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Abstract The proton exchange membrane (PEM)
fuel cell is a nonlinear dynamic system which cannot
be precisely described and controlled using a linear
model. This work has two objectives: (a) it discusses
model selection for the PEM and (b) it develops two
nonlinear computationally efficient model predictive
control (MPC) algorithms for the PEM. Three Wiener
model types of different orders of dynamics and com-
plexity of the nonlinear steady-state block are com-
pared. The model consisting of three dynamic blocks
and a neural network with five hidden nodes is chosen.
To obtain simple MPC quadratic optimization prob-
lems, a linear approximation of the model or a linear
approximation of the predicted trajectory is repeatedly
found. The first MPC scheme gives very good control
accuracy, whereas the secondMPC scheme leads to the
same trajectories as those possible in the “ideal” MPC
scheme with full online nonlinear optimization.
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1 Introduction

Currently, the transport sector relies on the combustion
engine which uses fossil fuels. Alas, it results in emis-
sion of greenhouse gases, which leads to serious envi-
ronmental problems, i.e., air pollution, global warm-
ing, climate changes and destruction of the ozone layer.
Zero-emission electric vehicles are available, and their
popularity grows. The majority of electric vehicles use
batteries for energy storage. An interesting alternative
is to use a fuel cell for energy generation. Fuel cells are
electrochemical devices that convert chemical energy
stored in hydrocarbon fuels (usually hydrogen) directly
into electrical energy [1]. They have many important
advantages: high electrical efficiency, very low emis-
sion and quiet operation. Moreover, since fuel cells do
not have moving parts, their life cycle is very long.
Fuel cells may be produced in different scales: from
microwatts to megawatts, which makes them useful in
numerous applications. Lastly, hydrogen necessary for
fuel cellsmaybe easily produced fromdifferent sources
(i.e., biomass, coal or natural gas) so dependence on
imported oil may be significantly reduced.

Among existing types of fuel cells [1], the proton
exchange membrane (PEM) fuel cells are preferred
not only for mobile and vehicle applications, includ-
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ing cars, scooters, bicycles, boats and underwater ves-
sels [2,3], but also for stationary ones. This is because
of low operation temperature (usually between 60 and
80 ◦C) which gives a fast start-up, simple and compact
design as well as reliable operation. Since solid elec-
trolyte is used, no electrolyte leakage is possible. The
PEM fuel cells are considered to be very promising
power sources, and they are expected to become sound
alternatives to conventional power generationmethods.

It is necessary to point out that control of PEM fuel
cells is a challenging task. Although there are exam-
ples of classical control methods applied to the PEM
fuel cell, e.g., a linear state feedback controller [4] or
a sliding mode controller (SMC) [5], the process is
inherently nonlinear and the linear controllersmay give
control accuracy below expectations. Hence, a num-
ber of nonlinear control strategies have been applied to
the PEM fuel cell process: an adaptive proportional–
integral–derivative (PID) algorithm whose parameters
are tuned online by a fuzzy logic system [6,7] or by a
neural network [8], an adaptive PID algorithm with a
fuzzy logic feedforward compensator [9], a nonlinear
state feedback controller [10], a fuzzy controller [11]
and a lookup table [12]. Fractional complex-order con-
trollers may be also used [13,14]. Recently, model pre-
dictive control (MPC) algorithms [15–17] have been
applied for the PEM fuel cell. In the literature, it is
possible to find two categories of MPC:

1. The fully fledged nonlinear MPC (for prediction a
nonlinear model is used) which requires solving a
nonlinear optimization problem at each sampling
instant online [18–21]. Such an approach may be
very computationally demanding, and its practical
application may be impossible.

2. The classical MPC algorithm based on a fixed
(parameter constant) linear model [22,23]. In this
approach, online calculations in MPC are not
demanding (quadratic optimization is used), but
the resulting control quality may be not satisfac-
tory because the process is nonlinear and the linear
model used in MPC is only a very rough approxi-
mation of the process.

The contribution of this work is twofold:

1. Two nonlinear MPC algorithms for the PEM fuel
cell are described. In contrast to the algorithms pre-
sented in [18–21], in both algorithms computation-
ally simple quadratic optimization is used, and full
nonlinear optimization is not necessary. It is possi-

ble because a linear approximation of the model or
a linear approximation of the predicted trajectory
is found online. The discussed algorithms are com-
pared to the MPC scheme with nonlinear optimiza-
tion in terms of control accuracy and computational
time, and inefficiency of the linear MPC scheme is
shown.

2. Both described MPC algorithms use Wiener mod-
els of the PEM process, and effectiveness of three
structures is compared. The choice of the Wiener
model, composed of a linear dynamic block con-
nected in series with a nonlinear steady-state one
[24], ismotivated by two factors. Firstly, theWiener
model is a natural representation of the PEM pro-
cess. Secondly, the Wiener model is used in a sim-
ple way in the described MPC algorithms; the first
of them is motivated by the serial structure of the
Wiener model.

A neural network [25] is used in the steady-state
part of the Wiener model. Neural networks are very
efficient for modeling of dynamic systems, e.g., [26],
and control. There are many different control methods
based on neural networks: e.g., adaptive PID control
[8], adaptive state control [27], adaptive sliding mode
control [28], robust feedback control [29], the zeroing
dynamics method [30,31] and MPC [26]. Neural net-
works may be also used for online matrix calculations
[32] and optimization [33].

This paper is structured as follows. Section 2
describes the PEM process and its fundamental model.
Next, in Sect. 3 three Wiener structures are character-
ized. Section 4 details two nonlinear MPC algorithms
for the PEM process. Section 5 discusses identifica-
tion of different types of models and MPC of the PEM
process. Section 6 concludes the paper.

2 Proton exchange membrane fuel cell

In the general case, the model of the PEM fuel cell is
quite complicated [4]. Hence, the tendency is to use
simpler model for development of a control system
[34–39].

2.1 PEM fuel cell system description

In this work, the PEM fuel cell model introduced in
[39] and further discussed in [40–42] is considered. The
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PEM process has one manipulated variable (the input
of the process) which is the input methanol flow rate
q (mol s−1), one disturbance (the uncontrolled input)
I which is the external current load (A) and one con-
trolled variable (the output of the process) which is the
stack output voltage V (V). The partial pressures of
hydrogen, oxygen and water are denoted by pH2 , pO2

and pH2O, respectively (atm). The input hydrogen flow,
the hydrogen reactedflowand the oxygen input floware
denoted by q inH2

, qrH2
and q inO2

, respectively (mol s−1).

2.2 PEM fuel cell continuous-time fundamental
model

The fundamental continuous-time model of the PEM
system is defined by the following continuous-time
equations. The pressure of hydrogen is

pH2 = 1/KH2

τH2s + 1

(
q inH2

− 2Kr Ir
)

, (1)

where KH2 and τH2 denote the valve molar constant
for hydrogen and the response time of hydrogen flow,
respectively. The input hydrogen flow obtained from
the reformer is

q inH2
= CV

(τ1s + 1)(τ2s + 1)
q, (2)

where q is the methane flow rate, CV , τ1 and τ2 are
constants. Hence, from Eqs. (1) and (2), the pressure of
hydrogen is

pH2 = 1/KH2

τH2s + 1

(
CV

(τ1s + 1)(τ2s + 1)
q − 2Kr

)
. (3)

The pressure of oxygen is

pO2 = 1/KO2

τO2s + 1

(
q inO2

− Kr Ir
)

, (4)

where KO2 and τO2 denote the valve molar constant for
oxygen and the response time of oxygen flow, respec-
tively. The input flow rate of oxygen is

q inO2
= (1/τH−O)q inH2

, (5)

where τH−O is the ration of hydrogen to oxygen. Using
Eq. (2), the pressure of oxygen is

pO2 = 1/KO2

τO2s + 1

(
CV/τH−O

(τ1s + 1)(τ2s + 1)
q − Kr Ir

)
.

