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a b s t r a c t

This paper details development of a Model Predictive Control (MPC) algorithm for a boiler-turbine unit,
which is a nonlinear multiple-input multiple-output process. The control objective is to follow set-point
changes imposed on two state (output) variables and to satisfy constraints imposed on three inputs and
one output. In order to obtain a computationally efficient control scheme, the state-space model is
successively linearised on-line for the current operating point and used for prediction. In consequence,
the future control policy is easily calculated from a quadratic optimisation problem. For state estimation
the extended Kalman filter is used. It is demonstrated that the MPC strategy based on constant linear
models does not work satisfactorily for the boiler-turbine unit whereas the discussed algorithm with on-
line successive model linearisation gives practically the same trajectories as the truly nonlinear MPC
controller with nonlinear optimisation repeated at each sampling instant.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

A boiler-turbine unit is a crucial system in coal-fired power
plants. It is used to convert fuel's chemical energy into mechanical
one and then into electrical energy. The boiler generates high-
pressure and high-temperature steam to drive the turbine which
generates electricity. The boiler-turbine model most frequently
considered in literature was developed by R.D. Bell and K.J. Åström
[1], alternative models are described e.g. in [4,24]. The boiler-tur-
bine unit is a nonlinear multiple-input multiple-output process
with strong cross-coupling. The control objective is to follow the
set-points and to satisfy some constraints imposed on process
variables. Therefore, it usually cannot be efficiently controlled ef-
ficiently enough by simple, single-loop PID controllers [37], in
particular when the operating point must be changed fast and in
wide range. That is why more advanced control strategies should
be applied for the boiler-turbine unit.

A number of multivariable control strategies have been applied
to the boiler-turbine system, both linear and nonlinear, the state-
space model or its input-output approximations may be used for
controller synthesis. A multivariable PI controller and a linear
quadratic regulator (LQR) are discussed in [6], the controllers’
parameters are adjusted off-line by a genetic algorithm. The ∞H
controller and its transformation to a multivariable PI controller
are considered in [37]. A technique which allows to respect con-
straints in linear control schemes such as multivariable PI and ∞H
rights reserved.
is considered in [36]. The gain-scheduled optimal controller which
takes into account the existing constraints is presented in [3], a
linear parameter varying state-space model is used. A multi-ob-
jective control of the process is discussed in [2], the constraints are
taken into account by a linear matrix inequality algorithm while
tracking capabilities are optimised in terms of ∞H performance. A
robust adaptive sliding mode controller is presented in [11], input-
output linearisation is performed to eliminate process non-
linearity. A two-level hierarchical control scheme is presented in
[10] in which a supervisory fuzzy reference governor generates the
set-points while a feedforward-feedback controller is used. Three
single loop PID controllers are used together with a nonlinear
fuzzy feedforward correctors.

As far as nonlinear control strategies are considered, a fuzzy
∞H tracking state feedback controller based on a fuzzy state-space

models may be used as described in [43]. An alternative is to use
a simplified fuzzy multiple-model controller which consists of
three single-loop fuzzy controllers [27]. An optimal multiple-
model state-space controller is described in [13]. An approach to
enforce constraints in a nonlinear state feedback controller is
presented in [19].

Model Predictive Control (MPC) strategy [21,30,39] is fre-
quently used to efficiently control numerous processes, e.g. ma-
nipulators [7], plastic injection moulding [8], distillation columns
[9], chemical reactors [32], cruise control [33], air conditioning
[35], and electric arc furnaces [40]. Due to its inherent ability to
take into account constraints and deal with multiple-input mul-
tiple-output processes with couplings, MPC is a straightforward
option for the boiler-turbine system. In the simplest case pure
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Nomenclature

Fundamental model

f, f1, f2, f3model state functions
g, g1, g2, g3 model output functions
qe evaporation rate (kg/s)
u1 valve positions for fuel flow (0–1)
u2 valve positions for steam control (0–1)
u3 valve positions for feedwater flow (0–1)

=x y1 1 drum pressure (kg/cm2)
=x y2 2 electric power output (MW)

x3 fluid density (kg/cm3)
y3 drum water level deviations (m)
αcs steam quality (–)

Model predictive control

×0m n zeros matrix of dimensionality m�n
A, B, C , D matrices of constant linear model for MPC

( )A k , ( )B k , ( )C k , ( )D k matrices of time-varying linearised
model for MPC

( )A͠ k , ( )∼
B k , ( )

∼
C k , ( )D͠ k , ( )P k , ( )V k auxiliary matrices based on

parameters of linearised model
d(k) estimation of output disturbance

×Im n identity matrix of dimensionality m�n
J , JN auxiliary constant matrices
k discrete time (the current sampling instant)
N, Nu prediction and control horizons
SSEx sum of squared errors of controlled state variables
SSEy sum of squared errors of deviations of constrained

output variable
¯ ( − )u k 1 values of manipulated variables applied to process

umin, umax, umin, umax definition of range constraints imposed on
manipulated variables

¯ ( )x k , ¯ ( − )x k 1 measurements (estimation) of state variables
( + | )x k p k1

sp , ( + | )x k p k2
sp , ( + | )x k p k3

sp set-point values of state
variables

( + | )x k p ksp , ( )x ksp state set-point trajectories
^ ( + | )x k p k1 , ^ ( + | )x k p k2 , ^ ( + | )x k p k3 predicted values of state

variables

^ ( + | )x k p k , ^ ( )x k predicted state trajectories
^ ( + | )y k p k3 predicted value of output
y3

min, y3
max, y3

min, y3
max definition of range constraints imposed

on controlled variable y3
^ ( )y k predicted output trajectory
μ p1, , μ p2, , μ p3, , Mp, M weights in MPC related to predicted errors

of controlled variables
λ p1, , λ p2, , λ Λ Λ, ,p p3, weights in MPC related to increments of

manipulated variables
▵ ( + | )u k p k1 , ▵ ( + | )u k p k2 , ▵ ( + | )u k p k3 future increments of

manipulated variables
▵ ( + | )u k p k , ▵ ( )u k trajectory of future increments of manipu-

lated variables
▵umax, ▵umax definition of rate constraints imposed on ma-

nipulated variables
ε ( )kmin , ε ( )kmax slack variables in MPC optimisation when the

output constraints are treated in a suboptimal way
ε ( + )k pmin , ε ( + )k pmax , ε ( )kmin , ε ( )kmax slack variables in MPC

optimisation when the output constraints are treated
in the optimal way

ρmin, ρmax weighting coefficients (penalties)
ν ( )k estimation of state disturbance

State estimation

( − )F k 1 , ( )H k matrices of linearised model for state estimation
( − )F k 1a , ( )H ka matrices of augmented linearised model for

state estimation
f a, ga state and output function of augmented model

( )K k filter gain matrix
( | − )P k k 1 , ( − | − )P k k1 1 covariance matrices of estimated

vectors ^ ( | − )x k k 1 , ^ ( − | − )x k k1 1
( − )Q k 1 , ( )R k noise covariance matrices
( )S k residual covariance matrix
( )u ka augmented input vector

