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Abstract This Chapter discusses simulation results of MPC algorithms based on
Wiener models applied to the proton exchange membrane fuel cell. At first, the
process is shortly described, identification of three structures of neural Wiener
models and model selection are discussed. Efficiency of the polynomial Wiener
model is also evaluated. Implementation details of different MPC algorithms are
given. Next, efficiency of MPC algorithms is compared in terms of control quality
and computational time.

6.1 Control of Proton Exchange Membrane Fuel Cells

Currently, the transport sector relies on combustion engines which use fossil fuels.
Alas, it results in emission of greenhouse gases, which leads to serious environmental
problems, i.e. air pollution, global warming, climate changes and destruction of the
ozone layer. Zero-emission electric vehicles are available and their popularity grows.
Typically, electric vehicles use batteries for energy storage. Unfortunately, such cars
have a few disadvantages. Although they are zero-emission, the energy may be
produced in a non-zero-emission process. Moreover, recharging of batteries takes
long hours and the range is limited. An interesting alternative is to use a fuel cell for
energy generation because, in such a case, the energy is produced in a really zero-
emission environmentally friendly process and the tank is filled in minutes. Fuel
cells are electrochemical devices that convert the chemical energy of a fuel (often
hydrogen) and an oxidising agent (often oxygen) directly into electrical energy [16].
They have many significant advantages: high electrical efficiency, very low emission
and quiet operation. Moreover, since fuel cells do not have moving parts, their life
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cycle is very long. Fuel cells may be produced in different scales: from microwatts
to megawatts, which makes them useful in numerous applications. Lastly, hydrogen
necessary for fuel cells may be quite easily produced, so dependence on imported
oil may be significantly reduced.

Among existing types of fuel cells [16], the Proton Exchange Membrane (PEM)
fuel cells are preferred not only for mobile and vehicle applications, including cars,
scooters, bicycles, boats and underwater vessels [1, 22] but also for stationary ones.
This is because of low operation temperature (usually between 60-80 ◦C) which
gives a fast start-up, simple and compact design as well as reliable operation. Since
solid electrolyte is used, no electrolyte leakage is possible. The PEM fuel cells are
considered to be very promising power sources and they are expected to become
sound alternatives to conventional power generation methods.

It is necessary to point out that control of PEM fuel cells is a challenging task.
Although there are examples of classical control methods applied to the PEM fuel
cell, e.g. a linear state feedback controller [25] or a Sliding-Mode Controller (SMC)
[15], the process is inherently nonlinear and linear controllers may give control
accuracy below expectations. Hence, different nonlinear control strategies have been
applied to the PEM fuel cell process: an adaptive Proportional-Integral-Derivative
(PID) algorithm whose parameters are tuned on-line by a fuzzy logic system [2, 21]
or by a neural network [7], an adaptive PID algorithm with a fuzzy logic feedforward
compensator [5], a nonlinear state feedback controller [13], a fuzzy controller [19]
and a look-up table [23]. Fractional complex-order controllers may be also used
[29, 28]. Recently, MPC algorithms have been applied for the PEM fuel cell. In the
literature, it is possible to find two categories of MPC:

1. The fully-fledged nonlinear MPC-NO algorithm [10, 26, 27, 35]. Such an ap-
proach may be very computationally demanding, its practical application may be
impossible.

2. The classical LMPC algorithm based on a fixed (parameter-constant) linear
model [3, 24]. In this approach, on-line calculations in MPC are not demand-
ing (quadratic optimisation is used), but the resulting control quality may be not
satisfactory because the process is nonlinear and the linear model used in MPC
is only a very rough approximation of the nonlinear process.

The contribution of this Chapter is threefold:

1. Effectiveness of three Wiener structures is compared. It is necessary to point out
that the Wiener model is a natural representation of the PEM process. A neural
network of theMLP type is used in the static part of theWienermodels. In contrast
to all Wiener model presented in Chapter 2 and discussed in other chapters of
this book, in all described models of the PEM fuel cell, not only influence of
the process input on the output is taken into account, but also the impact of the
measured disturbance on the output is considered.