(6)

The pressure of water is

pH2O = 1/KH2O

τH2Os + 1
qrH2

, (7)

where KH2O and τH2O denote the valve molar constant
for water and the response time of water flow, respec-
tively. The hydrogen flow that reacts is

qrH2
= 2Kr Ir. (8)

Hence, from Eqs. (7) and (8), the pressure of water is

pH2O = 2Kr/KH2O

τH2Os + 1
I. (9)

Finally, the stack output voltage is

V = E − ηact − ηohmic. (10)

From the Nernst’s equation

E = N0

[
E0 + RT

2F
ln

pH2

√
pO2

pH2O

]
, (11)

where N0, E0, R0, T0 and F0 denote the number of cells
in series in the stack, the ideal standard potential, the
universal gas constant, the absolute temperature and the
Faraday’s constant, respectively. The activation loses
are defined by

ηact = B log(C I ), (12)

where B and C are constants. The ohmic losses are

ηohmic = Rint I, (13)

where Rint is the internal resistance.
The continuous-time fundamental model consists of

Eqs. (2), (3), (6), (8)–(13). The values of parameters are
given in Table 1. Table 2 gives the values of process
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Table 1 Parameters of the
fundamental
continuous-time model of
the PEM system

Parameter Value Unit Description

B 0.04777 1 A−1 Activation voltage constant

C 0.0136 V Activation voltage constant

CV 2 − Conversion factor

E0 0.6 V No-load voltage

F 96485 C mol−1 Faraday’s constant

KH2 4.22 × 10−3 mol s−1 atm−1 Hydrogen valve constant

KH2O 7.716 × 10−3 mol s−1 atm−1 Water time constant

Kr = N0/4F0 2.2802 × 10−3 mol s−1 A−1 Constant

KO2 2.11 × 10−2 mol s−1 atm−1 Oxygen time constant

N0 88 − Number of cells

R0 8.314 J mol−1 K−1 Universal gas constant

Rint 0.00303 � Internal resistance

T0 343 K Absolute temperature

τ1 = τ1 2 s Reformer time constants

τH2 3.37 s Hydrogen time constant

τH−O 1.168 − Hydrogen–oxygen flow ratio

τH2O 18.418 s Water time constant

τO2 6.74 s Oxygen time constant

Table 2 Values of process variables for the initial operatingpoint

Variable Value Unit

I 100 A

q 0.5 mol s−1

pH2 5.9102 atm

pO2 39.4959 atm

pH2O 22.6160 atm

V 56.6179 V

variables for the initial operating point. The values of
process input and disturbance signals are constrained

0.1 mol s−1 ≤ q ≤ 2 mol s−1, (14)

50 A ≤ I ≤ 150 A. (15)

3 Wiener models of PEM fuel cell

It can be noted that the continuous-time fundamental
model of the discussed PEM fuel cell is characterized
by linear dynamic transfer functions (Eqs. 3, 6, 9), but
the stack voltage is defined by the nonlinear steady-
state Nernst’s equation (11). This means that the out-
puts of the linear dynamic part of the model are inputs

of the nonlinear steady-state one. Hence, it is straight-
forward to use the Wiener structure as an empirical
model of the considered PEM fuel cell.

For model identification, the manipulated variable
of the process, q, the disturbance, I , and the output, V ,
are scaled

u = q − q̄, h = 0.01(I − Ī ), y = V − V , (16)

where q̄ , Ī and V denote values of process variables at
the initial operating point (Table 2).

3.1 Wiener model: structure A

Figure 1 depicts the first structure of the Wiener model
(structure A). It consists of a linear dynamic block con-
nected in series with a nonlinear steady-state one. The
linear block has two inputs (u, h) and one output, v,
which is an auxiliary variable. The linear block is char-
acterized by the equation

v(k) =
n1B∑
i=1

b1i u(k − i) +
n2B∑
i=0

b2i h(k − i)

−
nA∑
i=1

aiv(k − i). (17)
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Wiener structures for modeling and nonlinear predictive control 1643

Fig. 1 Structure A of the Wiener model

The integers nA and n j
B, j = 1, 2 define the order of

the model dynamics. The constant parameters of the
linear dynamic blocks are denoted by the real numbers
ai (i = 1, . . . , nA), b1i (i = 1, . . . , n1B) and b2i (i =
0, . . . , n1B). It is important to note that the signal v(k)
depends directly on the signal h(k) since the current, I ,
has an immediate impact on the voltage, V . The output
signal of the linear dynamic block is taken as the input
of the steady-state one. The nonlinear steady-state part
of the model is described by the general equation

y(k) = g (v(k)) . (18)

As the differentiable function g : R → R a neural net-
work with one input, one hidden layer with K units and
one output is used [25]. The model output is

y(k) = w2
0 +

K∑
l=1

w2
l ϕ
(
w1
l,0 + w1

l,1v(k)
)

, (19)

where ϕ : R −→ R is a nonlinear transfer function
(e.g., hyperbolic tangent). Weights of the network are
denoted by w1

l,m , l = 1, . . . , K , m = 0, 1 and w2
l ,

l = 0, . . . , K , for the first and the second layers,
respectively. The total number of weights is 3K+1. All
parameters of theWiener model, i.e., the parameters of
the dynamic part and weights of the neural network,
are determined from an identification procedure. Dur-
ing identification, the model error defined by

E =
nsamples∑
k=1

(ymod(k) − y(k))2 (20)

isminimized,where ymod(k) and y(k)denote themodel
output and the training data, respectively, nsamples

denotes the number of data samples. Since the model
is nonlinear, optimization of the model parameters is
a nonlinear optimization task which is solved off-line.
For this purpose, the sequential quadratic programming
(SQP) algorithm is used [43], which makes it possible

Fig. 2 Structure B of the Wiener model

to take into account constraints during optimization.
To enforce stability of the Wiener model, the poles of
linear dynamic block are optimized subject to stability
constraints. (All poles must belong to the unit circle.)
Next, from the optimized poles the model coefficients
ai (Eq. 17) are calculated. Thevalues ofb

j
i ,w

1
l,m andw2

l
are directly calculated (optimized) with no constraints.

3.2 Wiener model: structure B

Figure 2 depicts the second structure of the Wiener
model (structure B). It consists of two linear dynamic
blocks and a nonlinear steady-state one, but unlike
structure A, it has two inputs. The outputs of the linear
blocks are characterized by the equations

v1(k) =
n1B∑
i=1

b1i u(k − i) −
n1A∑
i=1

a1i v1(k − i), (21)

v2(k) =
n2B∑
i=0

b2i h(k − i) −
n2A∑
i=1

a2i v2(k − i). (22)

The integers n j
A, n

j
B, j = 1, 2 define the order of the

model dynamics. The constant parameters of the linear
dynamic blocks are denotedby the real numbersa1i (i =
1, . . . , n1A), a

2
i (i = 1, . . . , n2A), b

1
i (i = 1, . . . , n1B)

and b2i (i = 0, . . . , n1B). The signal v2(k) depends on
the signal h(k) since the current, I , has an immediate
impact on the voltage, V . The nonlinear steady-state
block is described by the general equation

y(k) = g (v1(k), v2(k)) . (23)

A neural network with two inputs, one hidden layer
with K units and one output is used. The model output
is

123



1644 M. Ławryńczuk , D. Söffker

Fig. 3 Structure C of the Wiener model

y(k) = w2
0+

K∑
l=1

w2
l ϕ
(
w1
l,0 + w1

l,1v1(k) + w1
l,2v2(k)

)
.

