
Sent to Cybernetics and Systems: An International Journal 1

My draft
Preprint

THE INFERENCE BASED ON

MOLECULAR COMPUTING

PIOTR WA̧SIEWICZ, TOMASZ JANCZAK,
JAN J. MULAWKA
Institute of Electronic Systems, Warsaw University of
Technology, Warsaw, Poland

ANDRZEJ PŁUCIENNICZAK
Institute of Biotechnology and Antibiotics,
Warsaw, Poland

Molecular computing is a new paradigm to perform calcula-
tions using nanotechnology. This paper presents the overall
research direction from which molecular inference and ex-
pert systems are emerging. It introduces the subject matter
and a general description of the problems involved. This
includes selected methods of knowledge representation by
DNA oligonucleotides, strategies of the inference mecha-
nism, concept of the inference engine based on circular DNA
molecules, particularly derived from plasmids, practical ex-
perience in DNA inference engine implementation, and dis-
cussion of the experimental results. The approach allows
evaluating logical statements and drawing inferences for gen-
erating other statements via DNA computing. Series of ex-
periments have been conducted to confirm practical utility of
this approach. In these experiments, parameters of biochemi-
cal reactions were varied to determine truth/false recognition
accuracy. In addition, we discuss the fundamental issues of
inference engine and try to enhance physical insight into the
dominating features of the approach proposed.

1This work was supported by the Polish Committee for Scientific Research, through the KBN grant 8T11F00816.
Address correspondence to Piotr Wa̧siewicz, Institute of Electronic Systems, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland, E-mail: pwas@ieee.org

1

In recent years, progress in silicon technology of integrated networks has come to a standstill, as
fundamental limits are being reached. This fact, however, provided opportunity for alternative de-
vices and stimulated development of new techniques to perform computations in more effective way
(Mulawka et al., 1998b). Seminal work of Adleman (1994) made a breakthrough in this area demon-
strating that biochemical molecular experiments on DNA may be used in solving a number of complex
problems (Mulawka, 1997). Subsequent proposals have continued to use this paradigm of computa-
tion (Baum, 1996; Kolata et al., 1995). Papers on evolutionary computation (Goldberg, 1989; Koza,
1992; Wa̧siewicz et al., 1997a; Wa̧siewicz & Mulawka, 1997b; Wa̧siewicz & Klebus, 1997c) in con-
nection with DNA computing (Dassen, 1999; Mulawka & Wasiewicz, 1998e; Mulawka et al., 1999c;
Paun et al., 1998) have been written (Mulawka et al., 1999b; Stanczak et al., 1999), also a concept of
molecular computer (Biswas, 1993; Hill et al., 1994; Pederson, 1989) and its new architectures has
been envisioned (Gehani & Reif, 1998; Heath et al., 1999; Lipton, 1995; Malone, 1995; McCaskill et
al., 1997b; Montemerlo et al., 1996, 1997; Murphy et al., 1997; Wa̧siewicz et al., 1999c).

Simultaneously these advances heralded the rapid acceleration of a new field known as moletron-
ics, or molecular electronics. Ionic and covalent bounded ’artificial molecules’ have been discussed.
Based on these facts a concept of quantum computer has appeared (Ashoori, 1996; Beth, 1997). Re-
cently, significant progress has been achieved in calculations based on rotaxanes (Collier et al., 1999).
Crude molecular computer components have been created. Molecular approach - if implemented -
opens a new opportunity in computing and signal processing (Mulawka & Nowak, 1999d), but its
potential has not been fully explored as yet (Jagielska et al., 1998).

In DNA computing, information is stored in molecules that are linear polymers composed of nu-
cleotides. DNA molecules are composed of single or double DNA fragments and often called strings,
primers, oligonucleotides or oligos, and rarely strands. A single-stranded primer has a phospho-sugar
backbone and four bases denoted by the symbols A, T, C, and G. A double-stranded oligo may be
formed of two single primers due to the hybridization reaction, because A is complementary with T
and C is complementary with G (Wȩgleński, 1995). Since DNA strings are composed of four nu-
cleotides, from informatic point of view, they represent chains of symbols over a four-letter alphabet.
Therefore, DNA computing is adequate for processing symbols and logical structures that has been
reported in a number of publications (Adleman et al., 1996; Amos, 1997b; Amos & Dunne, 1997a;
Gupta et al., 1997; Leete et al., 1997; Liu et al., 1998; Mulawka et al., 1998c,d, 1999a; Ogihara &
Ray, 1996, 1998; Roweis et al., 1998; Wa̧siewicz et al., 1999a,b; Winfree et al., 1996).

Identification of problems that can be solved by molecular computing more efficiently than on clas-
sical electronic machines would contribute to the assessment of the efforts put into the development
of this approach and obviously need further study. Question arises of which other areas of computer
science may be stimulated by this paradigm. Artificial intelligence (Freund et al., 1997; Mihalache,
1997; Rooß et al., 1996; Sakamoto et al., 1998) and especially expert systems made by Mulawka et
al. (1998a) seem to be promising for such research.