v(k), w(k) process and observation noises
( )x ka augmented state vector

x̃3 estimated value of fluid density (kg/cm3)
z measured variable
z̃ measurement residual
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linear models may be used. An application of Generalized Pre-
dictive Control (GPC) algorithm based on a linearised model using
an input-output feedback linearisation method and an MPC algo-
rithm based on a fuzzy model are presented in [18]. Multivariable
linear step-response input-output models obtained by two
methods and corresponding Dynamic Matrix Control (DMC) al-
gorithms are described in [26]. Unfortunately, the linear models of
the boiler-turbine system are inaccurate and the controller per-
formance is not satisfactory. Quite frequently fuzzy models or
multi-model structures are used in MPC due to their computa-
tional simplicity. An adaptive DMC algorithm with fuzzy step-re-
sponse models, which are recalculated on-line for the current
operating point of the process, is presented in [25]. A fuzzy input-
output model and a resulting MPC controller is discussed in [17]. A
conceptually similar control scheme based on a bank of local state-
space linear models used in MPC is studied in [28]. An MPC al-
gorithm based on a fuzzy state-space model is considered in [41].
A piecewise affine state-space model of the process is discussed in
[14] together with an explicit MPC algorithm which calculates on-
line the control law as an affine function of system states, the
control laws for a number of regions are precalculated off-line.
More advanced MPC schemes use the full nonlinear model of
the process or its transformation. An application of the extended
DMC technique based on a constant input-output step-response
model with an additional time-varying disturbances which ac-
counts for nonlinearity of the process is described in [12]. Con-
strained nonlinear MPC schemes with nonlinear optimisation re-
peated at each sampling instant are reported in [19], state-space
models are used for prediction. An application of a genetic algo-
rithm for optimisation in nonlinear MPC based on a fuzzy state-
space model is described in [16,19]. A predictive control scheme
based on a state-space hybrid model is discussed in [31], the re-
sulting optimisation problem is of a mixed integer linear or
quadratic type. Hierarchical set-point optimisation cooperating
with an MPC algorithm based on state-space a fuzzy model is
considered in [42].

Motivation of this work is to develop a computationally effi-
cient nonlinear MPC algorithm for the boiler-turbine unit. In
contrast to the MPC approaches with nonlinear on-line numerical
optimisation discussed in [16,19], in the presented MPC scheme
the original nonlinear model is successively linearised on-line for
the current operating point of the process and used for prediction.
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Linearisation makes it possible to easily calculate on-line the fu-
ture control policy from a quadratic optimisation problem. In order
to show advantages of the discussed MPC algorithm, it is com-
pared with the fully-fledged nonlinear MPC in terms of control
accuracy and computational burden. In both approaches the con-
trol objective is to follow set-point changes imposed on two state
(output) variables and to satisfy constraints imposed on three in-
puts and one output.

This paper is organised as follows. First, Section 2 describes
the state-space model of the process and control objectives.
Next, Section 3 shortly reminds the general idea of MPC and
gives a mathematical formulation of the MPC optimisation
problem resulting from the control objectives. The main part of
the paper, given in Section 4, details derivation of the com-
putationally efficient MPC algorithm with on-line model line-
arisation for the boiler-turbine unit and discusses the state
estimation problem. Section 5 presents simulation results. In
particular, the discussed MPC strategy is compared with a
simple MPC algorithm based on constant linear models and
with a computationally demanding MPC algorithm with full
nonlinear optimisation repeated at each sampling instant. Fi-
nally, Section 6 concludes the paper.
2. Boiler-turbine unit

2.1. Continuous-time process description

The model considered in this paper is based on the basic con-
servation laws and their parameters have been estimated from the
data measured from the Synvendska Kraft AB Plant in Malmö,
Sweden. The process is described by the following continuous-
time state equations [1]

( ) = − ( ) ( ) + ( ) − ( )

( ) = ( ( ) − ) ( ) − ( )

( ) = ( ) − ( ( ) − ) ( )
( )

x t
t

u t x t u t u t

x t
t

u t x t x t

x t
t

u t u t x t

d
d

0.0018 0.9 0.15

d
d

0.073 0.016 0.1

d
d

141 1.1 0.19
85 1

1
2 1

9/8
1 3

2
2 1

9/8
2

3 3 2 1

where the state variables x1, x2, and x3 denote drum pressure
( kg/cm2), electric power output (MW), and fluid density
( kg/cm3), respectively. The manipulated inputs, u1, u2, and u3

are the valve positions for fuel flow, steam control, and feed-
water flow, respectively. The outputs y1, y2, and y3 of the sys-
tem are: drum pressure ( kg/cm2), electric output (MW) and
drum water level deviations (m). The continuous-time output
equations are

⎛
⎝⎜

⎞
⎠⎟α

( ) = ( )

( ) = ( )

( ) = ( ) + ( ) +
( )

−
( )

y t x t

y t x t

y t x t t
q t

0.05 0.13073 100
9

67.975
2

1 1

2 2

3 3 cs
e

where αcs and qe are steam quality (dimensionless) and eva-
poration rate (kg/s), respectively, and are given by

α ( ) = ( − ( ))( ( ) − )
( )( − ( )) ( )

t
x t x t

x t x t
1 0.001538 0.8 25.6

1.0394 0.0012304 3acs
3 1

3 1

( ) = ( ( ) − ) ( ) + ( ) − ( )

− ( )
q t u t x t u t u t0.854 0.147 45.59 2.514

2.096 3b
e 2 1 1 3

It is assumed that all the output signals are measured, which
means that the first two state variables x1 and x2 are also
measured, whereas the third state variable x3 is not available
for measurement. Therefore, for state estimation an observer
must be used. The estimated state variable is denoted by x̃3.

2.2. Control objectives

The boiler-turbine controller must calculate the manipulated
variables u1, u2 and u3 in such a way that the discrepancy between
drum pressure ( =y x1 1), electric power output ( =y x2 2) and their
set-points ( =y x1

sp
1
sp, )=y x2

sp
2
sp are minimised whereas water level

deviations should be in the following range [3]

− ≤ ( ) ≤ ( )y t0.1 0.1 43

Due to actuators' limitations, the process inputs are subject to the
following magnitude constraints [3]

≤ ( ) ≤

≤ ( ) ≤

≤ ( ) ≤ ( )

u t

u t

u t

0 1

0 1

0 1 5

1

2

3

Additionally, rate constraints [3]

− ≤ ̇ ( ) ≤

− ≤ ̇ ( ) ≤

− ≤ ̇ ( ) ≤ ( )

u t

u t

u t

0.007 0.007

2 0.02

0.05 0.05 6

1

2

3

may be taken into account.
In this paper two notation methods are used: vectors and

scalars. For compactness of presentation the vectors
⎡⎣ ⎤⎦=u u u u1 2 3

T, ⎡⎣ ⎤⎦=x x x x1 2 3
T, ⎡⎣ ⎤⎦=y y y y1 2 3

T are used. When it is
necessary or convenient, the elements of these vectors are also
used, i.e. the scalars un, xn and yn, where =n 1, 2, 3.

2.3. Model discretisation

The continuous-time state equations of the boiler-turbine
model (Eqs. (1)) are discreticised using the Euler's method. The
discrete-time state equations are

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( + ) = ( ) + − ( ) ( ) + ( ) − ( )

( + ) = ( ) + ( ( ) − ) ( ) − ( )

( + ) = ( ) + ( ) − ( ( ) − ) ( )
( )

x k x k T u k x k u k u k

x k x k T u k x k x k

x k x k T
u k u k x k

1 0.0018 0.9 0.15

1 0.073 0.016 0.1

1
141 1.1 0.19

85 7

1 1 s 2 1
9/8

1 3

2 2 s 2 1
9/8

2

3 3 s
3 2 1

where =T 1 ss denotes the sampling time. From Eq. (2), the dis-
crtete-time output equations are

⎛
⎝⎜

⎞
⎠⎟α

( ) = ( )

( ) = ( )

( ) = ( ) + ( ) +
( )

−
( )

y k x k

y k x k

y k x k k
q k

0.05 0.13073 100
9

67.975
8

1 1

2 2

3 3 cs
e

where, from Eqs. (3a) and (3b), one has

α ( ) = ( − ( ))( ( ) − )
( )( − ( )) ( )

k
x k x k

x k x k
1 0.001538 0.8 25.6

1.0394 0.0012304 9acs
3 1

3 1

( ) = ( ( ) − ) ( ) + ( ) − ( )

− ( )
q k u k x k u k u k0.854 0.147 45.59 2.514

2.096 9b
e 2 1 1 3

The discrete-time state-space model may be described by the
general equations

( + ) = ( ( ) ( )) ( )x k f x k u k1 , 10a
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( ) = ( ( ) ( )) ( )y k g x k u k, 10b

where  →f : 6 3 and  →g: 6 3. The state equations may be
rewritten for the sampling instant k, which gives