(24)

The weights of the network are denoted by w1
l, j , l =

1, . . . , K , j = 0, 1, 2 and w2
l , l = 0, . . . , K , for the

first and the second layers, respectively. The overall
number of weights is 4K + 1. The parameters of the
second type of the Wiener model are also obtained by
minimization of the model error function (20) subject
to the constraints to enforce model stability (the poles
of Eqs. 21 and 22 must belong to the unit circle).

3.3 Wiener model: structure C

Figure 3 depicts the third structure of theWiener model
(structure C). It has three linear dynamic blocks. They
are characterized by the equations

v1(k) =
n11B∑
i=1

b11i u(k − i) +
n12B∑
i=1

b12i h(k − i)

−
n1A∑
i=1

a1i v1(k − i), (25)

v2(k) =
n21B∑
i=1

b21i u(k − i) +
n22B∑
i=1

b22i h(k − i)

−
n2A∑
i=1

a2i v2(k − i), (26)

v3(k) =
n3B∑
i=1

b3i h(k − i) −
n3A∑
i=1

a3i v3(k − i). (27)

The integers n j
A for j = 1, 2, 3, ni jB for i = 1, 2,

j = 1, 2 andn3B define the order of themodel dynamics.
The constant parameters of the linear dynamic blocks
are denoted by the real numbers a j

i (i = 1, . . . , n j
A,

j = 1, 2, 3), b jl
i (i = 1, . . . , n j

B, j = 1, 2, l = 1, 2)
and b3i (i = 1, . . . , n3B). Unlike two previously dis-
cussed model structures, in structure C the steady-state
block has an additional input which is the value of the
disturbance signal, h, measured at the current sampling
instant, k. The nonlinear steady-state block is described
by the general equation

y(k) = g (v1(k), v2(k), v3(k), h(k)) . (28)

A neural network with four inputs, one hidden layer
with K units andoneoutput is used.Themodel output is

y(k) = w2
0 +

K∑
l=1

w2
l ϕ

(
w1
l,0

+
3∑
j=1

w1
l, jv j (k) + w1

l,4h(k)

⎞
⎠ . (29)

Weights of the network are denoted by w1
l, j , l =

1, . . . , K , j = 0, . . . , 4 and w2
l , l = 0, . . . , K , for

the first and the second layers, respectively. The over-
all number of weights is 6K + 1. In this case, model
parameters are also obtained by minimization of the
model error function (20) subject to the constraints to
enforce model stability (the poles of Eqs. 25–27 must
belong to the unit circle).

4 Nonlinear model predictive control algorithms of
PEM fuel cell

4.1 MPC problem formulation

MPC is an advanced control technique in which a
dynamic model is used repeatedly online to predict
the future behavior of the controlled process and an
optimization procedure finds the best possible con-
trol policy [15–17]. The MPC approach has important
advantages: It offers good control quality and takes
into account all existing constraints imposed on pro-
cess variables. As a result, MPC algorithms have been
applied to numerous technological processes, mainly
in industrial process control [44], e.g., chemical reac-
tors [45], but also for control: computer networks [46],
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Wiener structures for modeling and nonlinear predictive control 1645

unmanned vehicles [28], antilock brake systems in
automobiles [47], unmanned helicopters [27], tractor–
trailer vehicles [48], overhead cranes [49], underwater
vehicles [50], active steering systems in cars [29] and
even chaotic systems [51].

Let u denote the scaled input (manipulated) variable
of the process and y denote the scaled output (con-
trolled) variable (Eq.16). In MPC algorithms [15–17]
at each consecutive sampling instant k, a future control
policy for a control horizon, Nu, is calculated. Typi-
cally, increments of the manipulated variable are found

�u(k) = [�u(k|k) . . . �u(k + Nu − 1|k)]T , (30)

where �u(k|k) = u(k|k) − u(k − 1), �u(k + p|k) =
u(k + p|k) − u(k + p − 1|k) for p = 1, . . . , Nu − 1.
It is assumed that �u(k + p|k) = 0 for p ≥ Nu, i.e.,
u(k+ p|k) = u(k+Nu−1|k) for p ≥ Nu. The control
increments (30) are calculated at each sampling instant
from an optimization problem in which the predicted
control errors are minimized. They are defined as the
differences between the set-point trajectory, ysp(k +
p|k), and the predicted trajectory, ŷ(k + p|k), over the
prediction horizon N ≥ Nu. The MPC cost function is

J (k) =
N∑
p=1

(ysp(k + p|k) − ŷ(k + p|k))2

+ λ

Nu−1∑
p=0

(�u(k + p|k))2. (31)

A dynamic model of the controlled process is used to
calculate online the predicted values of the process out-
put variable. The second part of the MPC cost function
is a penalty term used to limit increments of the manip-
ulated variable. An advantage of MPC algorithms is
the fact that all existing constraints may be taken into
account in an optimization task solved at each sam-
pling instant online to find the optimal increments of
the manipulated variable (30). Assuming that there are
constraints imposed on the value and the rate of change
of the manipulated variables as well as on the predicted
values of process output, the rudimentary MPC opti-
mization problem is

min�u(k|k),...,�u(k+Nu−1|k)
{J (k)} ,

subject to

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1,

−�umax ≤ �u(k + p|k) ≤ �umax, p = 0, . . . , Nu − 1,

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N . (32)

The minimal and maximal possible values of the
manipulated variable are denoted by umin and umax,
respectively, the maximal allowed increment of that
variable is denoted by �umax, and the minimal and
maximal possible values of the predicted controlled
variable are denoted by ymin and ymax, respectively.
At each sampling instant, the whole sequence of con-
trol increments (30), of length Nu, is calculated, but
only the first element is applied to the process, i.e.,
u(k) = �u(k|k) + u(k − 1). At the next sampling
instant, k + 1, the whole procedure is repeated.

For further transformations, the MPC optimization
problem (32) is expressed in a convenient vector–
matrix notation

min�u(k)

{ ∥∥ ysp(k) − ŷ(k)
∥∥2 + ‖�u(k)‖2�

}
,

subject to
umin ≤ J�u(k) + u(k − 1) ≤ umax,

−�umax ≤ �u(k) ≤ �umax,

ymin ≤ ŷ(k) ≤ ymax,

(33)

where the norms are ‖x‖2 = xTx, ‖x‖2A = xTAx, the
predicted trajectory of the output variable over the pre-
diction horizon and the set-point trajectory are vectors
of length N

ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k + N |k)]T , (34)

ysp(k) = [ysp(k + 1|k) . . . ysp(k + N |k)]T . (35)

The vectors of length Nu are: umin = [umin . . . umin
]T
,

umax = [
umax . . . umax

]T, �umax =
[
�umax . . .

�umax
]T
, u(k − 1) = [u(k − 1) . . . u(k − 1)]T; the

vectors of length N are: ymin = [
ymin . . . ymin

]T
,

ymax = [
ymax . . . ymax

]T. The matrix � = diag(λ,

. . . , λ) and the lower ones matrix J (its diagonal and
below diagonal entries are equal to 1, and the entries
over the diagonal are equal to 0) are of dimensionality
Nu × Nu.

