologies allowing application scaling,
portability and flexibility. The platform runs as a web service, accessible and
configurable via a browser. Such approach minimizes application maintenance
costs. To accelerate application operation, some part of GUI processing is shifted
to the browser thanks to Google Web Toolkit technology [9]. Links between ap-
plication modules are managed by Spring framework, allowing for modules re-
placements without rebuilding of the whole application. The persistence layer
is accomplished using recognised products: MySQL, now from Oracle Inc., and
Hibernate. The communication with agents and the resource allocation module
is managed reliably by Java Message Service. The web application container was
Apache Tomcat. Apparently, all the presented technologies are freeware, well
supported, popular and documented.

Performance of application three crucial components: XML/POJO serializa-
tion, JMS communication and RDBMS communication, has been checked for
two test problems. The smaller problem data size was 22 kB, and the bigger
problem data was 424 kB. The simulation was run on 4-core PC with Linux OS,
using loopback interface instead of a real network. Execution times for different
kinds of operations have been logged and analysed, with the following results:

– Serialization times were proportional to the problem sizes (measured in kilo-
bytes).

– JMS communication times were also proportional both to problem sizes and
the number of agents.

– RDBMS communication was worse than proportional to the problem sizes,
n, but better than O(n2).

Therefore, the weak points of the architecture were the database and the com-
munication queues. However, implementations of both the technologies come
in large variety, and it would be relatively easy to replace e.g. inefficient JMS
implementation with another one.

Since the users of the platform will not only run simulations but actually
actively develop new agents, a friendly API has been designed, with the aim to
keep Java entities structure and communication rules as simple as possible. Any
user module, be it agent or solver, must implement methods onInit and onAlloca-
tion, defined by the Endpoint interface, requiring and returning InitParams and
RunParams, respectively. InitParams contains module configuration data, while
RunParams carries offers or allocations, depending on communication context.

To relieve platform user from laborious interaction with JMS, a user mod-
ule skeleton class, EndpointStub was created. The class implements main JMS
message processing loop, in particular activating onInit and onAllocation meth-
ods in a user-provided object. Also, an exemplary, do-nothing extension of End-
pointStub was provided to users. The extension, GenericEndpoint echoes received
parameters of onAllocation method; it is excellent for initial configuration test-
ing, and as a base cllass for any user-specific implementation. It also provides
a bunch of utility methods, e.g. for XML/POJO conversion.

From the point of view of the agents placing bids for resources, the platform
remains rather a transparent thing (Fig. 2). Its only role is to merge individual



236 M. Kamola

Fig. 2. Interaction of the platform with bidding agents and resource allocation engine
(in simulation mode; message flow is up and down), and in result analysis mode (data
flow is from left to right)

requests into a single M3 document set, which is then presented to the resource
allocation module. The content of an exemplary M3 offers file is presented below.
Attributes offeredPrice contain individual agents’ price expectations.

<?xml version="1.0" encoding="windows-1250" ?>

<m3:offers xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=http://www.openM3.org/m3 M3Offers.xsd

xmlns:m3=http://www.openM3.org/m3 xmlns:ia="http://www.ia.pw.edu.pl/m3">

<m3:Offer id="ia:o12345-67" offeredPrice="32000.00">

<m3:description>Exemplary elementary offer</m3:description>

<m3:offeredBy ref="ia:siekierki" />

<m3:offerStatus status="m3:offer-open">

<m3:durationPeriod startTime="2007-04-09T08:00:00"

endTime="2007-04-09T09:59:59" />

Resource allocations are then sent back to the bidders (using Commodity section
of M3 model) and, optionally, the process is re-iterated until the allocations
settle. This could be done easily without the platform altogether, save for the
fact that all bids and allocations get stored in the database both in plain XML
and in the structured form. Turning the original XSD definitions into an object
hierarchy and a RDBMS scheme constituted the biggest part of the architectural
and programming work. The information flow for the most important use case,
the simulation, is presented in Fig. 3.

Once stored in the database, experimental results can be compared easily
in a number of ways. A flexible system of experiment tagging allows searches
across many dimensions: the author, allocation engine type, version and running



Software Environment for Market Balancing Mechanisms Development 237

Solver
Research
Platform

Agent

Computation
Execution

Order

Retrieving experiment configuration

Spawning solver and agents
Seding up initialization data

Agent&solver
startup OK?