( ) = ( ( − ) ( − )) ( )x k f x k u k1 , 1 11a

( ) = ( ( ) ( )) ( )y k g x k u k, 11b

Considering the actual relations between variables, one has

( ) = ( ( − ) ( − ) ( − ) ( − ))

( ) = ( ( − ) ( − ) ( − ))

( ) = ( ( − ) ( − ) ( − ) ( − )) ( )

x k f x k u k u k u k

x k f x k x k u k

x k f x k x k u k u k

1 , 1 , 1 , 1

1 , 1 , 1

1 , 1 , 1 , 1 12

1 1 1 1 2 3

2 2 1 2 2

3 3 1 3 2 3

and

( ) = ( ( ))

( ) = ( ( ))

( ) = ( ( ) ( ) ( ) ( ) ( )) ( )

y k g x k

y k g x k

y k g x k x k u k u k u k, , , , 13

1 1 1

2 2 2

3 3 1 3 1 2 3

3. Model predictive control problem formulation for the boi-
ler-turbine unit

MPC is a computer control technique which calculates re-
peatedly on-line not only the current values of control signals
(i.e. for the current sampling instant k), but the whole future
control policy, defined on some control horizon Nu [21,30,39].
Usually, for simplicity of implementation, control increments,
not their values, are calculated. The vector of decision variables
is

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

▵ ( ) =
▵ ( | )

⋮
▵ ( + − | )

u k
u k k

u k N k1u

Because the boiler-turbine system has 3 inputs, there are N3 u

decision variables. The control increments are defined as

⎧⎨⎩▵ ( + | ) =
( | ) − ( − ) =
( + | ) − ( + − | ) ≥

u k p k
u k k u k p

u k p k u k p k p

1 if 0

1 if 1
n

n n

n n

where =n 1, 2, 3. It is assumed that ▵ ( + | ) =u k p k 0n for ≥p Nu.
Considering the control objectives detailed in Section 2, the
objective of the MPC algorithm is to minimise discrepancies
between predicted values of drum pressure x1 and its set-point
trajectory x1

sp as well as discrepancies between predicted values
of electric power output x2 and its set-point trajectory x2

sp.
These discrepancies are considered on the prediction horizon

≥N Nu. Thus, the following quadratic cost function is mini-
mised on-line

( )∑ ∑

∑ ∑

μ

λ

( ) = ( + | ) − ^ ( + | )

+ (▵ ( + | ))
( )

= =

= =

−

J k x k p k x k p k

u k p k
14

n p

N

n p n n

n p

N

n p n

1

2

1
,

sp 2

1

3

0

1

,
2

u

where μ ≥ 0n p, and λ > 0n p, are weighting coefficients. The

predictions ^ ( + | )x k p kn are calculated from a dynamic model of
the process. Additionally, the second part of the MPC cost-
function minimises excessive control increments. Having cal-
culated the decision variables at the sampling instant k, the
manipulated variables are updated using the first 3 elements of
the solution vector ▵ ( )u k , i.e.
( ) = ▵ ( | ) + ( − ) ( ) = ▵ ( | ) + ( − )

( ) = ▵ ( | ) + ( − )

u k u k k u k u k u k k u k

u k u k k u k

1 , 1 ,

1
1 1 1 2 2 2

3 3 3

In the next sampling instant, the measurements of the outputs
and available state variables are updated, and the whole opti-
misation procedure is repeated.

In the discrete-time domain and in the MPC framework, the
water level deviations constraints (4) may be rewritten as the
constraints imposed on the third output variable over the pre-
diction horizon

− ≤ ^ ( + | ) ≤ = … ( )y k p k p N0.1 0.1, 1, , 153

The predictions of the output variable, ^ ( + | )y k p k3 , are calculated
from the model. From Eq. (5), the constraints imposed on mag-
nitude of the inputs are used in MPC over the control horizon

≤ ( + | ) ≤ = … −

≤ ( + | ) ≤ = … −

≤ ( + | ) ≤ = … − ( )

u k p k p N

u k p k p N

u k p k p N

0 1, 0, , 1

0 1, 0, , 1

0 1, 0, , 1 16

1 u

2 u

3 u

From Eq. (6), taking into account that the sampling time is =T 1 ss

and the magnitude constraints imposed in MPC on the second
manipulated variable are ≤ ( + | ) ≤u k p k0 12 for = … −p N0, , 1u ,
the rate constraints used in MPC are

− ≤ ▵ ( + | ) ≤ = … −

− ≤ ▵ ( + | ) ≤ = … −

− ≤ ▵ ( + | ) ≤ = … − ( )

u k p k p N

u k p k p N

u k p k p N

0.007 0.007, 0, , 1

1 0.02, 0, , 1

0.05 0.05, 0, , 1 17

1 u

2 u

3 u

Taking into account Eqs. (14), (15), (16) and (17), the constrained
MPC optimisation problemwhich must be solved at each sampling
instant on-line may be formulated in the following way

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∑ ∑

ρ ε ρ ε

ε ε

ε ε

( + | ) − ^( + | ) + ▵ ( + | )

+ (( ( )) + (( ( ))

≤ ( + | ) ≤ = … −

▵ ≤ ▵ ( + | ) ≤ ▵ = … −

− ( ) ≤ ^ ( + | ) ≤ + ( ) = …

( ) ≥ ( ) ≥ ( )

Λ▵ ( )
= =

−

ε
ε

( )
( )

x k p k x k p k u k p k

k k

u u k p k u p N

u u k p k u p N

y k y k p k y k p N

k k

min

subject to

, 0, , 1

, 0, , 1

, 1, ,

0, 0 18

u Mk
p

N

p

N

1

sp
2

0

1
2

min min 2 max max 2

min max
u

min max
u

3
min min

3 3
max max

min max

k
k

p p

min
max

u

The input constraints are defined by the vectors:
⎡⎣ ⎤⎦=u 0 0 0min T, ⎡⎣ ⎤⎦=u 1 1 1max T , ⎡⎣ ⎤⎦▵ = − − −u 0.007 2 0.05min T,

⎡⎣ ⎤⎦▵ =u 0.007 0.02 0.05max T, the output constraints by the scalars

= −y 0.13
min , =y 0.13

max . The matrices μ μ μ= ( ) ≥M diag , , 0p p p p1, 2, 3,

(with μ = 0p3, ), λ λ λ= ( ) >M diag , , 0p p p p1, 2, 3, are of dimensionality
3�3. In order to guarantee that the feasible set of the MPC
optimisation problem is not empty, not the hard output con-
straints (15), but their soft versions are used. The hard con-
straints may be temporarily violated, but it enforces the ex-
istence of the feasible set. The degree of constraint violation is
minimised by the last two parts of the cost-function. The soft
approach to output variables increases the number of decision
variables of the MPC optimisation problem to +N3 2u , the
number of constraints is +N12 4u , ε ( )kmin and ε ( )kmax are ad-
ditional decision variables, ρ ρ >, 0min max are penalty
coefficients.