2. Effectiveness of the polynomial Wiener model is evaluated. The best structure
chosen for the neural Wiener model is used; the only difference is utilisation of
polynomials in place of neural networks in the nonlinear static part of the model.
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3. Two nonlinear MPC algorithms for the PEM fuel cell are described: the MPC-
NPSL and MPC-NPLT approaches. In contrast to the algorithms presented in
[10, 26, 27, 35], in both algorithms computationally simple quadratic optimisation
is used, full nonlinear optimisation is not necessary. The discussed algorithms are
compared to theMPC-NO scheme in terms of control accuracy and computational
time, inefficiency of the classical LMPC scheme is shown.

Modelling of the PEM fuel cell by neural Wiener models and MPC based on such
models are discussed in [18] distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
This Chapter extends that publication since not only neural Wiener models are
discussed but also polynomial ones.

6.2 Description of the Proton Exchange Membrane Fuel Cell

In the general case, the model of the PEM fuel cell is quite complicated [25].
Hence, the tendency is to use simpler models for development of the control system
[6, 4, 11, 30, 31, 33]. In this work, the PEM fuel cell model introduced in [33] and
further discussed in [9, 14, 34] is considered. The PEM process has one manipulated
variable (the input of the process) which is the input methane flow rate q (mol s−1),
one disturbance (the uncontrolled input) I which is the external current load (A) and
one controlled variable (the output of the process) which is the stack output voltage
V (V). The partial pressures of hydrogen, oxygen and water are denoted by pH2 , pO2

and pH2O, respectively (atm). The input hydrogen flow, the hydrogen reacted flow
and the oxygen input flow are denoted by qin

H2
, qr

H2
and qin

O2
, respectively (mol s−1).

The fundamental continuous-time model of the PEM system is defined by a set
of transfer functions. The pressure of hydrogen is

pH2 =
1/KH2

τH2 s + 1

(
qin

H2
− 2KrI

)
(6.1)

where KH2 and τH2 denote the valve molar constant for hydrogen and the response
time of hydrogen flow, respectively. The input hydrogen flow obtained from the
reformer is

qin
H2
=

CV
(τ1s + 1)(τ2s + 1)q (6.2)

where q is the methane flow rate, CV , τ1 and τ2 are constants. Hence, from Eqs.
(6.1) and (6.2), the pressure of hydrogen is

pH2 =
1/KH2

τH2 s + 1

(
CV

(τ1s + 1)(τ2s + 1)q − 2KrI
)

(6.3)
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The pressure of oxygen is

pO2 =
1/KO2

τO2 s + 1

(
qin

O2
− KrI

)
(6.4)

where KO2 and τO2 denote the valve molar constant for oxygen and the response time
of oxygen flow, respectively. The input flow rate of oxygen is

qin
O2
= (1/τH-O)qin

H2
(6.5)

where τH-O is the ration of hydrogen to oxygen. Using Eq. (6.2), the pressure of
oxygen is

pO2 =
1/KO2

τO2 s + 1

(
CV/τH-O

(τ1s + 1)(τ2s + 1)q − KrI
)

(6.6)

The pressure of water is

pH2O =
1/KH2O

τH2Os + 1
qr

H2
(6.7)

where KH2O and τH2O denote the valve molar constant for water and the response
time of water flow, respectively. The hydrogen flow that reacts is

qr
H2
= 2KrI (6.8)

Hence, from Eqs. (6.7) and (6.8), the pressure of water is

pH2O =
2Kr/KH2O

τH2Os + 1
I (6.9)

Finally, the stack output voltage is

V = E − ηact − ηohmic (6.10)

From the Nernst’s equation

E = N0

[
E0 +

RT
2F

ln
pH2
√pO2

pH2O

]
(6.11)

where N0, E0, R0, T0, F0 denote the number of cells in series in the stack, the
ideal standard potential, the universal gas constant, the absolute temperature and the
Faraday’s constant, respectively. The activation loses are defined by