The Wiener models of the PEM fuel cell are non-
linear, so the predicted values of the controlled vari-
able are nonlinear functions of the currently calcu-
lated sequence of increments of the manipulated vari-
able, Eq. (30). Hence, the general MPC optimization
problem (32) becomes a nonlinear task which must
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1646 M. Ławryńczuk , D. Söffker

be solved at each sampling instant online. To reduce
the computational complexity, two alternatives are dis-
cussed in the following part of the article.

4.2 Nonlinear MPC algorithm with nonlinear
prediction and simplified model linearization
(MPC-NPSL)

In the first approach regarding computationally effi-
cientMPC of the PEM fuel cell, a linear approximation
of the Wiener model is successively calculated online
at each sampling instant k and next used for finding
the predicted trajectory of the process output [26]. The
model is linearized for the current operating conditions.
During linearization, the serial structure of the Wiener
model is used. Although all three model types may be
used, the MPC-NPSL algorithm for the most complex
Wiener structure C shown in Fig. 3 is detailed. The
algorithm for structures A and B may be easily derived
from the given description.

Online linearization is performed in a simple way:
The time-varying gains of the nonlinear steady-state
blocks of the model are calculated for the current oper-
ating point, and next, taking into account the serial
structure of the model, the gain of the whole model
is updated. From Eq. (29), the time-varying gains of
the vi to y channels (i = 1, 2, 3) of the nonlinear block
can be obtained as

Ki (k) = dy(k)

dvi (k)
=

K∑
l=1

w2
l
dzl(k)

dzl(k)
w1
l,i , (36)

where zl(k) = w1
l,0+

∑3
j=1 w1

l, jv j (k)+w1
l,4h(k). If the

hyperbolic tangent is used as the activation function of
the hidden layer of the neural network, i.e.,ϕ = tanh(·),
it results in

dzl(k)

dzl(k)
= 1 − tanh2 (zl(k)) . (37)

Taking into account the serial structure of Wiener
model C shown in Fig. 3, a linear approximation of
the model output signal is

y(k) = K1(k)v1(k)+ K2(k)v2(k)+ K3(k)v3(k). (38)

Remembering that the dynamic blocks are linear with
constant parameters (Eqs. 25–27), the model used in

the MPC-NPSL algorithm (Eq.38) is linear, but time-
varying. In allMPCalgorithms based on constant linear
models, the predicted trajectory of the output (Eq.34)
is a linear combination of the decision variables of
MPC [17]. Using the concept of linear MPC and taking
into account the time-varying linear approximation of
Wiener structure C defined by Eq. (38), the prediction
equation is obtained

ŷ(k) = (K1(k)G1(k) + K2(k)G2(k))�u(k) + y0(k).

(39)

The predicted output trajectory, ŷ(k), is a sum of two
parts: the forced trajectory, (K1(k)G1(k) + K2(k)G2

(k))�u(k), and the free trajectory (a vector of length
N )

y0(k) =
[
y0(k + 1|k) . . . y0(k + N |k)

]T
. (40)

The first trajectory depends on the currently calcu-
lated future control increments, whereas the second one
depends only on the past. It is straightforward to notice
from Eqs. (25)–(27) that the manipulated variable, u,
influences only the first two intermediate model vari-
ables, v1 and v2. Hence, only the channels u − v1 − y
and u − v2 − y are considered in the forced trajectory.
The constant matrices of dimensionality N × Nu

Gn =

⎡
⎢⎢⎢⎣

sn1 0 . . . 0
sn2 sn1 . . . 0
...

...
. . .

...

snN snN−1 . . . snN−Nu+1

⎤
⎥⎥⎥⎦ (41)

comprise step response matrices of the channels u−v1
(n = 1) and u − v2 (n = 2), respectively. They are
calculated off-line in the classical way [17]. For this
purpose, the first two dynamic blocks (Eqs. 25, 26) are
taken into account without any influence of the distur-
bance signal, h.

In the MPC-NPSL algorithm, it is also necessary to
find the free trajectory, y0(k), (Eq. 40). It is calculated at
each sampling instant not from the simplified linearized
model (38), but from the full nonlinear Wiener model.
From Eq. (29), one has

y0(k + p|k) = w2
0 +

K∑
l=1

w2
l ϕ
(
w1
l,0
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+
3∑
j=1

w1
l, jv

0
j (k + p|k)

+ w1
l,4hmeas(k + p|k)

)
+ d(k). (42)

The free trajectories of the variables v1, v2 and v3 are
denoted by v01 , v

0
2 and v03 , respectively. The free trajec-

tory of the variable v1 is obtained from Eq. (25)

v01(k + p|k) =
I 1uf (p)∑
i=1

b11i u(k − 1)

+
n11B∑

i=I 1uf (p)+1

b11i u(k − i + p)

+
n12B∑
i=1

b12i hmeas(k − i + p|k)

−
I 1vf (p)∑
i=1

a1i v1(k − i + p|k)

−
n1A∑

i=Ivf1 (p)+1

a1i v1(k − i + p), (43)

where I 1uf(p) = min(p, n11B ), I 1vf(p) = min(p −
1, n1A). The free trajectory of the variable v2 is obtained
from Eq. (26)

v02(k + p|k) =
I 2uf (p)∑
i=1

b21i u(k − 1)

+
n21B∑

i=I 2uf (p)+1

b21i u(k − i + p)

+
n22B∑
i=1

b22i hmeas(k − i + p|k)

−
I 2vf (p)∑
i=1

a2i v2(k − i + p|k)

−
n2A∑

i=Ivf2 (p)+1

a2i v2(k − i + p), (44)

where I 2uf(p) = min(p, n21B ), I 2vf(p) = min(p −
1, n2A). The free trajectory of the variable v3 is obtained
from Eq. (27)

v03(k + p|k) = b3i hmeas(k − i + p|k)·

−
I 3vf (p)∑
i=1

a3i v3(k − i + p|k)

−
n2A∑

i=Ivf3 (p)+1

a3i v3(k − i + p), (45)

where I 3vf(p) = min(p − 1, n3A). The measured value
of the disturbance is typically known up to the current
sampling instant, i.e.,

hmeas(k + p|k) =
{
0.01(I (k + p) − Ī ) when p < 0,

0.01(I (k) − Ī ) when p ≥ 0.

(46)

The unmeasured disturbance acting on the process out-
put, d(k), used in the free trajectory (Eq.42), is cal-
culated as difference between the value of the output
signal measured at the current sampling instant, y(k),
and process output estimated from the model. Using
Eq. (29), one obtains

d(k) = y(k)

−w2
0 −

K∑
l=1

w2
l ϕ

⎛
⎝w1

l,0 +
3∑
j=1

w1
l, jv j (k) + w1

l,4h(k)

⎞
⎠ .

(47)

Because in the MPC-NPSL algorithm for prediction of
the predicted output trajectory (Eq. (39)) a linear func-
tion of the future control increments�u(k) is used, the
generalMPC optimization problem (33) is transformed
to the MPC-NPSL quadratic programming task

min�u(k)

{∥∥ ysp(k) − (K1(k)G1(k) + K2(k)G2(k))�u(k)

− y0(k)u(k)
∥∥2 + ‖�u(k)‖2�

}
,

subject to
umin ≤ J�u(k) + u(k − 1) ≤ umax,

−�umax ≤ �u(k) ≤ �umax,

ymin ≤ (K1(k)G1(k) + K2(k)G2(k))�u(k)
+ y0(k) ≤ ymax.