The MPC optimisation problem (18) may be further re-
formulated using the vector-matrix notation. The set-point
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trajectory and the predicted state trajectory vectors

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( ) =
( + | )

⋮
( + | )
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^( + | )
⋮

^( + | )
x xk

x k k

x k N k
k

x k k

x k N k

1
,

1
sp

sp

sp

are of length N3 , the weighting matrices = ( … )M M Mdiag , , N1 and
Λ Λ Λ= ( … )−diag , , N0 1u are of dimensionality ×N N3 3 and

×N N3 3u u, respectively. The input constraint vectors

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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⎢
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⎥
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⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥= ⋮ = ⋮ ▵ =

▵
⋮

▵
▵ =

▵
⋮

▵
u u u u

u

u

u

u
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are of length N3 u, the output constraint vectors
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are of length N. The general MPC optimisation problem defined by
Eq. (18) can be expressed as
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One may note that in the MPC optimisation problems (18) and
(19) the constraints imposed on the predicted output variable y3
are used in a simple, suboptimal version, because the same coef-
ficients ε ( )kmin and ε ( )kmax are used over the whole prediction
horizon to soften the original hard constraints (15). In the general
optimal approach the vectors of additional variables are not con-
stant over the prediction horizon, but the degree of hard con-
straints violation is adjusted independently for consecutive sam-
pling instants over the prediction horizon. In place of the MPC
optimisation problem (18) one has
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The number of decision variables is +N N3 2u , the number of
constraints is +N N12 4u . Using the vectors of additional variables
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of length N, the MPC optimisation problem (20) may be also re-
written using the vector-matrix notation in the following way
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4. Nonlinear MPC algorithm with successive on-line model
linearisation (MPC-SL) for the boiler-turbine unit

If the nonlinear state-space model defined by Eqs. (7), (8), (9a)
and (9b) is used for prediction calculation in MPC, the predictions
of the state variables x1, x2 and of the output variable y3 are
nonlinear functions of the calculated on-line future control moves
▵ ( )u k . In consequence, the MPC optimisation problems (19) or (21)
are nonlinear tasks which must be solved on-line in real time.

In order to obtain a computationally efficient MPC algorithm,
the MPC scheme with Successive Linearisation (MPC-SL) is de-
veloped for the boiler-turbine system. A linear approximation of
the model is repeatedly, at each sampling instant, calculated on-
line for the current operating point of the process and used for
prediction, which makes it possible to calculate the decision
variables from an easy to solve quadratic optimisation problem (by
the active set method or the interior point method [23]). The
general formulation of the MPC-SL algorithm based on input-
output models is given in [39], algorithm implementation for
neural models is given in [20], the description for state-space
models is presented in [15], but in this work a simple approach to
prediction which guarantees offset-free control [38] is used.

4.1. On-line model linearisation

Using the Taylor series expansion method, the local linear
approximation of the nonlinear state-space model described by
Eqs. (11a) and (11b) is
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where the vectors
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define the current operating point of the process. It is described by
real measurements of the first two state variables ( x̄1, x̄2) and by
the estimated state of the third state variable ( x̃3) as well as by the
values of the manipulated variables applied to the process at the
previous sampling instant. The vectors ( − )x k 1 , x(k) and u(k) are
arguments (independent variables) of the linearised model. Be-
cause linearisation precedes optimisation of the future control
increments at each sampling instant, the current operating point is
defined in the output Eq. (22b) not by unavailable signals ¯ ( )u k1 ,
¯ ( )u k2 , ¯ ( )u k3 , but by the most recent values from the previous
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sampling instant. The linearised model (22a)–(22b) may be ex-
pressed in the following form
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The time-varying matrices of the linearised model, all of di-
mensionality 3�3, are calculated analytically on-line by differ-
entiating the nonlinear model (11a)–(11b)
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Taking into account the linearisation rules (25) and the model
state Eq. (7) of the boiler-turbine system, one obtains
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Taking into account Eqs. (25) and the model output Eq. (8) of the
process, one has
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where, from Eq. (9a)
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From Eqs. (25), (8) and (9b), it follows that
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4.2. State and output prediction

In this work the state disturbance model discussed in [38,39] is
used. The predicted state vector for the sampling instant +k p is
calculated at the current instant k from

ν^( + | ) = ( + | ) + ( ) ( )x k p k x k p k k 32

where ( + | )x k p k denotes the state vector obtained from the model
and it is assumed that the same state disturbance ν ( )k acts on the
process over the whole prediction horizon. The unknown dis-
turbance vector may be assessed as the difference between the
state variables ( )x k1 , ( )x k2 (measured), ˜ ( )x k3 (estimated) and the
state variables calculated from the linearised state Eq. (23a) for the
sampling instant k
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The first two state variables are measured whereas the third one is
observed, which means that ⎡⎣ ⎤⎦( ) = ( ) ( ) ˜ ( )x k x k x k x k1 2 3

T,
⎡⎣ ⎤⎦( − ) = ( − ) ( − ) ˜ ( − )x k x k x k x k1 1 1 11 2 3

T. Similary to Eq. (32), the
predicted output for the sampling instant +k p is calculated at the
current instant k from

^ ( + | ) = ( + | ) + ( ) ( )y k p k y k p k d k 343 3

where ( + | )y k p k3 denotes the output obtained from the linearised
model and it is assumed that the same output disturbance d(k)
acts on the process over the whole prediction horizon. Taking into
account Eq. (23b), the output disturbance is assessed from

δ( ) = ( ) − ( ) ( ) − ( ) ( − ) − ( ) ( )C Dd k y k k x k k u k k1 353 y

Because the signals u(k) are not known before optimisation, the
vector ( − )u k 1 from the previous sampling instant is used. The
state and output predictions are calculated in a relatively
straightforward way from Eqs. (32) and (34), the state and output
disturbances are estimated from Eqs. (33) and (35). The prediction
equations are very similar to those used in MPC in which input-
output models are used for prediction. The discussed approach,
although simple, guarantees offset-free control, even in the case of
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deterministic constant-type disturbances acting on the process
and modelling errors, as proved and demonstrated in [38]. The
alternative offset-free formulations of MPC based on state-space
models require augmenting the process state by the states of de-
terministic disturbances [21,22,29] or using the velocity form
state-space model, in which the extended state consists of state
increments and the output signals [21].

From the state prediction Eq. (32) and using the linearised state
model (23a), state predictions for the consecutive sampling in-
stants are

δ ν

δ ν

δ ν

^( + | ) = ( ) ( ) + ( ) ( | ) + ( ) + ( )
^( + | ) = ( )^( + | ) + ( ) ( + | ) + ( ) + ( )
^( + | ) = ( )^( + | ) + ( ) ( + | ) + ( ) + ( )

⋮

A B

A B

A B

x k k k x k k u k k k k

x k k k x k k k u k k k k

x k k k x k k k u k k k k

1

2 1 1

3 2 2

x

x

x

The state predictions may be expressed as functions of the incre-
ments of the future control increments (i.e. the decision variables
of MPC)
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where ×I3 3 stands for an identity matrix of dimensionality 3�3. The
predicted state trajectory over the prediction horizon (the vector of
length N3 ) may be expressed in the following compact manner
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B k and ( )V k , of dimensionality ×N3 3, are
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whereas the matrix ( )P k , of dimensionality ×N N3 3 u, is
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where ×03 3 stands for a zeros matrix of dimensionality 3�3.
From the output prediction Eq. (34), using the linearised output

model (23b) and the predicted state trajectory (36), predictions of
the third output variable for the consecutive sampling instants
over the prediction horizon are
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where the block-diagonal matrices are
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and the submatices ( )C k3 and ( )D k3 contains the third row of the
matrices ( )C k and ( )D k , respectively. The vector ( )u kN , of length

N3 , consists of all future control values over the prediction hor-
izon. It may be easily found from the future control increments
defined over the control horizon
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and the vector ( − )u k 1N , of length N3 , is comprised of the values
of the manipulated variables from the previous sampling instant

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

( − ) =
( − )

⋮
( − )

u k
u k

u k
1

1

1

N

Using the state prediction Eq. (36), the output predictions given by
Eq. (39) may be rewritten in the form
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4.3. Quadratic programming MPC-SL optimisation problem

It is interesting to notice that as a result of model linearisation,
predictions of state and output variables (Eqs. (36) and (40)) are
linear functions of the future control increments ▵ ( )u k , i.e. the
decision variables of MPC. In consequence, it is possible to obtain
MPC quadratic optimisation problems, in which the minimised
cost-function is quadratic and the constraints are linear with re-
spect to the decision variables. The first version of the rudimentary
MPC optimisation problem (19) can be transformed to the fol-
lowing quadratic optimisation task
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is of length N3 u and the matrix
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is of dimensionality ×N N3 3u u. When different violations of the
predicted output constraints may be adjusted for consecutive
sampling instants of the prediction horizon, the general MPC op-
timisation problem (21) becomes
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4.4. MPC-SL algorithm summary

The following steps are repeated at each sampling instant k of
the MPC-SL algorithm:

1. The output values ( ) = ( )y k x k1 1 , ( ) = ( )y k x k2 2 , ( − )y k 13 are
measured, the state variable ˜ ( )x k3 is estimated using a state
observer.

