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ABSTRACT: This paper presents a new multilinear model
decomposition method for multiple-input multiple-output
(MIMO) two-block cascade systems and a model predictive
control (MPC) algorithm for the resulting representation.
First, a normal vector included angle division method is
developed to decompose the operating space and determine
the minimum linear model bank through evaluating the
nonlinearity of the steady-state I/O surfaces. For a prescribed
angle threshold, the minimum linear model bank can be
constructed to approximate the original two-block cascade
system sufficiently closely. Next, a multilinear MPC algorithm is designed with the proposed trajectory scheduling technique,
which can reduce output oscillations caused by hard switching and avoid the difficulty of calculating/tuning complex weighting
functions/parameters used in soft switching. A benchmark chemical reactor process is studied to illustrate the effectiveness and
advantages of the proposed decomposition method and the predictive control algorithm.

1. INTRODUCTION

The multilinear model control approach is an effective control
technique for nonlinear processes with wide operating ranges
and large set-point changes. Its key concept is to first
approximate a nonlinear process as a combination of multiple
linear models and then design the system controller based on
classical control techniques. Various multilinear model control
algorithms have been proposed and applied in practical
systems.1,2

The most crucial problem of multilinear model control is how
to decompose a nonlinear system, namely, how many and which
linear models are required to span the expected operating space of a
nonlinear system.2−4 This problem has not been completely
solved and is still under study. Determination of the number and
the positions of linear submodels is usually performed
experimentally, but the trial and error approach is really time-
consuming and costly. In ref 5, Galań et al. first proposed using
the gap metric concept to compare the candidate models and
reduce the number of linear submodels in a given model bank.
Tan et al.6 extended the method in Galań et al.,5 where operating
point selection is integrated with local controller design via the
loop-shaping H∞ approach. However, the operating points were
selected from an existing point set, and the selection requires
advance knowledge of the achievable closed-loop performance.
Based on gap metric, Du et al.4 first designed the operating range
division method for a nonlinear system with one scheduling
variable, which does not need the assumption of existing model
banks or operating point sets. Then, Du et al.7 generalized the
method in ref 4 to accommodate nonlinear systems with multiple

scheduling variables, together with a gridding algorithm for
reducing gridding points and decreasing computational burden.
To accurately measure the distance between candidate linear
models in all ranges of frequencies, Shaghaghi et al.8 studied the
H-gap metric based division method.
All the aforementioned methods divide the nonlinear system

by comparing local linear models. Such methods depend on the
system dynamic information around operating points and are
just effective in the case where a set of local linear models is
available before dividing, such as the cases in refs 5 and 6. Once
local linear models are not available, system nonlinear models or
a large number of local linear models would have to be identified
from measured data, such as the cases in refs 4, 7, and 8. Because
identifying an accurate nonlinear model or a large number of
local linear models is generally time-consuming and costly, the
gap metric based division methods are strictly restricted by the
requirement of system dynamic information. Nevertheless, for a
general nonlinear system, there seems to be no better alternative
than the gap metric based methods.
In contrast, for the Hammerstein system (a nonlinear steady-

state block followed by a linear dynamic one) and the Wiener
system (a linear dynamic block followed by a nonlinear steady-
state one), their static I/O mappings (curves or surfaces) can
sufficiently represent the nonlinearity and can be used for
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multilinear model decomposition. As the two systems both
consist of a nonlinear static block and a linear dynamic
subsystem, they are called a ”two-block cascade system” in this
article. In ref 9, Du et al. propose an included angle division
method for single-input-single-output (SISO) two-block cascade
systems. The difference between two slope angles at two
operating points in the static I/O curve is employed to represent
the change of system linearity. Thus, this method just requires
the static I/O curve instead of entire system dynamic
information. This method is simple and intuitive, but it is not
applicable for MIMO systems because, at each operating point of
a MIMO system, there are an infinite number of slopes in
different directions on its I/O surface. On the other hand,MIMO
two-block cascade systems with more than one scheduling
variable exist widely in industry, such as the MIMO continuous
stirred tank reactor,10,11 the polymerization reactor,10 the binary
distillation column,12 the laser-aided powder deposition
process,13 and so on. Therefore, a low-cost but effective
multilinear model division method is urgently needed for
MIMO two-block cascade systems.
Once the multilinear model is obtained, the local linear

controllers can be initially designed by using many types of
control methods (e.g., MPC, PID, and LQR). MPC is
recommended here because of its natural ability to deal with
MIMO systems and constraints.14 The main problem in
controller design is how to integrate these local MPC controllers
as a global one. The simplest method is the hard switching
method,2 in which only one local controller is selected to
calculate the control law and local controllers are switched
between different operating subregions. Hard switching of
controllers usually leads to unacceptable output oscillations,
e.g., the unexpected impulsive phenomena. To reduce output
oscillations, many soft switching methods have been proposed
based on different weighting functions, such as the Gaussian
function based method,15 the Bayesian weighting function based
method,16 the gap metric based method,17,18 and so on.
However, designing a proper weighting function is generally
not easy, because usually the weighting parameters can only be
determined by engineering experience and calculation of gap
metric requires complete system dynamic information. For these
reasons, a simple but smooth switching method is expected for
local MPC controller combination.
This study focuses on the multilinear model decomposition

and control of MIMO two-block cascade systems. The main
contributions of this paper are summarized as follows:

1. The proposed normal vector included angle division
method. This method extends the idea in ref 9 to MIMO
systems by using the normal vector included angle
concept. It initially partitions the system I/O surface
into a certain number of polytopes and then employs the
included angles between the normal vectors to these
polytopes to evaluate system nonlinearity and decompose
the system. It is usually more practical than the gap metric
based methods,4−8 because only static I/O mappings
instead of system dynamic information are required for the
system decomposition.

2. The designed multilinear MPC algorithm with trajectory
scheduling (MMPC-TS). At each sampling instant, by
using a scheduling variable trajectory, the multilinear
predictive model is transformed to be a certain local linear
model within the prediction horizon. The proposed
trajectory scheduling technique enables MMPC-TS to

reduce output oscillation in comparison with the control
algorithms with hard switching, and meanwhile it avoids
the complex weighting functions used in soft switching.