InitializationInitialization

Sending initial configuration
or current solution

Calculation of new
agent offer

Merging agent offers
Processing agent offers - calculating

new resource allocation solution.
STOP test and requesting termination

Storing intermediate results in DB
Communicating intermediate

results to GUI

Termination
request?

Calculation of pre-defined mecha-
nism performance indicators.

Storing final results to DB.
Communicating final results to GUI

Termination request
broadcast

TerminatingTerminating

END

NO

YES

YES

NO

Fig. 3. Data flow diagram for the simulation use case



238 M. Kamola

Fig. 4. Screenshots of results browse tree (left), with possibility to indicate variables
to be exported or displayed as a table (right)

parameters, type of the problem etc. A number of specific data can be then ex-
tracted from such pre-filtered data: allocation or prices of a resource in n-th or
last iteration, total number of iterations etc. Those can then be arranged freely
in a table in order to draw a graph or to be exported for further processing
outside the platform (Fig. 4). A number of pre-defined market mechanism per-
formance indicators are calculated in each simulation iteration, and stored in the
database. They include the total benefit of the operator of the market as well
as a similar coefficient defined for the market participants. New algorithms for
scoring simulation results, taking into account specifics of individual problems,
can be easily implemented. Such freedom is also well handled by the database
design, allowing any number of so obtained measures. Apart from the compiled-
in functionality, the platform provides means to formulate and evaluate XPath
expressions over some queried result set of performed experiments. In such way,
platform user may calculate fancy measures for experiment results.

4 Application of the Platform to Parallel Computation
Tasks

Inherently, the presented platform is able to support both distributed compu-
tation and subsequent analysis of results for any problems describable in the
M3 model. This means it can handle most of graph problems: TSP, coloring,
transport etc. Also, it can be applied to massive parallel algorithms that are
apparently not related to graphs, as evolutionary strategies. Noteworthy is the
possibility of performing social networks analysis, using the platform. The most
computationally demanding part of extracting knowledge from the social graph is
to find communities, i.e. sets of vertices particularly mutually closely connected,
in a sense. The complexity of exact solution finding is NP-hard. That is why ap-
proximate community-finding algorithms are being constructed. The platform



Software Environment for Market Balancing Mechanisms Development 239

can easily improve the process of good heuristic algorithm research in the field.
This application scenario has been presented mostly for current popularity of
social network analysis, applicable e.g. in marketing process, fraud detection,
business/military/terrorist organisation structure analysis. Social network anal-
ysis is another topic of interest of the author of this paper, and the prospect of
employing the platform in such research activities will hopefully be fruitful.

The platform has been successfully applied for an exemplary travelling sales-
man problem. The purpose was to demonstrate that coding of the problem
can be simple, and that using the environment does not require any clumsy
workarounds. One starts with adapting basic M3 definitions in order to create
data types matching ones problem. In our case no changes to the built-in mar-
ket entity and network definitions were needed. The M3 “commodity” term has
been used in TSP problem to represent a single stage of a salesmans route. An
extra property stage number was created to identify stages. All stages are linked
to an artificial network node, n0. Recall that offers tie stages and market enti-
ties. In the context of TSP, market entities are identical with computation units
performing the work in parallel. To code the actual solution found by a unit,
standard minValue and offeredPrice fields of the offer type. The first one indi-
cates the concerned stage, while the second one indicates the node a salesman
passed in that stage.

Computation units are started in this example as Java instances: they perform
a specified part of the computational task, and report progress to the platform
periodically. The resource allocation module implementation is a trivial one,
selecting and recording the best solution found so far by the agents.

Fig. 5. TSP solution in subsequent algorithm steps

The example problem was defined for 14 major Polish cities. The graph of
connections was full mesh, with geodesic distances. Rather than coding those
distances as M3 graph arcs, there were calculated dynamically by each agent us-
ing a dedicated Java package [1]. Thus, the M3 network definition consisted only
of cities names, latitudes and longitudes. No arcs were declared in order to ac-
celerate communication. The exact solution of the problem was found correctly



240 M. Kamola

(Fig. 5). There were two path calculation modules performing, one resource al-
location module and the platform software, of course. In the case described no
relevant information was passed back from the allocation to computation mod-
ules; however, passing some extra control data, e.g. adjusting their operations,
would be easy to implement.

