1 Laboratory Nr 2: Simulation of simple sequences of dependent random variables. Time series.

1. Select two conjugate, complex numbers z_{1} and z_{2} from inside of the unit circle.
2. Perform multiplication $\left(z-z_{1}\right) \times\left(z-z_{2}\right)$ obtaining polynomial $z^{2}-a z-b$.
3. Generate $N N=2000$ observations of so called white noise $\left\{W_{n}\right\}$ (i.e. sequence of independent identically distributed random variables) having :
(a) normal $N(0,1)$ distribution,
(b) exponential distribution and center it (that is subtract expectation).
4. Generate $N N=2000$ observations of so called autoregression process $A R(2)$ that is outcome of the following difference equation $X_{n}=a X_{n-1}+$ $b X_{n-2}+W_{n} ; n=0,1,2, \ldots N N$ assuming some initial values!!! with sequence $\left\{W_{n}\right\}$ generated in points a. and b..
5. Find estimators of two functions useful in identification of the time series
(a) estimators $\hat{K}(k)$ of parameters $K(k)$ (values of covariance function) for $k=0,1,2, \ldots, 32$ and $\operatorname{plot} \hat{K}(k)$. Namely

$$
\hat{K}(k)=\frac{1}{N N-k} \sum_{i=1}^{N N-k}\left(X_{i}-\bar{X}_{N}\right)\left(X_{i+k}-\bar{X}_{N}\right)
$$

where $\bar{X}_{N}=\frac{1}{N N} \sum_{i=1}^{N N} X_{i}$
(b) estimators $\hat{R}(k)$ of so called partial correlation function $R(k)$ i.e. r-th solutions of the system of linear equations (so called Yul-Walker equations)

$$
\begin{aligned}
\rho_{1}= & a_{1, r}+a_{2, r} \rho_{1}+\ldots+a_{r, r} \rho_{r-1} \\
\rho_{2}= & a_{1, r} \rho_{1}+a_{2, r}+\ldots+a_{r, r} \rho_{r-2} \\
& \ldots \ldots \ldots \\
\rho_{r}= & a_{1, r} \rho_{r-1}+a_{2, r} \rho_{r-2}+\ldots+a_{r, r}
\end{aligned}
$$

where $\rho_{i}=K(i) / K(0)$, for $r=1,2, \ldots$ More precisely we solve above mentioned system of equations for $r=1,2, \ldots$ and are interested in solutions $a_{r, r}$.
6. Find an estimator of $\hat{f}(\lambda)$ the spectral density function, i.e. calculate: $\hat{f}(\lambda)=\frac{1}{2 \pi} \sum_{n=-32}^{32} \hat{K}(n) \exp (-i n \lambda)$ assuming that $\hat{K}(-k)=\hat{K}(k) ; k=$ $0,1,2 \ldots, 32$. Plot this function.
7. Repeat points 5 . and 6 . for moving average precess $M A(2)$ i.e. process given by difference equation: $Y_{n}=W_{n}-a_{1} W_{n-1}-b_{1} W_{n-2}, n=0,1,2, \ldots$ defining W_{-2} and W_{-1} and takin any values for a_{1} and b_{1}.
8. Repeat points 5. and 6. for the process $A R M A(2,2)$ i.e. solution of the deferential equation: $Y_{n}=a Y_{n-1}+b Y_{n-2}+W_{n}-a_{1} W_{n-1}-b_{1} W_{n-2}$, $n=0,1,2, \ldots a_{1}$ and b_{1} any, and defining values of $Y^{\prime} s$ and $W^{\prime} s$ for negative indices
9. Write short description of what have you done and observed and submit it in pdf format by E-mail: pjsz@hotmail.com or in case of trouble pszablowski@elka.pw.edu.pl.