A benchmark MIMO continuous stirred tank reactor system is
studied to illustrate the effectiveness of the proposed division
method and the developed control algorithm.
The rest of this paper is organized as follows. Section 2

introduces the two-block cascade system and its multilinear
model. Section 3 discusses the normal vector included angle
division method. Section 4 details development of the nonlinear
MPC based on the multilinear model. Section 5 gives the
simulation results for the MIMO CSTR benchmark system.
Section 6 concludes the paper.

2. MIMO TWO-BLOCK CASCADE SYSTEM AND ITS
MULTILINEAR MODEL

In this article, the two-block cascade system is a general term for
the Hammerstein system
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where ∈ uk
nu is the system input vector (the vector of

manipulated variables), ∈ vk
nv and ∈ wk

nw are intermediate
variable vectors, ∈ yk

ny is the system output vector (the vector
of controlled variables), k is the sample time, F̅i and H̅i are the
l i n e a r c o effi c i e n t m a t r i c e s , · → f ( ): n nu v a n d

· → g( ): n nw y are static nonlinear functions.
Note the static nonlinear functions are not necessarily

invertible for this study. The only assumption on the nonlinear
parts is the functions f(·) and g(·) are Lipschitz-continuous.19

This assumption is not restrictive because the static description
of numerous technological processes10−13 satisfies the Lipschitz-
continuous condition.
The multilinear model of a two-block system is a collection of

multiple local linear submodels, with designated operating
subregions and operating points scheduled by the scheduling
variables. Typically, the scheduling variables can be system
inputs, outputs, states, and disturbances. Let s denote the vector
of scheduling variables. The variation range of s is the operating
space of the system, denoted asΦ. SupposeΦ is divided intoNm
subregionsΦi (i = 1, ..., Nm).Φi should satisfyΦi ⊆Φ,Φ1 ∪ ... ∪
ΦNm

=Φ andΦi ∩Φj = Ø for i≠ j.7 For each subregionΦi (i = 1,
...,Nm), an operating point is assigned, denoted as OPi (uo

i ,yo
i ). To

facilitate the following operating space division, the system
inputs are selected as the scheduling variables, i.e., s = u, and
thereby the operating space Φ becomes the input space. In the
following, dividing the operating space is equivalent to dividing
the input space.
In the ith subregionΦi, a local linear submodel can be acquired

around OPi (uo
i ,yo

i ) to approximate the studied two-block cascade
system, which is expressed by the following difference equation:
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where δuk = uk − uo
i , δyk = yk − yo

i , F1
i , ..., Fn

i , and H1
i , ..., Hn

i are
model coefficients. The error term δεk = εk − εo

i , where δεk
denotes the general modeling error including model mismatch,
external disturbances, etc., and εo

i is the steady-state modeling
error at the operating point OPi. Equation 3 is the multilinear
model of a two-block cascade system, which is also called the
linear model bank because it contains Nm linear submodels.
The two-block cascade system has the important property that

its nonlinearities are “primarily” static whereas the dynamic
characteristics are “basically” linear. That means only the static
system gain changes with operating points whereas the system
dynamics almost remain the same in the full operating space.
Thus, for a MIMO two-block cascade system, its static I/O
surfaces can provide enough information for operating space
division and multilinear model construction.

3. NORMAL VECTOR INCLUDED ANGLE DIVISION
METHOD

In this section, a division method based on system I/O surfaces is
developed for MIMO tow-block cascade systems. The steady-
state I/Omappings are always assumed to be already available. In
practice, they can be obtained by system identification or by first
principle modeling. For most systems, such as chemical
processes10−13 and large-scale wind tunnels,20 the static I/O
mappings are generally more readily available and much easier to
identify than detailed dynamic models, especially for the systems
with available controllers (even if the controllers may not have
perfect performance, e.g., simple PID controllers). Therefore,
this method is more practical and lower-cost than dynamic
information based division methods.4−8

3.1. Normal vector included angle concept. To divide
the operating space, some metric must be found to evaluate the
nonlinearity of the system I/O surfaces. Based on the following
two properties, the normal vector included angle is proposed to
act as the metric:

1. Any Lipschitz-continuous functions def ined on a compact
domain can be approximated arbitrarily closely by a
PieceWise Linear (PWL) function based on the so-called
simplicial partition.21,22 This means a I/O surface
characterized by a Lipschitz-continuous nonlinear func-
tion can be sufficiently approximated by a finite number of
polytopes, as shown in Figure 1. Each polytope
corresponds to a simplex region in the input space.

Thus, we can assess the nonlinearity of the I/O surface by
indirectly analyzing the nonlinearity between these
polytopes, and we finally divide the input space (i.e., the
operating space).

2. The normal vector included angle of two hyperplanes can
ef fectively assess the nonlinearity between the two hyperplanes.
Suppose the system I/O surface has been well
approximated by some polytopes, each of which is
contained within a hyperplane of dimensionality nu and
corresponds to a unique input region (a simplex). If the
normal vector included angle of two hyperplanes is
sufficiently small (e.g., θ12 in Figure 2), we can believe

there is not system nonlinearity and the studied system has
a same static gain in the two input regions. Otherwise, if
the included angle is very large (e.g., θ13 in Figure 2), we
can believe the studied system has significant nonlinearity
in the two input regions.

Calculation of the normal vector included angle consists of two
steps. First, calculate the normal vector to a hyperplane. This can
be achieved by using the hyperplane equation or by nu linear
independent points on this hyperplane. Because the nu vertexes
of a polytope, donated as pt1, pt2, ..., ptnu+1, are naturally linear
independent, they are used to compute the corresponding
normal vector n = [n1 n2... nnu+1]T, namely

· − = ≤ < ≤ +

=+⎪
⎪⎧⎨
⎩

n pt pt i j n

n

( ) 0, 1 1

1

i j u

n 1u (4)

In eq 4, pti − ptj (1 ≤ i < j ≤ nu + 1) are actually nu noncollinear
vectors on the hyperplane. The last equation “nnu+1 = 1” indicates
all the calculated normal vector is assigned to be the positive
direction of the yiy (1 ≤ iy ≤ ny) axis. The constant 1 can be
replaced by other nonzero constants, which would not influence
the final included angle.
Once two normal vectors (e.g., ni and nj) are obtained, the

included angle between them can be easily computed as

θ =
·

| |

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟n n

n n

n n
( , ) arccosi j

i j

i j (5)Figure 1. Piecewise linear function approximation.