ηact = B log(CI) (6.12)

where B and C are constants. The ohmic losses are

ηohmic = RintI (6.13)

where Rint is the internal resistance.
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Table 6.1 The fuel cell: the parameters of the fundamental continuous-time model

Parameter Value Unit Description

B 0.04777 1 A−1 Activation voltage constant
C 0.0136 V Activation voltage constant
CV 2 − Conversion factor
E0 0.6 V No load voltage
F 96485 C mol−1 Faraday’s constant
KH2 4.22 × 10−3 mol s−1 atm−1 Hydrogen valve constant
KH2O 7.716 × 10−3 mol s−1 atm−1 Water time constant
Kr = N0/4F0 2.2802 × 10−3 mol s−1 A−1 Constant
KO2 2.11 × 10−2 mol s−1 atm−1 Oxygen time constant
N0 88 − Number of cells
R0 8.314 J mol−1 K−1 Universal gas constant
Rint 0.00303 Ω Internal resistance
T0 343 K Absolute temperature
τ1 = τ1 2 s Reformer time constants
τH2 3.37 s Hydrogen time constant
τH-O 1.168 − Hydrogen-oxygen flow ratio
τH2O 18.418 s Water time constant
τO2 6.74 s Oxygen time constant

Table 6.2 The fuel cell: the values of process variables for the initial operating point

Variable Value Unit

I 100 A
q 0.5 mol s−1

pH2 5.9102 atm
pO2 39.4959 atm
pH2O 22.6160 atm
V 56.6179 V

The continuous-time fundamental model consists of Eqs. (6.2), (6.3), (6.6), (6.8),
(6.9), (6.10), (6.11), (6.12) and (6.13). The values of parameters are given in Table
6.1. Table 6.2 gives the values of process variables for the initial operating point. Fig.
6.1 shows the structure of the continuous-time fundamental model of the process.
The values of process input and disturbance signals are constrained

0.1 mol s−1 ≤ q ≤ 2 mol s−1 (6.14)
50 A ≤ I ≤ 150 A (6.15)
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Fig. 6.1 The fuel cell: the structure of the continuous-time fundamental model

6.3 Modelling of the Proton Exchange Membrane Fuel Cell for
MPC

It can be noted that the continuous-time fundamental model of the discussed PEM
fuel cell is characterised by linear transfer functions (Eqs. (6.3), (6.6) and (6.9)), but
the stack voltage is defined by the nonlinear steady-state Nernst’s equation (6.11) and
the activation losses are defined by the nonlinear equation (6.12). It means that the
outputs of the linear dynamic part of the model are inputs of the nonlinear static one.
Hence, it is straightforward to use the Wiener structure as an empirical model of the
considered PEM fuel cell. We will evaluate performance of three structures of the
neural Wiener model, for a different number of hidden nodes in the nonlinear static
block and different order of dynamics of the linear model part. Furthermore, the
chosen variant of the neural Wiener model will be compared with a corresponding
polynomial Wiener structure.

For model identification, the manipulated variable of the process, q, the distur-
bance, I, and the output, V , are scaled

u = q − q̄, h = 0.01(I − Ī), y = V − V (6.16)

where q̄, Ī and V denote values of process variables for the initial operating point
(Table 6.2). In the following part of this Chapter, three structures of the Wiener
model for the PEM process are discussed.

Fig. 6.2 depicts the first structure of the neural Wiener model (the structure A).
It consists of a linear dynamic block connected in series with a nonlinear static one.
The linear block has two inputs (u – the controlled one, h – the uncontrolled one)
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Fig. 6.2 The fuel cell: the structure A of the neural Wiener model

and one output, v, which is an auxiliary variable. The linear block is characterised
by the equation

v(k) =
n1

B∑
i=1

b1
i u(k − i) +

n2
B∑

i=0
b2
i h(k − i) −

nA∑
i=1

aiv(k − i) (6.17)