2. A local linear approximation (Eqs. (22a), (22b)) of the nonlinear
model (Eqs. (7), (8), (9a), (9b)) of the process is calculated for
the current operating point, i.e. the matrices ( )A k , ( )B k , ( )C k ,

( )D k and are found from Eqs. (26), (27), (28), (29), (30), (31),
whereas the quantities δ ( )kx , δ ( )ky are found from Eq. (24).

3. The matrices ( )A͠ k , ( )V k and ( )∼
B k are calculated from Eqs. (37),

the matrix ( )P k is calculated from Eq. (38).
4. The state disturbance vector ν ( )k is estimated from Eq. (33), the

output disturbance vector d(k) is calculated from Eq. (35).
5. The quadratic optimisation problem (41) or (44) is solved to

calculate the decision variables of the algorithm.
6. The first 3 elements of the calculated sequence ▵ ( )u k are ap-

plied to the process, i.e. ( ) = ▵ ( | ) + ( − )u k u k k u k 1 ,1 1 1 ( )=u k2
▵ ( | ) + ( − )u k k u k 12 2 , ( ) = ▵ ( | ) + ( − )u k u k k u k 13 3 3 .
7. At the next sampling instant ( = +k k: 1) the algorithm goes to

step 1.
4.5. State estimation

When state-space models are used in MPC of the boiler-turbine
process, state estimation is necessary. In this work the extended
Kalman filter [34] is used for state estimation because it is char-
acterised by excellent estimation quality and low computational
complexity. Because the same state-space model is used for pro-
cess simulation and in MPC, at the sampling instant k the current
value of the output signal ( )y k3 is not available for measurement,
the most recent available signal comes from the previous sampling
instant, −k 1. Considering the model (12), it is because the output

( )y k3 depends on the inputs ( )u k1 , ( )u k2 , ( )u k3 , which are calculated
at the sampling instant k after state estimation. That is why the
measurement vector is
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In order to deal with delayed measurement, the state augmenta-
tion technique discussed in [5] is used. For state estimation, the
following augmented model is used

( + ) = ( ( ) ( )) + ( ) ( )x k f x k u k w k1 , 45aa a a a

( ) = ( ( ) ( )) + ( ) ( )z k g x k u k v k, 45ba a a a

where w(k) and v(k) are the process and observation (measure-
ment) noises, respectively. They are assumed to be zero mean,
Gaussian and uncorelated noises with covariance matrices

( ) = ([ ( ) ( )])Q k E w k w kT and ( ) = ([ ( ) ( )])R k E v k v kT , respectively. The
augmented state and input vectors are
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Taking into account Eqs. (12), the augmented state Eq. (45a) be-
comes
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State estimation requires successive on-line model linearisation



Table 1
Operating points of the boiler-turbine.

Variable Operating point A Operating point B Operating point C

=x y1 1 ×7.56 101 ×9.72 101 ×1.4 102

=x y2 2 ×1.53 101 ×5.05 101 ×1.28 102

x3 ×5.0897 102 ×4.6951 102 ×3.2368 102

u1 × −1.1926 10 1 × −2.7049 10 1 × −5.9589 10 1

u2 × −3.8063 10 1 × −6.2082 10 1 × −8.9447 10 1

u3 × −1.2262 10 1 × −3.3979 10 1 × −7.8829 10 1

y3 × −9.8414 10 2 × −9.7038 10 2 × −9.7970 10 2
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( − ) = ∂ ( ( − ) ( − ))
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One may notice that linearisation for the MPC-SL algorithm and
for state estimation is performed in a very similar way. The matrix

( − ) = ( )F Ak k1 is calculated from Eq. (26). The matrix
( − ) = ( )H Ck k1 is calculated from Eqs. (28), (29) and (30), but for

calculation of the matrix ( − )H k 1 the operating point is defined
by the quantities ( − )x k 11 , ( − )x k 12 and ˜ ( − )x k 13 whereas for
model linearisation in the MPC-SL algorithm by the quantities

( )x k1 , ( )x k2 and ˜ ( )x k3 . When constant matrices F and H are used,
one obtains the Kalman filter for linear systems. The matrices of
the linearised model with the augmented state are easily calcu-
lated from the matrices which describe a linear approximation of
the rudimentary model used in the MPC-SL algorithm:
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The following steps are repeated for state estimation at each
sampling instant k (before execution of the MPC-SL algorithm)

1. The predicted state estimate is found from ˜( | − )=x k k 1
( ˜( − | − ) ( − ))f x k k u k1 1 , 1 .

2. The predicted covariance estimate is calculated from
( | − ) = ( − ) ( − | − )( ( − )) + ( − )P F P F Qk k k k k k k1 1 1 1 1 1a a T .

3. The measurement residual is determined from ˜( ) = ( )−z k z k
( ˜( | − ) ( − ))g x k k u k1 , 1 .

4. The residual covariance is found from ( ) = ( ) ( | −S H Pk k k ka

)( ( )) + ( )H Rk k1 a T .
5. The filter gain is calculated from ( ) =K k ( | − )P k k 1

( ( )) ( )−H Sk ka T 1 .
6. The state estimate is updated from ˜( | ) =x k k ˜( | − ) + ( ) ˜( )Kx k k k z k1 .
7. The covariance estimate is updated from ( | ) = ( − ( )P I K Hk k k a

( )) ( | − )Pk k k 1 .
5. Simulation results

The discrete-time dynamic model described by Eqs. (7), (8), (9a)
and (9b) is used for simulation of the process (i.e. as the simulated
process) and in MPC (for on-line linearisation and prediction). All
simulations are carried out in Matlab. Parameters of all algorithms
are the same: μ = 30p1, , μ = 1p2, , μ = 0p3, for = …p N1, , , λ = 1n p, for

=n 1, 2, 3 and = … −p N0, , 1u , ρ ρ= = 10min max 6. The extended
Kalman filter has the following parameters: ( | ) = ×P I1 0 6 6,

= ×Q I100 6 6, = ×R I0.0001 3 3.
Different operating points of the process are detailed in [1]. For

further simulations the operating points #1, #3 and #7 are chosen.
Considering control objectives described in Section 2, one may
easily check that the output constraints (4) are not satisfied at the
operating points described in [1]. That is why three modified op-
erating points are used in this study, the values of state, input and
output variables of these points are given in Table 1. The values of
the first two state variables are the same as in [1], but different
values of the third state variable and different values of process
inputs are necessary to guarantee that the output constraints are
satisfied. The chosen operating conditions are named operating
points A, B and C, respectively.

5.1. Model simulations

At first it is interesting to compare effectiveness of suc-
cessive model linearisation. Fig. 1 compares state and output
trajectories caused by step changes of the manipulated
variables u1, u2, u3 by δ = ± ± ±0.1, 0.2, 0.3 occurring at
k¼100 of two models: the full nonlinear model and the suc-
cessively linearised one are considered (both in the open-loop
mode, i.e. with no controller). The initial operating point is B.
From the presented simulations two conclusions may be draw.
Firstly, the successively linearised model gives practically the
same trajectories as the full nonlinear model, which means
that local linearisation may be efficiently used for model ap-
proximation. Secondly, it is necessary to notice that the re-
sponses for positive and negative changes in the manipulated
variables have different shapes and final values, which means
that both dynamic and steady-state properties of the process
are nonlinear. It motivates development of nonlinear MPC
algorithms.