Figure 2. Normal vector included angles.
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where | · | represents the magnitude of the vector.
The range of included angle is [0, π]. If the included angle is

very small (e.g., 0), the system has similar static gains and behaves
similarly at the two regions; otherwise, the static gains and the
system behaviors change significantly from one region to the
other. In this study, the normal vector included angle is used to
evaluate the difference of system behavior at the two operating
regions and further to develop the division method.
3.2. Subprocedure1: simplicial partition of the input

space. Figure 3 shows the division scheme. Prior to introducing

the main procedure of the division method, two subprocedures
are initially proposed according to the theoretical basis in section
3.1, based on which main procedure is developed in section 3.4.
The first subprocedure of the division method is to partition

the input space. Consider the following input space

= ∈ | ̲ ≤ ≤ ̅ =D u u u u i n{ , 1, 2, ..., }n i i i
u u

u u u u (6)

where u iu and uiu are the lower bound and the upper bound of uiu,
respectively.
The simplicial partition of the input space consists of two

steps.21,22 First, by specifying the number of divisions (miu)
associated with the uiu axis (i.e., partitioning the interval [u iu, uiu]
into miu subintervals), the domain D is evenly partitioned into
∏i = 1

nu miu hypercubes. Each hypercube, denoted as Hh, is indexed
by a nu-dimension vector h = [h1 h2, ..., hnu]T, where hiu (1 ≤ iu ≤
nu) indicates the hypercube locates at the iuth subinterval on the
uiu axis. Accordingly, the grid step in the axis ui is δiu = (uiu − u iu)/
miu. Second, each hypercube is subdivided into nu! simplices. By
using the two-step simplicial partition, the input spaceD is finally
partitioned into∏i = 1

nu miu × nu! simplices. More details about the
simplicial partition are found in refs 21 and 22. In this
subprocedure, the number of divisions are designer-assigned
parameters, which are written in the vectorm = [m1,m2, ...,mnu]T

for notational simplicity.
Based on the above simplicial partition, a unique continuous

high dimensional surface composed of polytopes can be found to
approximate the original I/O surface, as shown in Figure 1.
Namely, the system I/O surface is approximated as a set of
certain polytopes.
3.3. Subprocedure2: combining subregions. In the sub-

procedure1, the input space is initially partitioned into hypercube
subregions and then is partitioned into different simplex
subregions. The subprocedure2 will discuss how to systemati-

cally combine those simplices to form the final operating
subregions.
To simplify the following subregion combination and facilitate

the description of the final operating subregion, this study
regards a hypercube subregion as the basic division unit and
finally the entire input space is divided into several hypercuboid
regions. The issue of combining two hypercube subregions is
studied in subsection 3.3.1, based on which subsection 3.3.2
discusses the method to combine hypercuboid subregions.

3.3.1. Hypercube subregions combination. According to the
simplicial partition in section 3.2, in the input space each
hypercube Hh contains n! simplices and each simplex
corresponds to a polytope approximating the I/O surface.
Thus, for a given I/O surface, we can calculate n! normal vectors
for a hypercube input subregion Hh.
Consider two hypercubes Hhi and Hhj in the input space

(where hi and hj are two index vectors). For the iyth (iy = 1, ..., ny)
I/O surface, two sets of normal vectors can be calculated for Hhi

and Hhj:
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These two sets of normal vectors contain the system static
information, which is used to evaluate system nonlinearity
between the two hypercube regions. Through pairwise
comparison on the two sets of normal vectors, an included
angle vector with nu! × nu! elements is formed as the follows:

θ

θ θ θ

=
! !

!× ! ×n n n n n n[ ( , ), ( , ), ..., ( , )]

h h

h h h h h h
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i i i i i n i n
n n
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i

y u

j

y u

u u

(8)

The largest included angle in θhi,hj
iy , defined asΔΘhi,hj

iy =max{θhi,hj
iy },

indicates the maximal difference of system behavior in terms of
the iyth system output betweenHhi andHhj. That means, ifΔΘhi,hj

iy

is sufficiently small, the system can be regarded as a linear one in
the two subregions and thus the two hypercube regions can be
combined together as a hypercuboid region in terms of the iyth
system output, and vice versa.
Considering the system has ny outputs, the total ny largest

included angles can be computed for the ny I/O surfaces, which
are written in the following vector form:

ΘΔ = ΔΘ ΔΘ ΔΘ ΔΘ ×[ , , ..., , ..., ]h h h h h h h h h h
i n

n, ,
1

,
2

, , 1
T

i j i j i j i j

y

i j

y

y

(9)

Given a designer-assigned angle threshold γ = [γ1, γ2, ···, γny]T

where γiy (1≤ iy≤ ny) is the threshold for the iyth steady-state I/O
surface, if

γΔΘ < ≤ ≤i i nfor all , 1h h
i i

y y y,i j

y y
(10)

then the two hypercube regions,Hhi andHhj, can bemerged into a
large subregion in which the system can be regarded to be linear
under the criteria γ. The inequality 10 is the basic condition of
combining two hypercube regions, which is also the basis of the
following hypercuboid subregion combination.