The integers nA and n j
B, for j = 1, 2, define the order of the model dynamics. The

constant parameters of the linear dynamic block are denoted by the real numbers
ai (i = 1, . . . , nA), b1

i (i = 1, . . . , n1
B) and b2

i (i = 0, . . . , n1
B). It is important to note

that the signal v(k) depends directly on the signal h(k) since the current, I, has an
immediate impact on the voltage, V , (it is clear from Eqs. (6.10) and (6.12)). The
output signal of the linear dynamic block is taken as the input of the static one. The
nonlinear static part of the model is described by the general equation used in the
case of the SISO process, i.e. Eq. (2.5). A neural network of the MLP type with one
input, one hidden layer containing K units and one output is used as the differentiable
function g : R→ R [12]. The model output is

y(k) = w2
0 +

K∑
l=1

w2
l ϕ

(
w1
l,0 + w

1
l,1v(k)

)
(6.18)

where ϕ : R→ R is a nonlinear transfer function (e.g. hyperbolic tangent). Weights
of the network are denoted by w1

l,m
, l = 1, . . . ,K , m = 0, 1 and w2

l
, l = 0, . . . ,K , for

the first and the second layers, respectively. The total number of weights is 3K + 1.
Fig. 6.3 depicts the second structure of the neural Wiener model (the structure

B). It consists of two linear dynamic blocks and a nonlinear static one, but unlike
the structure A, the latter one has two inputs. The outputs of the linear blocks are
characterised by the equations

v1(k) =
n1

B∑
i=1

b1
i u(k − i) −

n1
A∑

i=1
a1
i v1(k − i) (6.19)

v2(k) =
n2

B∑
i=0

b2
i h(k − i) −

n2
A∑

i=1
a2
i v2(k − i) (6.20)
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Fig. 6.3 The fuel cell: the structure B of the neural Wiener model

The integers n j
A, n j

B, j = 1, 2 define the order of the model dynamics. The constant
parameters of the linear dynamic blocks are denoted by the real numbers a1

i (i =
1, . . . , n1

A), a2
i (i = 1, . . . , n2

A), b1
i (i = 1, . . . , n1

B) and b2
i (i = 0, . . . , n1

B). The signal
v2(k) depends on the signal h(k) since the current, I, has an immediate impact on
the voltage, V . The nonlinear static block is described by the general equation

y(k) = g (v1(k), v2(k)) (6.21)

A neural network of the MLP type with two inputs, one hidden layer containing K
units and one output is used. The model output is

y(k) = w2
0 +

K∑
l=1

w2
l ϕ

(
w1
l,0 + w

1
l,1v1(k) + w1

l,2v2(k)
)

(6.22)

The weights of the network are denoted by w1
l, j
, l = 1, . . . ,K , j = 0, 1, 2 and w2

l
,

l = 0, . . . ,K , for the first and the second layers, respectively. The overall number of
weights is 4K + 1.

Fig. 6.4 depicts the third structure of the neural Wiener model (the structure C).
It has three linear dynamic blocks. They are characterised by the equations

v1(k) =
n11

B∑
i=1

b11
i u(k − i) +

n12
B∑

i=1
b12
i h(k − i) −

n1
A∑

i=1
a1
i v1(k − i) (6.23)

v2(k) =
n21

B∑
i=1

b21
i u(k − i) +

n22
B∑

i=1
b22
i h(k − i) −

n2
A∑

i=1
a2
i v2(k − i) (6.24)

v3(k) =
n3

B∑
i=1

b3
i h(k − i) −

n3
A∑

i=1
a3
i v3(k − i) (6.25)

The integers n j
A for j = 1, 2, 3, ni jB for i = 1, 2, j = 1, 2 and n3

B define the order of the
model dynamics. The constant parameters of the linear dynamic blocks are denoted
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Fig. 6.4 The fuel cell: the structure C of the neural Wiener model

by the real numbers a j
i (i = 1, . . . , n j

A, j = 1, 2, 3), bjl
i (i = 1, . . . , n j

B, j = 1, 2,
l = 1, 2) and b3

i (i = 1, . . . , n3
B). The nonlinear static block is described by the general

equation
y(k) = g (v1(k), v2(k), v3(k), h(k)) (6.26)