5.2. Selection of horizons

Selection of proper prediction and control horizons in MPC is
an important task. On the one hand, the horizons must be long
enough to give good control quality, on the other hand, they must
be short to minimise computational complexity. It is an interesting
issue to demonstrate that for the considered process it is sufficient
to use quite short prediction and control horizons in MPC. In this
work the horizons are determined experimentally, i.e. simulations
are carried out for different horizons and quality of control is as-
sessed. For this purpose two Sum of Squared Errors (SSE) perfor-
mance indices are used. They are calculated after completing si-
mulations of MPC in order to compare the influence of the tuning
parameters. The first performance index measures control errors
of the first two state variables

∑ ∑= ( ( ) − ( ))
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x k x kSSE
46n p

N

n nx
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2

1

sp 2
sim

where ( )x kn
sp denotes the state set-point whereas xn(k) is the ac-

tual value of the corresponding state variable calculated during
simulations, Nsim is the simulation horizon. It is necessary to point
out that the SSEx index is actually not minimised in MPC.
The second index measures the degree of hard output constraints
(Eq. (15)) violation

∑= ( − ( ( ))) ( ( ( ) − ))
( )=

y k ySSE 0.1 abs sgn max abs 3 0.1, 0
47p

N

y
1

3
2

sim



Fig. 1. State and output trajectories caused by step changes of the manipulated variables u1, u2, u3 by δ = ± ± ±0.1, 0.2, 0.3 at k¼100: the nonlinear model (solid line with
dots) vs. the successively linearised model (dashed line with circles).

Table 2
Accuracy of the MPC-SL algorithm in terms of the performance indices SSEx and
SSEy for different prediction horizons N for set-point change from the operating

point B to C; =N 5u (real state measurements are used, no constraints imposed on
the rate of change of the manipulated variables are taken into account).

N SSEx SSEy

5 ×1.0858 105 7.7740

10 ×1.0918 105 7.6435

20 ×1.0957 105 7.7306

30 ×1.0959 105 7.7328

40 ×1.3034 105 7.7352

50 ×1.5222 105 8.0571
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Firstly, the influence of the prediction horizon on control
quality and constraint satisfaction is assessed. Table 2 shows ac-
curacy of the MPC-SL algorithm in terms of the performance in-
dices SSEx and SSEy for different prediction horizons for set-point
change from the operating point B to C (for different set-point
changes the conclusions are the same). A sufficiently long control
horizon =N 5u is used (its choice is explained next), real state
measurements are used (i.e. no observer is necessary), no con-
straints imposed on the rate of change of the manipulated vari-
ables are taken into account, the output constraints are softened
by means of two additional variables ε ( )kmin and ε ( )kmax , as in the
MPC-SL optimisation problem (19). Fig. 2 depicts selected simu-
lation results, for prediction horizons N¼5, N¼10 and N¼50.
The best control quality is obtained for the shortest horizon N¼5,
but for the steady-state, starting from the sampling instant k¼200,



Fig. 2. Simulation results: the nonlinear MPC-SL algorithm for set-point change from the operating point B to C for different prediction horizons: N¼5 (solid line), N¼10
(dashed line), N¼50 (dotted line); =N 5u (real state measurements are used, no constraints imposed on the rate of change of the manipulated variables are taken into
account).

Table 3
Accuracy of the MPC-SL algorithm in terms of the performance indicies SSEx and
SSEy for different control horizons Nu for set-point change from the operating point
B to C; N¼10 (real state measurements are used, no constraints imposed on the
rate of change of the manipulated variables are taken into account).

Nu SSEx SSEy

1 ×7.566243 105 0.5865

2 ×1.089781 105 7.6243

3 ×1.090982 105 7.6390

4 ×1.091857 105 7.6457

5 ×1.091822 105 7.6435

10 ×1.091564 105 7.6556
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the algorithm is unable to satisfy the constraints imposed on
the output variable y3. The best constraint satisfaction is possible
for N¼10, moderate lengthening the horizon results in practically
the same performance, but for very long horizons, e.g. N¼50, the
quality deteriorates. It is because for long-range prediction the
same linear approximation of the model is used and for long
horizons a significant discrepancy between the prediction calcu-
lated by a locally linearised model and the real process trajectory is
possible. Because for the prediction horizons < <N10 45 there is
no important difference in quality of control and constraint sa-
tisfaction, the quite short horizon N¼10 is finally chosen. Although
the very short horizons, e.g. N¼5, are also possible, they are not
recommended as the MPC algorithm with a too short horizon may
only work in the ideal situation with no disturbances, modelling
errors and noise.

Secondly, the influence of the control horizon on control
quality and constraint satisfaction is assessed. Table 3 shows
accuracy of the MPC-SL algorithm in terms of the performance
indices SSEx and SSEy for different control horizons for set-
point change from the operating point B to C. The prediction
horizon is fixed, N¼10, real state measurements are used, no
constraints imposed on the rate of change of the manipulated
variables are taken into account. Fig. 3 depicts selected simu-
lation results, for control horizons =N 1u , =N 2u and =N 5u . For
the shortest horizon =N 1u the trajectories are completely
different from those obtained for ≥N 2u . It is interesting to
notice that increasing the length of the control horizon (i.e. for
>N 2u ) does not lead to any improvement of control perfor-
mance and control satisfaction ability. That is why, in order to
reduce computational complexity of MPC, the control horizon
is fixed to =N 2u . Taking into account the simulations discussed
so far, in the following part of the paper the horizons are:
N¼10, =N 2u .

5.3. Classical MPC based on linear models

Poor performance of classical linear MPC algorithms applied
to the considered boiler-turbine process is demonstrated else-
where, e.g. simulation results for the DMC algorithm are given
in [26]. Nevertheless, it is interesting to evaluate the linear



Fig. 3. Simulation results: the nonlinear MPC-SL algorithm for set-point change from the operating point B to C for different control horizons: =N 1u (solid line), =N 2u
(dashed line), =N 5u (dotted line); N¼10 (real state measurements are used, no constraints imposed on the rate of change of the manipulated variables are taken into
account).
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state-space MPC algorithm with the output constraints. Sa-
tisfaction of constraints imposed on the values and on the rate of
change of the manipulated variables is quite simple as such
constraints do not lead to an empty feasible set. Because a linear
model is only a very rough approximation of the process, when it
is used for prediction of the output y3, serious problems are
likely. The MPC algorithm based on linear models described in
[38] is used, it uses the same disturbance models as the MPC-SL
algorithm described in this work, but it is entirely based on
parameter-constant linear models. For the chosen operating
points (Table 1), using Eqs. (26), (27), (28), (29), (30), (31), the
matrices of the linear model are easily calculated off-line. For the
operating point A one obtains the matrices
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and for the point C
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Fig. 4. Simulation results: the linear MPC algorithm for set-point change from the operating point B to C (the linear model for the operating point B is used, real state
measurements are used, no constraints imposed on the rate of change of the manipulated variables are taken into account).
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Fig. 4 depicts simulation results of the linear MPC algorithm for
set-point change from the operating point B to C when for pre-
diction the linear model for the operating point B is used. For
simplicity real state measurements are used and no constraints
imposed on the rate of change of the manipulated variables are
taken into account. Unfortunately, due to modelling errors the
algorithm is unable to guarantee that the state variables x1 and x2
follow precisely their set-points x1

sp and x2
sp, respectively. Fur-

thermore, the output variable y3 does not satisfy its constraints.
Unwanted oscillations may be eliminated by increasing the
penalty coefficients λn p, from their default value 1 to 100, but it
does not lead to any better set-point tracking and satisfaction of
the output constraints. Fig. 5 depicts simulation results of the
linear MPC algorithm when the linear model for the operating
point C is used with the same simplifications. When the output
constraints imposed on the variable y3 are taken into account, the
algorithm is unable to provide good state set-point tracking (in
particular of the variable x2) and the output constrains are not
satisfied. Better state set-point tracking may be achieved by re-
moving the output constraints from the MPC optimisation pro-
blem, but they are crucial from the technological point of view.
The same problems are encountered when the set-point is
changed from the operating point A to C. For example, Fig. 6
shows simulation results of the linear MPC algorithm based on
the linear model for the operating point C. When compared to
Fig. 5, due to big set-point change, input, state and output vari-
ables are characterised by bigger damped oscillations. All things
considered, the MPC algorithm based on linear models are unable
to provide offset-free control and satisfaction of the output
constraints.
5.4. Nonlinear MPC based on nonlinear model

The next simulations are concerned with two nonlinear MPC
strategies:

a) the MPC scheme with Nonlinear Optimisation (MPC-NO) re-
peated at each sampling instant, in which the full nonlinear
model of the process is used (for optimisation the Sequential
Quadratic Programming (SQP) method is used [23]),

b) the discussed MPC-SL scheme with on-line model linearisa-
tion, which means that a quadratic optimisation problem is
solved at each sampling instant (for optimisation the active set
method is used [23]).