3.3.2. Hypercuboid subregion combination. As shown in
Figure 3, suppose the current divided region, which is also called
the “original region” for the current division, starts at hs = [hs

1, hs
2,

..., hs
nu]T and ends at he = [he

1, he
2, ..., he

nu]T, where 1≤ hs
iu, he

iu≤mnu (1
≤ iu ≤ nu). The current “considered region” is in the u

c direction

Figure 3. Normal vector included angle based division of a operating
space in 2.
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(c can be 1,2, ..., nu), starts at hc = [hs
1, ..., he

c + 1, ..., hs
nu]T, and ends

at hc = [he
1, ..., he

c + 1, ..., he
nu]T. The original region and the

considered region are both hypercuboid regions and contain No

= ∏nu
iu=1(he

iu − hs
iu + 1) and Nc = ∏iu=1,iu≠c

nu (he
iu − hs

iu + 1)
hypercubes, respectively. The following two conditions
determine whether the considered region can be combined
with the original region:

1. Any two different hypercubes in the considered region
satisfy the combination condition (10), namely

γΔΘ < ≤ ≤i i nfor all , 1h h
i i

y y y,ic jc

y y
(11)

in which the subscripts ic and jc mean ΔΘhic,hjc
iy are

computed by using the hypercubes in the considered
region.

2. Any hypercube in the original region and any one in the
considered region satisfy the combination condition in eq
10, namely

γΔΘ < ≤ ≤i i nfor all , 1h h
i i

y y y,io jc

y y
(12)

in which the subscript io means one hypercube comes
from the original region.

Writing Θhic,hjc
iy and Θhio,hjc

iy in vector form of eq 9, we can finally
construct the following two included angle matrices

Λ Θ Λ Θ= Δ = Δ× − ×[ ] , [ ]h h h hcc n N N oc n N N, ( ( 1)/2) , ( )ic jc y c c io jc y o c

(13)

where ΔΘhio,hjc and ΔΘhic,hjc are formed according to the method

to compute ΔΘhi,hj in eq 9.
Define

Λ Λ Λ= × − +[ , ]oo oc n N N N N( ( 1)/2 )y c c o c (14)

Calculating the maximal values of Λ in a row, we can get the
included angle vector

ΘΔ ̅ = ΔΘ̅ ΔΘ̅ ΔΘ̅ ×[ , , ..., ]n
n

1 2
1

Ty

y (15)

Thus, similar to the combination condition in eq 10, the criterion
to combine two hypercuboid regions is

γΔΘ̅ < ≤ ≤i i nfor all , 1i i
y y y

y y
(16)

This criterion (eq 16) provides the hypercuboid region
combination condition for the main procedure of the division
method.
3.4. Main procedure: division of operating space.

Without loss of generality, we introduce the division method for
a two-input two-output (TITO) two-block cascade system. If
there exist more system inputs and outputs, the method can be
directly extended to accommodate such situations.
The main procedure of the normal vector included angle

division method consists of the following steps.

1. Parameter setting.
Choose the division number vertor m = [m1, m2]T and

the threshold value vector γ = [γ1, γ2]T. Partition the input
space into m1 × m2 × 2 simplices by subprocedure1.

2. Initialization.
(a) Set hs = [1, 1]T, he = hs.
(b) Define the block direction flag vector f lagbd =

[f lagbd
1 , f lagbd

2 ]T and set f lagbd = [0, 0]T. The vector

f lagbd is used to block the division direction. f lagbd
iu =

1 means the uiu direction is blocked, and vice versa.
(c) Define the updating direction flag vector f lagud =

[f lagud
1 , f lagud

2 ]T and set f lagud = [0, 0]T. The vector
f lagud indicates the division direction in the previous
steps. f lagbd and f lagud are used together to
determine the following division direction.

3. Determine the division direction.
(a) If all directions are blocked (f lagbd = [1, 1]T), go to

Step 5.
(b) Otherwise, check each direction from u1 to unu in

sequence. If f lagbd
iu = 0 and f lagud

iu = 0, then go to Step
4 to conduct division in the direction uiu.

4. Division in the direction uiu.
(a) If he

iu = miu or some hypercube in the considered
region has been classified, set f lagbd

iu = 1 and f lagud
iu =

1. If the vector f lagud = [1, 1]T, set f lagud = [0, 0]T.
Go to Step 3.

(b) Otherwise, calculate the included angle vector ΔΘ̅
for the original region and the considered region.

i. If ΔΘ̅ satisfies the hypercuboid combination
condition (16), set he

iu = he
iu + 1. If he

iu = miu, set
f lagbd

iu = 1.
ii. If ΔΘ̅ does not satisfy the hypercuboid

combination condition (eq 16), set f lagbd
iu = 1.

iii. To update the division direction, set f lagud
iu =

1. If the vector f lagud = [1, 1]
T, set f lagud = [0,

0]T. Go to Step 3.
5. Subregion determination and reinitialization.

(a) At this step, total (he
1 − hs

1 + 1) × (he
2 − hs

2 + 1)
hypercubes have been classified to one group and
the corresponding hypercuboid region {u | u 1 + (hs

1

− 1)δ1≤ u1≤ u 1 + he
1δ1, u 2 + (hs

2− 1)δ2≤ u2≤ u 2 +
he
2δ2} forms an independent subregion. The center
of the subregion is chosen as the operating point,
around which a linear submodel can be identified.

(b) If there are remainder hypercubes to be classified,
find the index of unclassified hypercube h = [h1,h2]T

with the minimum coordinate h1 in the u1 direction
(if h1 = m1, consider the minimum coordinate h2 in
the u2 direction, and so forth). Update hs = h =
[h1,h2]T, he = hs, and f lagbd = [0, 0]T. Go to Step 3.

(c) If all hypercubes have been classified, the subregion
division of the two-block cascade system is
completed. Go to Step 6.