(48)
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4.3 Nonlinear MPC algorithm with nonlinear
prediction and linearization along the
trajectory(MPC-NPLT)

In the second approach to computationally efficient
MPC of the PEM fuel cell, a linear approximation of
the predicted trajectory of the process output is directly
calculated online, at each sampling instant k [26]. It
should be noted that in theMPC-NPSL algorithm a lin-
ear approximation of the model is successively found
online and next used for calculation of the predicted tra-
jectory of the controlled variable. This approach uses
a constant linearized model over the whole prediction
horizon, which is a disadvantage.

In the MPC-NPLT algorithm, linearization of the
output trajectory is performed for an assumed future
trajectory of the input variable utraj(k) =[
utraj(k|k) . . . utraj(k + Nu − 1|k)]T. In this work, that
trajectory is defined as the last Nu − 1 elements of the
optimal trajectory calculated at the previous instant and
not applied to the process

utraj(k) =

⎡
⎢⎢⎢⎢⎢⎣

u(k|k − 1)
...

u(k + Nu − 3|k − 1)
u(k + Nu − 2|k − 1)
u(k + Nu − 2|k − 1)

⎤
⎥⎥⎥⎥⎥⎦

. (49)

The last element is repeated twice since the control
increment for the sampling instant k + Nu − 1 is not
calculated in the previous sampling instant. Using Tay-
lor’s series expansion method, a linear approximation
of the nonlinear output trajectory ŷ(k) (Eq. 34) along
the input trajectory utraj(k), i.e., linearization of the
function ŷ(u(k)) : RNu → R

N is

ŷ(k) = ŷtraj(k) + H(k)(u(k) − utraj(k)), (50)

where u(k) = [u(k|k) . . . u(k + Nu − 1|k)]T is the
future trajectory of the manipulated variable corre-
sponding to the calculated increments,�u(k), (Eq. 30).
The predicted trajectory of the controlled variable,
ŷtraj(k), corresponds to the assumed trajectory of the
manipulated variable, utraj(k). The N × Nu matrix
of the derivatives of the predicted trajectory of the
controlled variable with respect of the assumed tra-
jectory of the manipulated variable has the struc-
ture

H(k) = d ŷ(k)
du(k)

∣∣∣∣∣∣∣ ŷ(k)= ŷtraj(k)
u(k)=utraj(k)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂ ŷtraj(k + 1|k)
∂utraj(k|k) · · · ∂ ŷtraj(k + 1|k)

∂utraj(k + Nu − 1|k)
...

. . .
...

∂ ŷtraj(k + N |k)
∂utraj(k|k) · · · ∂ ŷtraj(k + N |k)

∂utraj(k + Nu − 1|k)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(51)

The linear approximation of the predicted process tra-
jectory (50)may be expressed as a function of the future
trajectory of the increments of the manipulated vari-
able, which is repeatedly calculated in MPC at each
sampling instant

ŷ(k) = H(k)J�u(k) + ŷtraj(k)

+ H(k)(u(k − 1) − utraj(k)). (52)

Using the linear approximation of the predicted tra-
jectory of the controlled variable (Eq.52), from the
rudimentary MPC optimization problem (33) the fol-
lowing MPC-NPLT quadratic optimization task is
obtained

min�u(k)

{∥∥ ysp(k) − H(k)J�u(k) − ŷtraj(k)

H(k)(u(k − 1) − utraj(k))
∥∥2 ‖�u(k)‖2�

}
,

subject to
umin ≤ J�u(k) + u(k − 1) ≤ umax,

−�umax ≤ �u(k) ≤ �umax,

ymin ≤ H(k)J�u(k) + ŷtraj(k)
+ H(k)(u(k − 1) − utraj(k)) ≤ ymax.

(53)

The predicted trajectory ŷtraj(k) and the matrix H(k)
are calculated directly from the full nonlinear model of
the process, without any simplification. Although all
three model types may be used, the MPC-NPLT algo-
rithm for the most complex Wiener structure C shown
in Fig. 3 is detailed. From Eq. (29), the predicted tra-
jectory is
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ytraj(k + p|k) = w2
0 +

K∑
l=1

w2
l ϕ

(
w1
l,0

+
3∑
j=1

w1
l, jv

traj
j (k + p|k)

+ w1
l,4hmeas(k + p|k)

)
+ d(k).

(54)

From Eq. (25), the predicted trajectory of the variable
v1 is

v
traj
1 (k + p|k) =

I 1uf (p)∑
i=1

b11i utraj(k − i + p|k)

+
n1B∑

i=I 1uf (p)+1

b11i u(k − i + p)

+
n12B∑
i=0

b12i hmeas(k − i + p|k)

−
I 1vf (p)∑
i=1

a1i v
traj
1 (k − i + p|k)

−
nA∑

i=I 1vf (p)+1

a1i v1(k − i + p). (55)

From Eq. (26), the predicted trajectory of the variable
v2 is

v
traj
2 (k + p|k) =

I 2uf (p)∑
i=1

b21i utraj(k − i + p|k)

+
n2B∑

i=I 2uf (p)+1

b21i u(k − i + p)

+
n22B∑
i=0

b22i hmeas(k − i + p|k)

−
I 2vf (p)∑
i=1

a2i v
traj
2 (k − i + p|k)

−
nA∑

i=I 2vf (p)+1

a2i v1(k − i + p). (56)

From Eq. (27), the predicted trajectory of the variable
v3 is

v
traj
3 (k + p|k) =

n3B∑
i=0

b3i hmeas(k − i + p|k)

−
I 3vf (p)∑
i=1

a3i v
traj
3 (k − i + p|k)

−
nA∑

i=I 3vf (p)+1

a3i v3(k − i + p). (57)

The unmeasured disturbance is assessed in the same
way as in the MPC-NPSL algorithm (Eq.47).

The entries of the matrix H(k) are determined dif-
ferentiating Eq. (54) which leads to

∂ytraj(k + p|k)
∂utraj(k + r |k) =

K∑
l=1

w2
l
dztrajl (k + p|k)
dztrajl (k + p|k)

×
2∑
j=1

w1
l, j

∂v
traj
j (k + p|k)

∂utraj(k + r |k) , (58)

for all p = 1, . . . , N , r = 0, . . . , Nu −1, where zl(k+
p|k) = w1

l,0 +∑3
j=1 w1

l, jv j (k + p|k) + w1
l,4hmeas(k).

The first derivative in Eq. (58) depends on the transfer
function used in the neural network, for the hyperbolic
tangent the general Eq. (37) is used. The partial deriva-
tives are calculated differentiating Eqs. (55) and (56).
In general, for j = 1, 2, one has

∂v
traj
j (k + p|k)

∂utraj(k + r |k) =
I juf (p)∑
i=1

b j1
i

∂utraj(k − i + p|k)
∂utraj(k + r |k)

−
I jvf (p)∑
i=1

a j
i

∂v
traj
j (k − i + p|k)
∂utraj(k + r |k) .

(59)

The first partial derivative in the right side of Eq. (59)
is

∂utraj(k + p|k)
∂utraj(k + r |k) =

{
1 if p = r or (p > r and r = Nu − 1),

0 otherwise,

(60)
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Fig. 4 Training (left) and validation (right) data sets

and the second one is calculated recurrently for the
consecutive values of the indices p and r .