Both algorithms use the same model of the process, but in a
different way. The figures presented next show the trajectories of
MPC algorithms in which the output constraints are softened by
means of two additional variables ε ( )kmin and ε ( )kmax , as in the
MPC-SL optimisation problem (19). Fig. 7 depicts simulation
results of MPC-NO and MPC-SL algorithms for set-point change
from the operating point B to C. For simplicity the same assump-
tions as in the case of the linear MPC algorithm are used, i.e. real
state measurements are used and no constraints imposed on the
rate of change of the manipulated variables are taken into account.
Unlike the results of the linear MPC algorithm (Figs. 4 and 5), the
state set-points are tracked precisely, with no steady-state error,
there are no oscillations. Furthermore, the constraints of the
output variable y3 are satisfied in some 2/3 period of the simula-
tion. In the first 1/3 period of simulation, when the state operating
point changes quickly, the hard output constraints are not satis-
fied, but it is necessary to enforce existence of a feasible set of the
MPC optimisation task (i.e. the additional variables ε ( ) >k 0min



Fig. 5. Simulation results: the linear MPC algorithm (solid line) and the linear MPC algorithm when the predicted output variable y3 is not constrained (dashed line) for set-
point change from the operating point B to C (the linear model for the operating point C is used, real state measurements are used, no constraints imposed on the rate of
change of the manipulated variables are taken into account).
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and ε ( ) >k 0min ). It is necessary to point out the fact that the MPC-
SL algorithm with on-line model linearisation and nonlinear
optimisation gives practically the same trajectories as the compu-
tationally demanding “ideal” MPC-NO algorithm with nonlinear
optimisation. Fig. 8 compares trajectories of both nonlinear MPC
control schemes for set-point change from the operating point A
to C. Unlike the linear algorithm (Fig. 6), they give good set-point
tracking and satisfaction of the output constraints. Moreover, the
trajectories of the MPC-SL algorithm are the same as in the MPC-
NO one. It is interesting to notice that for some portion of the
simulations the optimal values of the manipulated variables reach
their magnitude constraints which is necessary for fast transition
from the initial to the final operating point.

Figs. 9 and 10 compare MPC-NO and MPC-SL algorithms for set-
point changes from the operating point B to C and from the point A
to C, respectively, but the constraints imposed on the rate of
change of the manipulated variables are additionally taken into
account. For simplicity real state measurements are still used. In
comparison with Figs. 7 and 8 the state trajectories are sig-
nificantly slower, but it is caused by quite slow changes of the
input trajectories, which is enforced by the input rate constraints.
Also in the case of the additional rate constraints the MPC-SL al-
gorithm gives trajectories very similar to those possible in the
MPC-NO one. Comparing the situation when no rate constraints of
the manipulated variables are taken into account, i.e. Figs. 7 and 8,
introduction of such constraints reduces the time when the ma-
nipulated variables reach their magnitude constraints.

In all the simulation presented so far real state (undisturbed)
measurements are used. In reality state estimation of the variable
x3 is necessary. For this purpose the Extended Kalman Filter de-
scribed in Section 4.5 is used. Figs. 11 and 12 compare MPC-NO and
MPC-SL algorithms for set-point changes from the operating point
B to C and from the point A to C, respectively. All the constraints
imposed on the inputs, on the rate of change of the inputs and on
the output y3 are taken into account. It is assumed that the initial
condition of the process is not known, the initial state of the filter
is ⎡⎣ ⎤⎦˜ =x 50 25 300 T. Additionally, the process is affected by un-
measured step disturbances which act on its inputs: at the sam-
pling instant k¼250 the step applied to the first input changes
from 0 to 0.3, at the instant k¼350 the step applied to the second
input changes from 0 to 0.2. Moreover, the process outputs y1, y2
and y3 are affected by noise with normal distribution with zero
mean and standard deviation 0.01, 0.01 and 0.001, respectively.
The simulation horizon is lengthen. It is evident that the nonlinear
MPC algorithms are able co compensate for disturbances and
noise, the wrong initial condition of the state observer does not
lead to any significant deterioration of set-point tracking and
constraints satisfaction. Also in this case the MPC-SL algorithm
with quadratic optimisation gives the trajectories almost the same
as the MPC-NO one.

Fig. 13 compares real and estimated state trajectories in the
nonlinear MPC-SL algorithm for two considered set-point changes
and state estimation error. Because the initial condition of the
process is not known precisely, the observer needs a few (6-7)
time steps to find the real state with quite a small error. The error
increases when the process is affected by the unmeasured input
step disturbances (in particular the second one, which starts for k
¼ 350).

Finally, the two nonlinear MPC algorithms are compared
in terms of the performance indicies SSEx (Eq. (46)) and SSEy

(Eq. (47)). Their values are given in Tables 4 and 5 for different set-
point changes and configurations: with or without the constraints



Fig. 6. Simulation results: the linear MPC algorithm (solid line) and the linear MPC algorithm when the predicted output variable y3 is not constrained (dashed line) for set-
point change from the operating point A to C (the linear model for the operating point C is used, real state measurements are used, no constraints imposed on the rate of
change of the manipulated variables are taken into account).

Fig. 7. Simulation results: the nonlinear MPC-NO algorithm (solid line with dots) and the nonlinear MPC-SL algorithm (dashed line with circles) for set-point change from the
operating point B to C (real state measurements are used, no constraints imposed on the rate of change of the manipulated variables are taken into account).
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Fig. 8. Simulation results: the nonlinear MPC-NO algorithm (solid line with dots) and the nonlinear MPC-SL algorithm (dashed line with circles) for set-point change from the
operating point A to C (real state measurements are used, no constraints imposed on the rate of change of the manipulated variables are taken into account).

Fig. 9. Simulation results: the nonlinear MPC-NO algorithm (solid line with dots) and the nonlinear MPC-SL algorithm (dashed line with circles) for set-point change from the
operating point B to C (real state measurements are used, the constraints imposed on the rate of change of the manipulated variables are taken into account).
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Fig. 10. Simulation results: the nonlinear MPC-NO algorithm (solid line with dots) and the nonlinear MPC-SL algorithm (dashed line with circles) for set-point change from the
operating point A to C (real state measurements are used, the constraints imposed on the rate of change of the manipulated variables are taken into account).

Fig. 11. Simulation results: the nonlinear MPC-NO algorithm (solid line with dots) and the nonlinear MPC-SL algorithm (dashed line with circles) for set-point change from the
operating point B to C (the state observer is used with a wrong initial condition, the constraints imposed on the rate of change of the manipulated variables are taken into
account, the inputs of the process are affected by step disturbances, the outputs are affected by measurement noise).
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Fig. 12. Simulation results: the nonlinear MPC-NO algorithm (solid line with dots) and the nonlinear MPC-SL algorithm (dashed line with circles) for set-point change from the
operating point A to C (the state observer is used with a wrong initial condition, the constraints imposed on the rate of change of the manipulated variables are taken into
account, the inputs of the process are affected by step disturbances, the outputs are affected by measurement noise).