6. Remove redundant submodels.
SupposeNm subregions are classified by using the above

steps. Possibly, not all corresponding submodels are
necessary. This means, although the Nm subregions are
classified into different parts, the studied system are likely
to have similar static gain in some of these subregions.
Namely, some submodels can be exempt. Suppose the
operating points of two subregions belong to the two
hypercubes Hhi and Hhj in the input space, respectively. If

the corresponding included angle vector ΔΘhi,hj satisfies
the hypercube combination criterion in eq 10, the system
static gains in the two subregions are close to one another
and only one of the two corresponding submodels is to be
contained in the model bank for control. By pairwise
comparing the previously obtained subregions, the
minimal model bank is finally constructed.
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Remark 3.1: This division method is naturally applicable to
SISO systems. In such a system, the normal vector included angle
has the same effect with the slope included angle. This means that
the slope included angle division method proposed by Du et al.9

is a special case of the discussed method.
Remark 3.2: The above steps start the division procedure

from the hypercube region with the minimum values of system
input. The users can change the starting region by initializing hs
as other values in step 2(a). Different starting regions may lead to
different dividing results. These results are all “optimal” in the
sense of the prescribed angle threshold γ.
Remark 3.3: The computational burden of this division

method is significant. It strongly depends on the number of
system inputs nu, because the number of simplices (∏i = 1

nu miu ×
nu!) is highly related to nu. The method discussed is quite
computationally efficient when there are 2 or 3 system inputs.
This is not a very limiting constraint as numerous technological
processes, e.g. chemical reactors10,11,13 and distillation col-
umns,12 satisfy that condition. On the other hand, for systems
with a large number of inputs, the division parameters miu (iu =
1,..., nu) can be employed to balance the computational burden
and the finer division. Decreasing miu will reduce the computa-
tional burden at the cost of rougher divising, and vice versa.
Remark 3.4: The above method is efficient for many common

industrial processes, but it may become very time-consuming
when the I/O surfaces in some outputs are extremely
complicated. In such a case, one can first carry out the above
procedure for each I/O surface, respectively. In particular, for the
I/O surface in which the output changes periodically with the
system inputs, one just needs to carry out the division procedure
for some one-period operating subregion and then map the
dividing results to the remaining operating space accordingly.
Next, the resulting subregion boundaries from all the I/O
surfaces can be together employed to finally divide the operating
space.

4. MULTILINEAR MODEL PREDICTIVE CONTROL

In this part, the multilinear extended nonminimal state space
(MENMSS) model is initially formed to reject process
disturbance and deal with model mismatch. Then, an improved
multilinear model predictive control algorithm is designed with
the proposed trajectory scheduling technique.
4.1. Multilinear extended nonminimal state space

model. Consider the multilinear model in the form of eq 3. By
adding the back shift operator Δ to eq 3, eq 3 is expressed as

ε

Δ + Δ + + Δ =

Δ + Δ + + Δ + Δ ∈ Φ

− −

− − −

y F y F y

H u H u H u s
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(17)

Based on the works in Wang23 and Zhang,24 the nonminimum
state vector Δxk is chosen as

Δ = Δ Δ Δ

Δ Δ Δ

− − +

− − − +
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u u u

[ , , ..., ,
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k k k k n

k k k n
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2
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(18)

where Δ ∈ xk
nx and nx = ny × n + nu × (n − 1).

Then, eq 17 can be transformed into the following state space
model:

εΔ = Δ + Δ + Δ

Δ = Δ
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where
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0 and I are a zero matrix and a unit matrix with appropriate
dimensions, respectively.
Define the output tracking error as

= −e y rk k k (20)

where rk is the set-point at the instant k. By combining eqs 19 and
20, we derive ek+1 as follows:

ε= + Δ + Δ + Δ − Δ

∈ Φ
+ + +e e x u r

s

C A C B ,k k N
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(21)

By combining the state vector Δxk and the output tracking error
ek, the extended nonminimum state vector is defined as24,25

=
Δ⎡

⎣⎢
⎤
⎦⎥z

x
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k

k (22)

where ∈ zk
nz and nz = ny × (n + 1) + nu × (n − 1).

Based on eqs 19, 21, and 22, we get the MENMSS model:
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Note, the frequently used ”DMC type” disturbance model11,16 is
adopted in the following control algorithm. Over the prediction
horizon in the following control algorithm, the error term εk and
its increment Δεk are assumed to be a constant and zero,
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respectively. Therefore, the effect of the error term, the term
BεΔεk+1 in eq 23, is exempt from the following algorithm.
4.2. Predictive control based on the MENMSS model.

4.2.1. MPC optimization problem. At each sampling instant,
MPC determines the future sequence of input increments

Δ = Δ Δ Δ| + | + − |U u u u[ ... ]k k k k k k Hc k
T
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1
T T
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(25)

where the norm is defined as ∥x∥W2 ≜ xTWx; P is the prediction
horizon;M is the control horizon; wz,k+j|k≥ 0nz×nz, wΔu,k+j|k≥ 0nu×nu
are the weights of the minimized cost-function; ∈ u n

min
u,

∈ u n
max

u, Δ ∈ u n
min

u, and Δ ∈ u n
max

u are the constraints
imposed on the magnitude and on the increments of system
inputs, respectively. Here, we ignore output constraints for
simplicity. Interested readers can refer to Wang,23 which shows
output constraints can be easily integrated into the problem (eq
25). At each sampling instant, M future control increments are
calculated from the MPC optimization problem (eq 25); then
only the increments for the instant k are actually applied to the
process, namely uk = uk−1 +Δuk. At the next sampling instant, the
whole optimization procedure is repeated.
Because different local linear models are used to characterize

the process in different subregions Φi, the predicted states zk+j|k
are essentially nonlinear functions of the optimized online
control increments ΔUk. Directly solving the complex nonlinear
optimization problem (eq 25) for ΔUk is computationally
difficult and will lead to a heavy computational burden. Themore
practical approach is first to design local MPC controllers from
the local linear models and then to combine these local
controllers into a global one.2,17 Based on this idea, a
computational efficient multilinear MPC algorithm with
trajectory scheduling (MMPC-TS) is developed in the following
subsection.
4.2.2. Multilinear MPC algorithm with trajectory schedul-

ing. In the proposed MMPC-TS algorithm, the multilinear
model is scheduled as different linear models over the predictive
horizon by using a predicted scheduling variable trajectory. Then,
the predicted states zk+j|k become the linear functions of the
future control increments ΔUk, and the nonlinear programming
problem (eq 25) is simplified into a quadratic programming
(QP) problem. So, ΔUk can be easily computed (the
computational burden of quadratic optimization is much lower
than that of general nonlinear optimization and the global
optimal solution is always found). For accurate scheduling, the
aforementioned trajectory scheduling and the resulting QP
optimization may be repeated several times in internal iterations
at each sampling instant.