5 Simulation results

5.1 Model identification of PEM fuel cell

The objective of this subsection is to find precise black
box models of the PEM fuel cell. A linear model and
three discussedWiener structures (A, B and C) are con-
sidered. All models are assessed in terms of the SSE
error (Eq.20) and the number of model parameters.
During model identification two data sets are used: the
training data set and the validation one. Thefirst of them
is used only to find parameters of models, whereas the
second one is used only to assess generalization abil-
ity of models, i.e., how the model reacts when it is
excited by a different data set than that used for identifi-
cation. To obtain those two sets of data, the continuous-
time fundamental model of the PEM process (defined
by Eqs. 2, 3, 6, 8–13) is simulated. The model sys-
tem of differential equations is solved by Runge–Kutta
method of order 45. As the process input and distur-
bance signals random sequences from the range char-
acterized by Eqs. (14) and (15) are used. The process

signals (i.e., the manipulated variable, q, the distur-
bance, I , and the controlled variable, V ) are sampled
with the sampling period equal to 1 s. The training and
validation data sets are shown in Fig. 4, both sets consist
of 3000 samples of the process manipulated variable,
the disturbance and the output. Since identification of
nonlinear Wiener models is a nonlinear optimization
problem, training is repeated as many as 10 times for
eachmodel configuration and the results presented next
are the best obtained.

At first linear models of the process are considered.
They have the following structure

v(k) =
n1B∑
i=1

b1i u(k−i)+
n2B∑
i=0

b2i h(k−i)−
nA∑
i=1

ai y(k−i).

(61)

Table 3 compares training and validation errors of lin-
ear models of the first, the second, the third and the
fourth order (the order is defined as an integer number
n1B = n2B = nA). As a compromise between model
accuracy and complexity, the third-order model is cho-
sen. Figure 5 compares the validation data set versus the
output of the chosen linear model. The model is stable,
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Table 3 Training error, Etrain, and the validation error, Eval, for
the linear model; the errors of the chosen model are emphasized

Model order Etrain Eval

First order 1.4509 × 103 8.1537 × 102

Second order 1.4482 × 103 8.4352 × 102

Third order 1.0560 × 103 5.4921 × 102

Fourth order 9.5139 × 102 4.9939 × 102

but not precise since there are significant differences
between the model output and the data.

Next, Wiener structure A is considered. Table4
presents training and validation errors for models of
different orders (the order is defined as an integer num-

ber n1B = n2B = nA) and different numbers of hidden
nodes, K . All compared models are of very low qual-
ity, only slightly better than the linear models (Table 3).
Model complexity (defined by the order of dynamics
and the number of hidden nodes) has practically no
influence on model accuracy. For further comparison,
the third-order model containing five hidden nodes is
chosen. The top part of Fig. 6 compares the validation
data set versus the output of Wiener model A. Slightly
better results in comparison with the linear structure
(Fig. 5) can be obtained, but still significant differences
between model output and data are present.

The training and validation errors of Wiener struc-
ture B are given in Table 5 for models of differ-
ent orders (the order is defined as an integer number

300025002000150010005000

k

52

54

56

58

60

62

V

Validation data; Output of linear model

Fig. 5 Validation data set versus the output of the third-order linear model

Table 4 Training error, Etrain, and the validation error, Eval, for structure A of the Wiener model; K is the number of hidden nodes of
the neural steady-state block; the errors of the chosen model are emphasized

K First order Second order Third order Fourth order

Etrain Eval Etrain Eval Etrain Eval Etrain Eval

1 6.6838 × 102 4.5577 × 102 5.0341 × 102 4.2012 × 102 6.6000 × 102 4.5332 × 102 5.4235 × 102 4.6676 × 102

5 5.1987 × 102 3.9975 × 102 4.4502 × 102 4.2231 × 102 3.9532 × 102 4.0533 × 102 4.0093 × 102 3.9105 × 102

10 5.3683 × 102 3.9015 × 102 4.6211 × 102 4.2378 × 102 4.0344 × 102 4.0245 × 102 3.8761 × 102 3.9924 × 102

15 4.9882 × 101 4.0700 × 102 4.3372 × 102 4.2657 × 102 3.7396 × 102 3.8778 × 102 5.2775 × 102 3.5779 × 102

20 5.0761 × 102 3.9746 × 102 4.7123 × 102 3.9891 × 102 4.6384 × 102 3.9448 × 102 3.7140 × 102 3.7399 × 102
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Fig. 6 Validation data set versus the output of the chosen third-order Wiener models (structures A, B and C) containing K = 5 hidden
nodes
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Table 5 Training error, Etrain, and the validation error, Eval, for structure B of the Wiener model; K is the number of hidden nodes of
the neural steady-state block; the errors of the chosen model are emphasized

K First order Second order Third order Fourth order

Etrain Eval Etrain Eval Etrain Eval Etrain Eval

1 5.8138 × 102 4.8800 × 102 5.4311 × 102 4.6994 × 102 5.4305 × 102 4.7308 × 102 5.4290 × 102 4.7271 × 102

5 9.7195 × 101 7.5512 × 101 1.2616 × 101 1.1287 × 101 1.1623 × 101 1.1491 × 101 1.1399 × 101 1.0650 × 101

10 9.6519 × 101 7.5056 × 101 1.4029 × 101 1.2614 × 101 1.0858 × 101 1.0808 × 101 9.7289 × 100 1.0733 × 101

15 8.8093 × 101 8.7314 × 101 1.0710 × 101 1.1261 × 101 1.1962 × 101 1.1709 × 101 1.0402 × 101 1.0221 × 101

20 8.6768 × 101 9.1449 × 101 1.3866 × 101 1.2104 × 101 1.1185 × 101 1.1996 × 101 9.1614 × 100 1.0818 × 101

Table 6 Training error, Etrain, and the validation error, Eval, for structure C of the Wiener model; K is the number of hidden nodes of
the neural steady-state block; the errors of the chosen model are emphasized

K First order Second order Third order Fourth order

Etrain Eval Etrain Eval Etrain Eval Etrain Eval

1 6.8804 × 102 4.8451 × 102 5.4451 × 102 4.6874 × 102 5.4365 × 102 4.5806 × 102 5.8198 × 102 4.7912 × 102

2 2.8987 × 102 1.7401 × 102 6.2320 × 101 4.6059 × 101 5.1074 × 101 4.0937 × 101 5.5591 × 101 4.2298 × 101

3 2.7854 × 102 1.4884 × 102 2.1169 × 101 1.0964 × 101 6.3563 × 100 5.2184 × 100 6.4498 × 100 5.2912 × 100

4 2.9195 × 102 1.4232 × 102 1.7371 × 101 7.9965 × 100 1.7434 × 100 1.8839 × 100 1.7913 × 100 1.8252 × 100

5 2.9557 × 102 1.4212 × 102 1.6731 × 101 7.1024 × 100 7.0345 × 10−1 1.0348 × 100 7.0913 × 10−1 1.1003 × 100

6 2.9577 × 102 1.4142 × 102 1.6480 × 101 6.9003 × 100 2.3153 × 10−1 2.7509 × 10−1 2.2592 × 10−1 2.6913 × 10−1

7 2.9541 × 102 1.4120 × 102 1.6201 × 101 6.4680 × 100 1.1082 × 10−1 1.7223 × 10−1 1.2672 × 10−1 1.7559 × 10−1

8 3.0817 × 102 1.4282 × 102 1.6223 × 101 6.6127 × 100 7.9624 × 10−2 1.5681 × 10−1 8.0613 × 10−2 1.6129 × 10−1

9 3.2279 × 102 1.4431 × 102 1.6425 × 101 6.3947 × 100 6.5134 × 10−2 1.1477 × 10−1 6.5002 × 10−2 1.1701 × 10−1

10 3.2980 × 102 1.4455 × 102 1.6866 × 101 6.4134 × 100 1.2087 × 10−2 2.1544 × 10−2 1.1920 × 10−2 2.1791 × 10−2

15 3.2881 × 102 1.4465 × 102 1.6962 × 101 6.5556 × 100 2.2084 × 10−3 1.5153 × 10−2 2.2302 × 10−3 1.5902 × 10−2

20 3.2618 × 102 1.4466 × 102 1.7744 × 101 7.1142 × 100 1.6085 × 10−3 1.1335 × 10−2 1.6482 × 10−3 1.1742 × 10−2

n1B = n2B = n1A = n2A) and different numbers of hidden
nodes, K . In comparisonwith the linearmodel (Table 3)
and Wiener structure A (Table 4), Wiener structure B
has significantly lower errors. For further comparisons,
the third-order model containing five hidden nodes is
chosen. The middle part of Fig. 6 compares the vali-
dation data set versus the output of Wiener model B.
Unlike structure A, the model output signal is similar
to that of the validation data, the differences are small.