Fig. 13. Top panels: real state trajectories (solid line with dots) and the estimated state trajectories (dashed line) in the nonlinear MPC-SL algorithm (dashed line with circles),
bottom panels: state estimation errors, for set-point change from the operating point B to C (left panels) and from A to C (right panels), (the state observer is used with a
wrong initial condition, the constraints imposed on the rate of change of the manipulated variables are taken into account, the inputs of the process are affected by step
disturbances, the outputs are affected by measurement noise).
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imposed on the rate of change of the manipulated variables, with
or without the state observer. When the observer is used, it is also
assumed that its initial condition is wrong, the process output
measurements are characterised by noise and two input step
disturbances act on the process. Two approaches to soft output
constraints are also compared, i.e. the suboptimal method in
which the same coefficients ε ( )kmin and ε ( )kmax are used over the
whole prediction horizon (as in the MPC-SL optimisation problem
(41) with +N3 2u decision variables) and the optimal method in
which different violations ε ε( + ) … ( + )k k N1 , ,min min and
ε ε( + ) … ( + )k k N1 , ,max max may be adjusted independently for
consecutive sampling instants (as in the MPC-SL optimisation



Table 4
Accuracy of compared nonlinear MPC algorithms in terms of the performance index SSEx .

Set-point change State observer Constraints ▵umin, ▵umax Algorithm

Suboptimal output soft constraints Optimal output soft constraints

MPC-SL MPC-NO MPC-SL MPC-NO

→B C No No ×1.0898 105 ×1.0894 105 ×1.0864 105 ×1.0895 105

→B C No Yes ×3.1675 105 ×3.1772 105 ×3.3168 105 ×3.1664 105

→B C Yes Yes ×3.3328 105 ×3.4133 105 ×3.3065 105 ×3.4102 105

→A C No No ×3.3110 105 ×3.3106 105 ×3.3077 105 ×3.3106 105

→A C No Yes ×9.3900 105 ×9.4059 105 ×9.8272 105 ×9.3635 105

→A C Yes Yes ×9.9041 105 ×1.0263 106 ×1.0374 106 ×1.0233 106

Table 5
Accuracy of compared nonlinear MPC algorithms in terms of the performance index SSEy .

Set-point change State observer Constraints ▵umin, ▵umax Algorithm

Suboptimal output soft constraints Optimal output soft constraints

MPC-SL MPC-NO MPC-SL MPC-NO

→B C No No 7.6243 7.6154 7.5697 7.6157
→B C No Yes 1.5203 1.5335 1.6464 1.5224
→B C Yes Yes × −9.2890 10 1 × −8.2773 10 1 × −9.4550 10 1 × −8.2173 10 1

→A C No No ×1.5753 101 ×1.5743 101 ×1.5696 101 ×1.5743 101

→A C No Yes 3.6320 3.6576 4.2028 3.6008
→A C Yes Yes 2.5186 2.4817 3.1905 2.4484

Table 6
Computational burden of the MPC-SL and MPC-NO algorithms; for set-point
change from the operating point B to C (the state observer is used with a wrong
initial condition, the constraints imposed on the rate of change of the manipulated
variables are taken into account, the inputs of the process are affected by step
disturbances, the outputs are affected by measurement noise).

Algorithm Output soft
constraints

=N 1u =N 2u =N 3u =N 4u =N 5u =N 10u

MPC-SL Suboptimal 5.67 5.69 6.11 6.55 7.06 10.06
MPC-SL Optimal 5.66 6.39 7.11 8.08 20.41 37.31
MPC-NO Suboptimal 38.66 83.56 91.78 113.61 130.61 256.51
MPC-NO Optimal 241.22 453.16 590.44 687.55 1052.60 4733.30

Table 7
Computational burden of the MPC-SL and MPC-NO algorithms; for set-point
change from the operating point A to C (the state observer is used with a wrong
initial condition, the constraints imposed on the rate of change of the manipulated
variables are taken into account, the inputs of the process are affected by step
disturbances, the outputs are affected by measurement noise).

Algorithm Output soft
constraints

=N 1u =N 2u =N 3u =N 4u =N 5u =N 10u

MPC-SL Suboptimal 6.56 6.81 7.23 7.44 8.33 10.61
MPC-SL Optimal 5.80 6.36 6.89 7.84 20.55 34.75
MPC-NO Suboptimal 47.76 51.78 61.95 73.51 126.30 325.34
MPC-NO Optimal 184.50 523.59 604.30 666.50 948.23 4742.80
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problem (44) with +N N3 2u decision variables). For the simula-
tions carried out, two conclusions may be drawn: performance
(set-point accuracy) of the MPC-SL algorithm is very similar to that
of the MPC-NO one and the suboptimal approach to soft con-
straints does not lead to any significant worsening of constraint
satisfaction.

It is interesting to compare computational burden of the
discussed MPC-SL and MPC-NO algorithms. For this purpose the
cputime command in Matlab is used. Tables 6 and 7 give com-
putational effort of both algorithms for set-point changes from the
operating point B to C and from A to C, corresponding to the tra-
jectories depicted in Figs. 11 and 12. For comparison different
control horizons are taken into account ( =N 1, 2, 3, 4, 5, 10u ) and
two methods of treating the soft output constraints. First of all, it
may be easily noticed that the MPC-SL algorithm is many times
less computationally demanding than the MPC-NO one. For ex-
ample, for the first considered trajectory and the suboptimal soft
output constraints, the complexity reduction factor is 14.68 when

=N 2u , 18.50 when =N 5u and 25.50 when =N 10u . One may also
notice that as the control horizon is lengthened computational
burden of the MPC-SL algorithm grows, but the growth is quite
moderate, whereas in case of the MPC-NO algorithm lengthening
of the control horizon leads to a dramatic growth of the compu-
tational burden. Secondly, the suboptimal soft output constraints,
when compared with the optimal ones, are very computationally
efficient, in particular in the case of MPC-SL algorithm.
6. Conclusions

When the full nonlinear state-space model of the boiler-turbine
system is used in MPC, it is necessary to solve on-line a nonlinear
optimisation problem with constraints at each sampling instant
[16,19]. Nonlinear on-line optimisation in real time may be im-
possible in practice because of its significant computational bur-
den. This paper details derivation of the suboptimal MPC-SL al-
gorithm for the process and discusses simulation results. In the
MPC-SL algorithm the state-space model is successively linearised
on-line for the current operating point of the process and the
obtained linear approximation is used for prediction of state and
output variables. The MPC-SL algorithm has the following
advantages:
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1. Linearisation makes it possible to obtain a computationally not
demanding MPC quadratic optimisation problem. Its computa-
tional burden is many times lower than that of the MPC with
nonlinear optimisation.

2. Unlike the MPC algorithm based on linear models, the MPC-SL
technique gives good control accuracy and leads to satisfaction
of the output constraints.

3. For different set-point changes, different constraint configura-
tions and unmeasured disturbances, the suboptimal MPC-SL
algorithm gives process trajectories very similar to those ob-
tained in the MPC scheme with nonlinear optimisation.

4. The MPC-SL algorithm uses quite simple prediction method
discussed in [38], which guarantees offset-free control. It means
that the MPC-SL algorithm is able to compensate for unmea-
sured disturbances, i.e. the controlled variables of the process
follow their set-point trajectories even when the process is
affected by some unmeasured disturbances and noise.

Moreover, two approaches to treating the soft output constraints
are described. The first one is suboptimal, but it introduces only
two additional decision variables and four constraints whereas in
the second one (optimal) the number of decision variables and the
number of constraints are linearly dependent on the prediction
horizon. Taking into account the presented simulation results, it is
found that for the boiler-turbine process the suboptimal approach
to soft output constraints gives practically the same results as the
optimal one.
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