Suppose a set of local linear controllers are designed based on
the minimum model bank. To simplify design of the following
global controller, we choose the same predictive horizon P and
control horizonM for these local controllers, whereas the weights
are separately tuned, donated as wz,k + j|k

i and wΔu,k + j|k
i (i = 1, ...,

Nm), respectively. Then, the proposed MMPC-TS algorithm is
developed as follows.
Define the predicted scheduling variable trajectory at sampling

instant k as

= + | + | + |S s s s[ ... ]k k k k k k P k1
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Taking into account the MENMSS model (eq 23), the predicted
state trajectory can be derived as

Ψ= + Δ + ΔZ F z G U Rk k k k k k k (28)

where Fk, Gk, and Ψk are parameter matrices
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Based on the scheduling variable sk+j|k(j = 1, ..., P), the model
matrices Ak+j|k, Bk+j|k, and Ck+j|k are chosen from the obtained
MENMSS model. For example, if sk+j|k ∈ Φi (i = 1, ..., Nm), then
Ak+j|k = Ai, Bk+j|k = Bi, and Ck+j|k = Ci.
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Taking into account the derived state trajectory (eq 28) and
considering that Uk = LΔUk + Uk−1 where
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the nonlinear optimization problem (eq 25) is simplified as the
following QP problem
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where the vectors of length nuM are
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the matrix Wz,k = blockdiag {wz,k+1|k, wz,k+2|k, ..., wz,k+P|k} and the
matrix WΔu,k = blockdiag{wΔu,k|k,wΔu,k+1|k, ..., wΔu,k+M−1|k}. Similar
with the model matrices (Ak+j|k, Bk+j|k, Ck+j|k), wz,k+j|k (1 ≤ j ≤ P)
and wΔu,k+j|k (0≤ j≤M− 1) are selected from the designed local
controllers based on the scheduling variable sk+j|k (if sk+j|k ∈ Φi,
wz,k+j|k = wz,k + j|k

i , and wΔu,k+j|k = wΔu,k + j|k
i ).

If the scheduling variable trajectory Sk is known at sampling
instant k, the nonlinear MPC optimization problem (eq 25) can
be accurately transformed into the QP problem (eq 32).
Unfortunately, the trajectories Sk are generally unknown because
they are usually functions of optimized variables. Inaccurate
trajectory Sk will deteriorate control performance, which has a
similar effect with model mismatch. To predict Sk as accurately as
possible, the trajectory scheduling (eq 28) and the resulting QP
optimization are repeated several times in internal iterations. For
convenience, index the related vectors and matrices at the tth
iteration with superscript t, such as the vector Sk

t , the matrix Fk
t ,

and so on.
The proposed MMPC-TS algorithm is summarized as the

following steps:

1. Measure the system output yk. Form the ENMSS state
space vector zk according to eqs 18, 20, and 22.

2. Set the index t to 1. Initialize the scheduling variable
trajectory Sk

1 = [(sk+1|k
1 )T(sk+2|k

1 )T ... (sbk +P|k
1 )T]T (sk + j|k

1 , j = 1,
..., P, are uniformly chosen as uk−1 because system inputs
are used as the scheduling variables in this study).

3. Calculate the predicted state trajectory Zk
t , i.e., the matrices

Fk
t , Gk

t and Ψk
t are found, as well as the weighting matrices

Wz,k
t and WΔu,k

t .
4. The MPC QP problem (eq 32) is solved to find ΔUk

t and
the vector Sk

t is updated by using ΔUk
t .

5. Decide whether internal iterations should be terminated. If
the trajectoryΔUk

t is close to the trajectory at the previous
internal iteration, i.e.

σΔ − Δ <−U Uk
t

k
t

u
1 2

(33)

or t > tmax, then go to Step 6 (σu is a threshold value to be
tuned). Otherwise, update t: = t + 1 and go to Step 3.

6. Apply the first nu elements of the vector ΔUk
t (i.e., the

vector Δuk|kt ) to the process.

At the next sampling instant, the algorithm starts from Step 1 and
the above six-step procedure is repeated.
Remark 4.1: If tmax is chosen as 1 and sk + j|k

1 (1≤ j≤Nm) are set
to the same value, the proposed MMPC-TS reduces to the
conventional MPC algorithm with hard switching. This means
MPC with hard switching is a special case of this developed
MMPC-TS algorithm.
Remark 4.2: Compared with the MPC algorithms with soft

switching, the proposed MMPC-TS algorithm does not require
any tuning parameters for switching, or the complete process
dynamic information which is difficult to be obtained in
nonlinear systems. Due to the trajectory scheduling technique,
the MMPC-TS algorithm still can alleviate output oscillations in
comparison with hard switching.

5. CASE STUDY: AMIMOCONTINUOUS STIRRED TANK
REACTOR PROCESS
5.1. Process description. Consider a MIMO continuous

stirred tank reactor (CSTR) process, which has been modeled by
a Hammerstein structure or a Wiener structure in previous
studies.10,11 It consists of an irreversible, exothermic reaction, A
→ B, and takes place in a constant volume reactor cooled by a
single coolant stream. It can be characterized by the following
continuous-time nonlinear equations10,11
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(34)

The nominal model parameters are listed in Table 1. The
sampling period is Ts = 0.1 min. The process output variables are
the concentration of A (CA) and the temperature (T). The
process input variables are the process flow rate (q) and the
coolant flow rate (qc). The control objective is to regulate CA and
T for set-point tracking by manipulating q and qc.
The variation ranges of the inputs are q ∈ [95, 150] and qc ∈

[60, 110]. The variation ranges of the outputs are CA ∈ [0.02,
0.15] and T∈ [430, 490]. Figure 4 and Figure 5 show the steady-
state surfaces of the concentration CA and the temperature T,
respectively. This CSTR shows apparent nonlinearity, and thus a
single linear controller is not sufficient for the wide operating
range.10,11

5.2. Division of the operating space. The proposed
normal vector included angle method is employed to decompose
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the CSTR system. The operating points (OP) for the CSTR are
expressed in the form of (q, qc, CA, T). Four cases of division are
studied to show the effect of the designer-assigned parameters.
The dividing results are depicted in Figure 6.