5 Conclusion

It was shown that the platform originally developed for investigating properties
of resource allocation problem to the market can be successfully used to sup-
port research also in other areas. The presented example was a TSP problem.
Platform’s ability to incorporate external solvers and the design based on M3

information model make it a convenient tool to perform comparative analysis of
parallel tasks — a tool for a groupwork research.

The presented platform API was designed in abstraction of any programming
paradigm. In fact, it does not impose any constraint on the user, save for the
necessity of implementing the two methods: onInit() and onAllocation(). In par-
ticular, the user has the ability of accessing any object of the M3 structures
directly, by using POJO representation of the XML code. Alternatively, she or
he may prefer to do high-level XSL transforms on the plain XML to complete
problem definition with extra information (e.g. the objective function), difficult
or impractical to be stored in M3. Then, an external solver can be called. Also,
the possibilities of performing any local parallelisation of the pre-assigned piece
of the problem, are not limited in any way.

It should be stressed that the added value of the work presented in this paper is
not related to equipment or algorithmic performance. Most of the work presented
here was spent of mapping advanced modelling scheme, M3, into a relational
database, and on developing ergonomic programming and graphical interfaces,
with the aim to create a teamwork scientific environment. Hopefully, this will
make cooperation quicker and clearer, and the results — more objective.

Acknowledgments. The work presented in this paper was supported by the
Polish Ministry of Science and Higher Education research grants no. PBZ-
MNiSW-02/II/2007 and N N514 416934.

References

[1] Gavaghan, M.: GPS Receivers and Geocaching: Vincenty’s Formula — a section of
the web page, http://www.gavaghan.org/blog/category/codeproject (accessed
March 30, 2010)

[2] Kacprzak, P., Kaleta, M., Pa�lka, P., Smolira, K., Toczy�lowski, E., Traczyk, T.: M3:
Open Multi-commodity Market Data Model for Network Systems. In: Proceedings
of the XVI International Conference on System Science, Wroc�law (2007)

[3] Kacprzak, P., Kaleta, M., Pa�lka, P., Smolira, K., Toczy�lowski, E., Traczyk, T.:
Communication model for M3— Open Multi-commodity Market Data Model. In:
Proceedings of TPD 2007 Polish Conference, Poznań (2007)

http://www.gavaghan.org/blog/category/codeproject


Software Environment for Market Balancing Mechanisms Development 241

[4] Kacprzak, P., Kaleta, M., Pa�lka, P., Smolira, K., Toczy�lowski, E., Traczyk, T.:
Application of open multi-commodity market data model on the communication
bandwidth market. J. Telecommunications and Information Technology 4, 45–50
(2007)

[5] Karpowicz, M., Malinowski, K.: Network flow optimization with rational agents.
NASK internal report (2009)

[6] Pa�lka, P., Ko�ltyś, K., Toczy�lowski, E., Żó�ltowska, I.: Model for Balancing Aggre-
gated Communication Bandwidth Resources. J. Telecommunications and Infor-
mation Technology 3, 43–49 (2009)

[7] Stańczuk, W., Pa�lka, P., Lubacz, J., Toczy�lowski, E.: Parametric pricing rule in
bandwidth trade. In: Proceedings of 8th International Conference on Decision
Support for Telecommunications and Information Society DIST 2009, Coimbra
(2009)

[8] XSLT transformation “toAmpl-BCBTxsl” Documentation contained in archive
available in Tools/XSLT files section of the web page, http://www.openm3.org
(accessed March 30, 2010)

[9] Google Web Toolkit Overview,
http://code.google.com/webtoolkit/overview.html (accessed March 30,
2010)

[10] Ausiello, G., Leonardi, S., Marchetti-Spaccamela, A.: On Salesmen, Repairmen,
Spiders, and Other Traveling Agents. In: Bongiovanni, G., Petreschi, R., Gambosi,
G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 1–16. Springer, Heidelberg (2000)

http://www.openm3.org
http://code.google.com/webtoolkit/overview.html

	Software Environment for Market Balancing Mechanisms Development, and Its Applicationto Solving More General Problems in Parallel Way
	Introduction
	Multi-commodity Market Model
	The Platform for Research on Bidding and Resource Allocation Strategies
	Application of the Platform to Parallel Computation Tasks
	Conclusion
	References