Finally, Wiener structure C is considered. Train-
ing and validation errors of the model are given in
Table 6 for models of different orders (where the order
is defined as an integer number ni jB = niA = n3B = n3A
for i = 1, 2, j = 1, 2) and different numbers of hid-
den nodes, K . In comparison with Wiener structures A
and B (Tables 4, 5), structure C has significantly lower
errors. Furthermore, there is a direct influence of the

number of hidden nodes on model accuracy (the more
hidden nodes, the lower the errors). It is interesting to
notice that the third-order models are characterized by
very similar errors as the fourth-order ones, whereas
the first- and second-order structures are significantly
worse. As a compromise between accuracy and com-
plexity the third-order model containing five hidden
nodes is chosen. The bottom part of Fig. 6 compares the
validation data set versus the output of Wiener model
C. It can be checked that in this case it is practically
impossible to seen any differences between the valida-
tion data and the model output (which are present in
the case of structures A and B).

The accuracy of the considered third-order linear
model and all Wiener structures (with five hidden
nodes) is compactly presented in Fig. 7 which depicts
the relation between the validation data versus the
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Fig. 7 Relation between the validation data versus the outputs
of the chosen third-order linear model and the Wiener structures
(structures A, B and C) containing K = 5 hidden nodes

model outputs. The linear model and Wiener structure
A are imprecise, Wiener structure B gives much better
results, whereas Wiener structure C is excellent. (The
relation between the data and the model output forms
a line the slope of which is 45 degrees.)

5.2 Model predictive control of PEM fuel cell

The objective of this subsection is to compare perfor-
mance of MPC algorithms based on the models found
in the previous subsection. The following MPC algo-
rithms are compared:

1. The classical generalized predictive control (GPC)
MPC algorithm [52]. The third-order linear model
is used for prediction.

2. The fully fledged MPC-NO algorithm with nonlin-
ear optimization repeated at each sampling instant.
The Wiener models (A, B and C) are used for pre-
diction.

3. The computationally efficient MPC schemes: the
MPC-NPSL algorithm with simplified lineariza-
tion and the MPC-NPLT one with trajectory lin-
earization. Wiener model C is used in both MPC
approaches. Both algorithms need solving online a
quadratic optimization problem at each sampling
instant.

All models (linear and nonlinear) used in allMPC algo-
rithms are of the third order. As the simulated pro-
cess the continuous-time fundamental model consists
of Eqs. (2), (3), (6), (8)–(13) is used. In all simulations,
the horizons of all compared MPC algorithms are the
same: N = 10 and Nu = 3. The objective of all MPC
algorithms is to control the process in such a way that
the output, V , is close to the constant set point V sp = V̄
irrespective of the changes of the disturbance, I . The
scenario of disturbance changes is

I (k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ī for k < 5,

Ī + 25 for 5 ≤ k < 40,

Ī − 25 for 40 ≤ k < 80,

Ī + 50 for 80 ≤ k < 120,

Ī − 50 for 120 ≤ k < 160,

Ī for 160 ≤ k < 200.

(62)

The magnitude of the manipulated variable is con-
strained: umin = 0.1, umax = 2.

At first, theGPCalgorithmbased on the linearmodel
is considered. Simulation results for different values of
the penalty factor λ are depicted in Fig. 8. Unfortu-
nately, for the smallest value of that coefficient, i.e., for
λ = 1, there are very strong oscillations of the process
input andoutput variables.When thepenalty coefficient
is increased, for λ = 25 and λ = 50, the oscillations
are damped, but the trajectory of the process output is
slow. When λ = 100, no oscillations combined with
a long rise time are observed. It means that the GPC
algorithm is unable to compensate fast for changes of
the disturbance.

Due to the underlying linear model, the GPC algo-
rithm gives poor control results when applied for pre-
diction. It seems to be straightforward to consider a
nonlinear model in MPC. At first, Wiener structure
A is used in the fully fledged MPC-NO algorithm.
Although the MPC-NO algorithm is computationally
too demanding to be used in practice, in simulations
it shows whether or not the model may be used for
long-range prediction inMPC. Figure 9 depicts simula-
tion results of theMPC-NO algorithm based onWiener
model A for different values of the penalty factor λ.
(The same values are used as in the case of the GPC
algorithm.) SinceWienermodelA is imprecise (Table 4
and Fig. 6), the obtained control quality is poor. For the
smallest value λ = 1, there are some damped oscilla-
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Fig. 8 Simulation results: the GPC algorithm for different values of the penalty factor λ

tions whichmay be eliminated when the penalty coeffi-
cient is increased. Unfortunately, it results in very slow
trajectories, as those in the case of the GPC strategy.
One may conclude that Wiener model A is not precise
enough to be used in MPC.

Next, Wiener models B and C are discussed to be
used inMPC. Simulations results of theMPC-NOalgo-
rithm based on these models are shown in Fig. 10.
It is possible to formulate two observations. First of
all, unlike the GPC algorithm and the MPC-NO strat-
egy based on Wiener model A, when applied for pre-
diction in MPC, both B and C Wiener models result
in good control, i.e., it is possible to compensate fast
for changes of the disturbance. Secondly, it should be
noticed that the MPC-NO algorithm gives slightly bet-
ter, but noticeable, results when Wiener model C is
used. In this case, overshoot is smaller and the required
set point is achieved faster. This results from the use of
the more precise model C (instead of B) (Tables 5, 6).

Taking into account simulation results presented in
Figs. 8, 9 and 10, it can be concluded thatWienermodel
C results in strongly improved control quality when

used in the MPC-NO algorithm. It should be noted that
the MPC-NO algorithm requires solving a nonlinear
optimization problem at each sampling instant online.
In order to reduce computational complexity, two alter-
natives are considered: the MPC-NPLT algorithm with
trajectory linearization and the MPC-NPSL algorithm
with simplified linearization. Both algorithms result in
quadratic optimization problems; nonlinear optimiza-
tion is not necessary. Figure 11 compares trajectories
of the MPC-NO algorithm with those obtained in the
MPC-NPLT and MPC-NPSL strategies. Two observa-
tions may be discussed. Firstly, the MPC-NPLT algo-
rithm with trajectory linearization gives practically the
same process trajectories as the “ideal”MPC-NO strat-
egy; it is impossible to see any differences. It is a benefi-
cial feature of theMPC-NPLT algorithm, since it is sig-
nificantly less computationally demanding, but leads
to the same control performance as the MPC-NO strat-
egy. Secondly, the MPC-NPSL algorithm is stable, and
it only gives slightly larger overshoot than the MPC-
NO andMPC-NPLT algorithms. It should be noted that
the MPC-NPSL algorithm uses for prediction a linear
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Fig. 9 Simulation results: the MPC-NO algorithm based on Wiener model A for different values of the penalty factor λ

approximation of the model which is obtained in a sim-
ple way, and quite complicated trajectory linearization
is not necessary.