Case 1. m = [10, 10]T, γ = [0.003, π/10]T. By using the first
five steps of the proposed division method, the operating space is
initially decomposed into three subregions, donated as Φ1, Φ2,
and Φ3. The corresponding three operating points are OP1
(122.5, 77.5, 0.0303, 468.79), OP2 (106, 102.5, 0.0855, 443.04)
and OP3 (133.5, 102.5, 0.0562, 456.83). Next, according to Step
6 of the division method, the operating points OP1 and OP3 are
close in the normal vector included angle sense, where the CSTR
has similar static gains. Thus, subregions Φ1 and Φ3 can share a
common submodel (which is selected as the submodel at OP1 in
this study). The final model bank should only include the two
linear submodels at OP1 and OP2.
Case 2. m = [30, 30]T, γ = [0.003, π/10]T. In this case, the

operating space is also divided into three subregions and the final
model bank should also include two submodels at the two
operating points OP1(122.5, 76.67, 0.0295, 469.39) and OP2
(104.17, 101.67, 0.0860, 442.55).
Case 3.m = [60, 60]T, γ = [0.003, π/10]T. As shown in Figure

6, this case has the same dividing results with Case 2.
In the above three cases, the designer-assigned parameters h =

[m1, m2]T are selected to be different values, whereas the
threshold value vector γ is chosen as the same [0.003, π/10]T.
The three cases have almost the same dividing results: the same
number of subregions, nearly the same subregion ranges, and
nearly the same operating points. In particular, Case 2 has exactly
the same dividing results as Case 3. The larger the numbers of
divisions m1 and m2 are, the smaller simplices the input region is
partitioned into and the more system characteristics the dividing
procedure considers. Compared with Case 1, Case 2 and Case 3
obtain the narrower subregion Φ1 in the qc direction and the
narrower subregion Φ2 in the q direction. This is because larger
m1 andm2 lead to finer and more accurate dividing in Case 2 and
Case 3, while smaller m1 and m2 make the division in Case 1
rougher. Therefore, sufficienly large numbers of divisions miu (iu
= 1, 2, ..., nu) are generally suggested for accurate dividing (e.g.,m
= [30, 30]T for the CSTR) if the off-line computation time is
allowable.
Case 4. m = [30, 30]T, γ = [0.0028, π/30]T. In this case, the

operating space is divided into five subregions as depicted in
Figure 6. The subregions Φ2 and Φ3 share the same submodel
with the subregion Φ1. The minimal model bank resulted from
the proposed division method includes the three submodels at
the three operating points: OP1 (113.33, 68.33, 0.0247, 471.69),
OP3 (104.17, 101.67, 0.0860, 442.55), and OP5 (140.83, 85,
0.0318, 470.77), respectively.
Case 4 and Case 2 choose the same numbers of divisions (m =

[30, 30]T), whereas Case 4 uses a smaller threshold values γiy (iy =
1, 2, ..., ny) than Case 2. The smaller the threshold value γ

iy is, the
smaller nonlinearity the dividing procedure allows in each
subregion for the iyth I/O surface, and vice versa. For this reason,
the operating space is decomposed into more subregions in Case
4 than in Case 2. In practice, proper threshold values should be
chosen according to the prior knowledge of the system and the
control performance.
In this study, the dividing result of Case 2 is employed to

construct the linear model bank. Two second-order TITO linear
submodels in the form of eq 3 are respectively identified at OP1
and OP2, whose parameters are given as follows:

Table 1. Nominal Model Parameters of CSTR

Measured product concentration CA 0.1 mol L−1

Reactor temperature T 438.5 K
Coolant flow rate qc 103.41 L min−1

Process flow rate q 100 L min−1

Feed concentration CA0 1 mol L−1

Feed temperature T0 350 K
Inlet coolant temperature Tc0 350 K
CSTR Volume V 100 L
Heat transfer term hA 7 × 105 cal min−1 K−1

Reaction rate constant k0 7.2 × 1010 min−1

Activation energy term E/R 1 × 104 K
Heat of reaction ΔH −2 × 105 cal min−1

Liquid densities ρ, ρc 1 × 103 g L−1

Specific Heats Cp,Cpc 1 cal g−1 K−1

Figure 4. Steady-state surface of the concentration CA.

Figure 5. Steady-state surface of the concentration T.
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Figure 7 compares the modeling performance of the two linear
submodels and the multilinear model. The linear submodel 1
cannot track the sampled data with high concentration (CA) and
low temperature (T), e.g., the trajectories at around the 1000th
sampling point. The submodel 2 even gives negative
concentration, which is physically not possible. By comparison,
the global multilinear model is very precise, whose trajectories
are very close to the sampled data. To sum up, the multilinear
model can closely approximate the nonlinear MIMO CSTR
process in the entire operating space, with much higher accuracy
than a single linear submodel.
5.3. Predictive control of the CSTR. In this part, based on

the obtained linear model bank, the proposed MMPC-TS

algorithm is applied to the CSTR for set-point tracking. For
comparison, two simple Linear MPC (LMPC) controllers
(LMPC1 and LMPC2) are designed based on the linear
submodel 1 and submodel 2, respectively. They are employed
to demonstrate the necessity of utilizing the multilinear model
technique and the effectiveness of the proposed division method.
Moreover, a multilinear model predictive controller with hard
switching (MMPC-HS) is also designed based on the same
multilinear model. It is also compared with MMPC-TS to
illustrate the advantages of the trajectory scheduling technique
introduced in section 4.2.2.
Initially, the two LMPC controllers are tuned with the

parameters P = 20,M = 5, wz,k + j|k
1 = diag{106, 1, 106, 1, 0, 0, 106,

1}, wΔu, k + j|k
1 = diag{1, 1}, wz,k + j|k

2 = diag{105, 1, 105, 1, 0, 0, 105,
1}, wΔu, k + j|k

2 = diag{1, 1}. Constraints on the manipulated
variables are 95 ≤ q ≤ 150, 60 ≤ qc ≤ 110, − 10 ≤ Δq ≤ 10, and
−10 ≤ Δqc ≤ 10. Next, these parameters are directly used as the
control parameters of the MMPC-HS controller and the
proposed MMPC-TS controller. Additional parameters of the
MPC-TS controller are σu = 1, tmax = 4.
Figure 8 depicts the closed-loop performance of the MMPC-