Unlike two previously discussed model structures, in the structure C, the static block
has an additional input which is the value of the disturbance signal, h, measured at
the current sampling instant, k. A neural network of the MLP type with four inputs,
one hidden layer containing K units and one output is used. The model output is

y(k) = w2
0 +

K∑
l=1

w2
l ϕ

©­«w1
l,0 +

3∑
j=1

w1
l, jvj(k) + w1

l,4h(k)ª®¬ (6.27)

Weights of the network are denoted by w1
l, j
, l = 1, . . . ,K , j = 0, . . . , 4 and w2

l
,

l = 0, . . . ,K , for the first and the second layers, respectively. The overall number of
weights is 6K + 1.

Next, we will discuss finding precise black-box models of the PEM fuel cell.
A linear model and three discussed neural Wiener structures (A, B and C) are
considered. All models are assessed in terms of the model error and the number of
model parameters. During model identification, two data sets are used: the training
data set and the validation one. The first of them is used only to find parameters
of models, whereas the second one is used only to assess generalisation ability of
models, i.e. how the model reacts when it is excited by a different data set than
that used for identification. To obtain those two sets of data, the continuous-time
fundamentalmodel of the PEMprocess (defined byEqs.(6.2), (6.3), (6.6), (6.8), (6.9),
(6.10), (6.11), (6.12) and (6.13)) is simulated. The resulting system of differential
equations is solved by the Runge-Kutta method of order 45. As the process input
and disturbance signals, random sequences from the range characterised by Eqs.
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(6.14) and (6.15)) are used. The process signals (i.e. the manipulated variable, q, the
disturbance, I, and the controlled variable, V) are sampled with the sampling period
equal to 1 second. The training and validation data sets are shown in Fig. 6.5, both
sets consist of 3000 samples. Since identification of nonlinear Wiener models is a
nonlinear optimisation problem, training is repeated as many as ten times for each
model configuration and the results presented next are the best obtained.

All parameters of the Wiener model, i.e. the parameters of the dynamic part
and weights of the neural network, are determined from an identification procedure.
During identification, the classical model error is minimised. The model error is
defined as the sum of squared differences between the model output and the data
for all available data samples [8]. Since the model is nonlinear, optimisation of
the model parameters is a nonlinear optimisation task which is solved off-line. For
this purpose, the SQP algorithm is used [20], which makes it possible to take into
account constraints during optimisation. To enforce stability of the Wiener model,
the poles of the linear dynamic block are optimised subject to stability constraints
(in the discrete-time domain, all poles must belong to the unit circle). Next, from the
optimised poles, the model coefficients a j

i are calculated. The values of bj
i , w

1
l,m

and
w2
l
are directly calculated (optimised) with no constraints. Details of the optimisation

procedure are described in [17].
At first, linear models of the process are considered. They have the following

structure

y(k) =
n1

B∑
i=1

b1
i u(k − i) +

n2
B∑

i=0
b2
i h(k − i) −

nA∑
i=1

aiy(k − i) (6.28)

Table 6.3 compares linear models of different order of dynamics in terms of the
number of parameters, the training error and the validation error. The first, the
second, the third and the fourth order of dynamics is considered (it is defined as
an integer number n1

B = n2
B = nA). As a compromise between model accuracy and

complexity, the third-order model is chosen. The first part of Fig. 6.6 compares the
validation data set vs. the output of the chosen linear model. The linear model is
stable but not precise since there are significant differences between themodel output
and the data.

Table 6.3 The fuel cell: comparison of linear models of different order of dynamics in terms of the
number of parameters (npar), the training error (Etrain) and the validation error (Eval); the chosen
model is emphasised

Model order npar Etrain Eval

1 4 1.4509 × 103 8.1537 × 102

2 7 1.4482 × 103 8.4352 × 102

3 10 1.0560 × 103 5.4921 × 102

4 13 9.5139 × 102 4.9939 × 102