Figure 12 depicts simulation results of the three
compared nonlinear MPC algorithms based on Wiener
model C (MPC-NO,MPC-NPLT andMPC-NPSL), but
now the increments of the manipulated variable are
constrained, �umax = 0.1. Due to the additional con-
straints, the manipulated variable does not change as
quickly as in Fig. 11, but the trajectories of the pro-
cess output are slower. In this case, the observations of
algorithms’ performance are the sameas before, i.e., the
MPC-NPLT algorithm gives the trajectories practically
the same as theMPC-NOone, whereas theMPC-NPSL
algorithm gives only slightly larger overshoot.

To further compare MPC algorithms whose trajec-
tories are depicted in Figs. 11 and 12, two performance
indices are calculated after completing simulations.
The first one

E1 =
200∑
k=1

(V sp(k) − V (k))2, (63)

measures the sum of squared differences between the
required set point, V sp(k), and the actual process out-
put, V (k), for the whole simulation horizon. The sec-
ond one

E2 =
200∑
k=1

(VMPC−NO(k) − V (k))2, (64)

measures the sum of squared differences between the
process output controlled by the “ideal”MPC-NOalgo-
rithm, VMPC−NO(k), and the process output controlled
by a compared MPC algorithm, V (k). The obtained
numerical values of the performance indices E1 and
E2 are given in Table 7. In general, the values of E1

for the MPC-NO and MPC-NPLT algorithms are the
same,which indicates that themeasure E2 for theMPC-
NPLT algorithm is low, close to 0. When the MPC-
NO algorithm is compared with the MPC-NPSL one,
there are much noticeable differences, but still leading
to control accuracy very similar to that possible when
the MPC-NO andMPC-NPLT strategies are used. Two
cases are considered (corresponding to Figs. 11, 12):
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Fig. 10 Simulation results: the MPC-NO algorithm based on Wiener models B and C, λ = 1

when the rate of change of the manipulated variable
is constrained or not. When the rate constraints are
present, all trajectories (of the process input and out-
put) are slower. Table 7 additionally specifies calcula-
tion time (scaled) of the MPC algorithms. Two general
observationsmay bemade. Firstly, theMPC-NPSL and
MPC-NPLT algorithms are many times computation-
ally efficient in comparisonwith theMPC-NOone. The
MPC-NPSL scheme is somehow less demanding than
the MPC-NPLT one, but this difference is not big since
computational complexity is mostly influenced by the
quadratic optimization subroutine. Secondly, introduc-
tion of the additional constraints imposed on the rate
of change of the manipulated variable “helps” the opti-
mization routine to slightly faster find the solution.

6 Conclusions

ThePEMfuel cell is a nonlinear dynamic system.A lin-
ear model cannot describe process behavior precisely.
Moreover, when such amodel is used inMPC, obtained
control accuracy is not acceptable.

In this work, effectiveness of three Wiener models
of the PEM fuel cell is discussed. In all models, the
nonlinear steady-state block is represented by a neural
network, whereas the linear dynamic part is different.
The model consisting of three dynamic blocks and a
neural network with five hidden nodes is chosen for
control.

The second contribution of this work is the develop-
ment of two computationally efficient MPC algorithms
for the PEM process. In both MPC algorithms, com-
putationally not complicated quadratic optimization is
used online, and nonlinear optimization is not neces-
sary. In the first MPC algorithm, a time-varying lin-
ear approximation of the model is used for prediction,
whereas in the second one a linear approximation of
the predicted process trajectory is calculated repeatedly
online. The MPC-NPSL algorithm with online simple
model linearization gives very good results, very simi-
lar to those possible in the complex algorithm using tra-
jectory linearization and computationally demanding
MPC with online nonlinear optimization. It is impor-
tant to note the fact that model linearization in MPC
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Fig. 11 Simulation results: the MPC-NO, MPC-NPLT and MPC-NPSL algorithms based on Wiener model C, λ = 1
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Fig. 12 Simulation results: the MPC-NO, MPC-NPLT and MPC-NPSL algorithms based on Wiener model C; the increments of the
manipulated variable are constrained, �umax = 0.1, λ = 1
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Table 7 Comparison of control performance criteria, E1 and E2, as well as calculation time forMPC-NPSL,MPC-NPLT andMPC-NO
algorithms based on Wiener model C; λ = 1

Algorithm �umax E1 E2 Calculation time (%)

MPC-NPSL No 1.6561 × 100 2.8791 × 10−2 7.84

MPC-NPLT No 1.5779 × 100 2.6979 × 10−10 9.13

MPC-NO No 1.5779 × 100 0 100.00

MPC-NPSL Yes 2.7934 × 100 2.5633 × 10−2 7.36

MPC-NPLT Yes 2.6894 × 100 6.7151 × 10−11 8.44

MPC-NO Yes 2.6894 × 100 0 97.89

is performed online in a simple way, which is possi-
ble because of the specialized serial structure of the
Wiener model. Moreover, as a nonlinear block a neu-
ral network is used which leads to good approximation
accuracy and easiness of model utilization in MPC.
The MPC-NPLT algorithm with trajectory lineariza-
tion gives practically the same control accuracy as
that possible in the MPC-NO approach with nonlin-
ear optimization, but requiresmore demanding calcula-
tions. (Trajectory linearization is more demanding than
model linearization.)

Although the Wiener models and the MPC algo-
rithms are developed for a particular type of the PEM,
one may consider alternative ones, e.g., [4,34–38]. The
described MPC algorithms may be used in complex
power management optimization systems for the PEM
fuel cell [53].
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1660 M. Ławryńczuk , D. Söffker

18. Hähnel, C., Aul, V., Horn, J.: Power control for efficient
operation of a PEM fuel cell system by nonlinear model
predictive control. IFAC-PapersOnLine 48, 174–179 (2015)

19. Rosanas-Boeta, N., Ocampo-Martinez, C., Kunusch, C.:
On the anode pressure and humidity regulation in PEM
fuel cells: a nonlinear predictive control approach. IFAC-
PapersOnLine 48, 434–439 (2015)

20. Schultze, M., Horn, J.: Modeling, state estimation and non-
linear model predictive control of cathode exhaust gas mass
flow for PEM fuel cells. Control Eng. Pract. 43, 76–86
(2016)

21. Ziogou,C., Papadopoulou, S., Georgiadis,M.C.,Voutetakis,
S.: On-line nonlinearmodel predictive control of a PEM fuel
cell system. J. Process Control 23, 483–492 (2013)

22. Barzegari, M.M., Alizadeh, E., Pahnabi, A.H.: Grey-box
modeling and model predictive control for cascade-type
PEMFC. Energy 127, 611–622 (2017)

23. Panos, C., Kouramas, K.I., Georgiadis, M.C., Pistikopoulos,
E.N.: Modelling and explicit model predictive control for
PEM fuel cell systems. Chem. Eng. Sci. 67, 15–25 (2012)

24. Janczak,A.: Identification ofNonlinear SystemsUsingNeu-
ral Networks and Polynomial Models. A Block-Oriented
Approach. Lecture Notes in Control and Information Sci-
ences, vol. 310. Springer, Berlin (2004)

25. Haykin, S.: Neural Networks-A Comprehensive Founda-
tion. Prentice Hall, Upper Saddle River (2008)
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