TS controller. The process outputs CA and T follow the set-
points quickly and precisely, and the process inputs vary exactly
in their predetermined ranges, q ∈ [95, 150] and qc ∈ [60, 110].
More importantly, the closed-loop tracking is very smooth,
during which neither output chattering nor input chattering
happen. The MMPC-TS controller based on the two linear
submodels performs quite satisfactorily in the wide operating
range. This illustrates two linear submodels and the correspond-
ing divided subregions provide sufficient information for this set-
point tracking control, and the combination of the parameters m
= [30, 30]T and γ = [0.003, π/10]T is a good choice for the
division of the MIMO CSTR.
The comparisons between the MMPC-TS controller and the

other two linear MPC controllers (LMPC1, LMPC2) are

Figure 6. Dividing results of the four cases for the CSTR.
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displayed in Figures 9−12. In Figure 9, the LMPC1 controller
performs as well as the MMPC-TS controller at the set-points in

the subregions Φ1 and Φ3. This illustrates a single submodel is
sufficient to characterize the system dynamic in the two

Figure 7. Open-loop model validation of the MIMO CSTR: the linear submodels vs the multilinear model.

Figure 8. Simulation results of the MIMO CSTR using the MMPC-TS controller.
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subregions. However, the LMPC1 controller leads to serious
output oscillations at the set-points in the subregion Φ2.
Similarly, in Figure 11, the LMPC2 controller has the same
satisfactory performance as the MMPC-TS controller at the set-
points in the subregion Φ2, whereas large overshoots and slow
tracking responses happen in other subregions (Φ1 andΦ3). As a
whole, the linear MPC controllers based on the two linear
submodels just perform well in their own subregions. Therefore,
two linear submodels are necessary for this nonlinear MIMO
CSTR process. This also confirms the effectiveness of the
proposed normal vector included angle division method.
Figures 13−14 compare the MMPC-TS controller with the

MMPC-HS controller. The MMPC-HS controller can regulate
the process outputs to follow their set-points, and it performs as
well as the MMPC-TS controller when no submodel switching is
activated, such as the responses from k = 0 to k = 50 and from k =
201 to k = 300. Nevertheless, during switching submodels, such
as the responses from k = 51 to k = 200 and from k = 301 to k =
350, the MMPC-HS controller causes unexpected large output
oscillations. This is due to the rough and inaccurate switching

caused by the hard switching technique in the MMPC-HS
controller. By comparison, the proposed trajectory scheduling
technique can achieve smooth switching, and its internal iteration
mechanism makes the predicted trajectory and the resulting
switching in the MMPC-TS controller more accurate than those
in the MMPC-HS controller. The total computational time of
the MMPC-TS controller is 1.28× that of the MMPC-HS
controller. Therefore, the trajectory scheduling technique
enables the MMPC-TS controller to give better performance
at a slightly higher computational time cost than the MMPC-HS
controller. Moreover, it does not require extra complicated
weighting parameters/functions used in soft switching. Thanks
to the proposed trajectory scheduling technique, the resulting
MMPC-TS controller achieves satisfactory balance between
smooth control and difficulty in computing control laws and
designing controllers.
To compare these controllers more systematically, two kinds

of criteria are calculated for the above simulations: the settling
time Ts

26 and the overshoot Mp.
27 The settling time Ts refers to

Figure 9. Closed-loop responses: the MMPC-TS controller vs the
LMPC1 controller.

Figure 10. Control inputs: the MMPC-TS controller vs the LMPC1
controller.

Figure 11. Closed-loop responses: the MMPC-TS controller vs the
LMPC2 controller.

Figure 12. Control inputs: the MMPC-TS controller vs LMPC2
controller.
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the time from changing set-points to the instant all the controlled
variables first reach and thereafter remain within a prescribed
percentage ± ϵ of their corresponding set-points, which reflects
the response speed of the closed-loop system. The overshootMp
is the percentage between the maximum amount the system
overshoots its final value and the final value of the system output,
which is an important stability indicator for control. As the
simulation consists of seven stages (the set-point changes seven

times), the average settling time (Ts), the average overshoot
(Mp), the maximal settling time (Ts

max), and the maximal
overshoot (Mp

max) of these stages are calculated.
Table 2 gives the values of Ts and Ts

max (in terms of the three
most common prescribed percentages27) and the values of Mp
and Mp

max resulted from these MPC controllers. The proposed
MMPC-TS has the minimal values in terms of all these criteria
among these controllers. It contributes to faster closed-loop
responses and higher control precision than other controllers.
Therefore, the effectiveness of the proposed division method and
the designed MMPC-TS control algorithm is confirmed.

6. CONCLUSION
This study provides a complete multilinear control scheme for
MIMO two-block cascade systems. First, a normal vector
included angle division method is proposed to decompose the
system operating space and determine the minimum linear
model bank. It works for the systems with multiple inputs and is
an extension of the method proposed by De et al.9 This method
just requires steady-state I/O mappings and thus is more
convenient and lower-cost than dynamic information based
division methods. Moreover, a novel multilinear MPC algorithm
(MMPC-TS) is developed with the trajectory scheduling
technique for local controller combination. The trajectory
scheduling technique enables MMPC-TS to reduce output
oscillations at a slightly higher computational cost compared with
the control algorithms with hard switching, and meanwhile it
avoids the complex weighting parameters/functions used in soft
switching.
The presented division method has a great potential when

applied to the classical technological processes with 2 or 3 inputs.
For systems with a large number of inputs, users can use the
parameters miu to balance the computational load and the
division precision. Further research should focus on reducing
computational load without losing precision.
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