It has been observed that expert systems would mimic more precisely intellectual ability of people
if they were based on associative memories. Human memory operates in an associative manner; a
portion of recollection can produce a larger related memory. One thing reminds us of one, and that
one of another. If we allow our thoughts to wander, they move from topic to topic based on a chain

2

of mental associations. Such chains of associations may be formed in biochemical DNA reactions
(Ausubel & Struhl, 1995; Sambrook et al., 1989) by putting molecules together.

Pursuing ”Adleman-experiment” Baum (1995) envisioned realization of associative DNA memory
of the larger capacity than human memory. By contrast, classical expert systems are based on ordinary
computer memories, which are location addressable. To retrieve a datum an address is applied and
the information occupying that address is returned. Thus, to find adequate data, contents of particular
memory cells must be tested if matching is achieved. Such process is cumbersome and takes long
time for large sets of data.

In this paper it will be shown that a concept of molecular computing based on DNA may be applied
in the area of expert systems, and it will be demonstrated that using DNA reactions an inference engine
may be implemented in a straightforward manner.

SYMBOLIC DESCRIPTION OF THE DNA STRANDS

As has been mentioned, symbolic computation is well suited for implementation by means of DNA
strings and genetic engineering methodology (Csuhaj et al., 1996; Head, 1987; Head et al., 1997; Li,
1998; Pisanti, 1997).

Examples given below show our DNA notation created in order to simplify descriptions of our
experiments. One letter marks one oligo as is seen in Figure 1A. In our systems, the upper oligo
usually presents data and lower (underlined) - logic devices, rules and so on. Therefore, they should
not be exchanged. Symbols d and c denote position of single strings in space. A corner of such
symbol represents 5’ end, while an open edge represents 3’ end. An underlined primer is always in
the same position (3’ on the left, 5’ on the right) even in other double-stranded oligos.

CTAGAGAGGATGAGAGGTCATGCATCTCTTCACAC5’ 3’
a

GATCTCTCCTACTCTCCAGTACGTAGAGAAGTGTG3’ 5’

b

a)

=

⌈
a

b

⌋

CTAGAGAGGATGAGAGGTCATGCA5’ 3’

a 1

GATCTCTCCTACTCTCCAGTACGTAGAGAAGTGTG3’ 5’

b

b)

=

⌈
a1

b +

⌋
=

⌈
a1 +
b −

⌋
=

⌈
a1 +
− b

⌋

CTAGAGAG5’ 3’

a 2

GATCTCTCCTACTCTCCAGTACGTAGAGAAGTGTG3’ 5’

b

c)

=

⌈
a2

b −

⌋
=

⌈
a2

− b

⌋

CTAGAGAGGATGAGAGGTCAT5’ 3’

a 3

GATCTCTCCTACTCTCCAGTA3’ 5’

b 1

d)

=

⌈
a3

b1

⌋
=

⌈
− a3 −
− b1 −

⌋
=

⌈
a3

ã3

⌋

Figure 1: Analytical representation of DNA oligos.

3

⌈
a + b + c + d + e

− − − − & − − − −

⌋

f

5’

a

5’

b c d e

f

5’

a

5’

b c d e

Figure 2: The exemplary double-stranded oligos described in the above equation.

⌈
a ∗ b ∗ c ∗ d ∗ e

− − − − − & − − − +

⌋

f

5’
5’

a ∗ b ∗ c ∗ d ∗ e

Figure 3: The exemplary double-stranded strings with sticky ends.

a +
+ − −

[
b + c + d

− − & − −

]$
+ e

− −

f

5’

a
5’

b c
d

e

primer1
5’

primer2
5’

Figure 4: The exemplary double-stranded oligos with the blunt end.

4

a

+ −

[
b + c + d

− − & − −

]$
e

−

 '

⌈
b + c + d

− − & − −

⌋

f

5’

a
5’

b c d e

primer1
5’

primer2
5’

Figure 5: Another representation of the double-stranded strings before amplification.

a

+ −

[
+ b + c + d +
− − − & − − −

]35
e

−

f

5’

a
5’

b c d e

primer1
5’

primer2

Figure 6: The exemplary double-stranded oligos before 35 cloning cycles of PCR.

In Figure 1B, a sign + at the right side of b describes a sticky end of b shorter than the nearest
complementary oligo a. In Figure 1C, a sign − at the right side of b describes a sticky end of b

longer than the nearest complementary string a. In Figure1D, the same signs − at the same sides of
complementary strings a and b mean that these strings form a double stranded oligo with blunt ends.
As is seen, signs can be omitted or exchange by the pair of +. If complementary strings have a same
letter, e.g., a, then in order to distinguish them, a sign tilde (˜) is added to the one. ”Halves” of strings
are denoted by letters r (a right string part) or l (a left string part) in upper, right indices of these
strings, e.g., a = al ∗ ar.

In Figure 2 - 6, examples of notation in different cases are explained. Note that the sign + may be
additionally applied to mark a symbolic disjunction between two hybridized primers, and the sign ∗ to
denote concatenation of strings (after hybridization and ligation) and the sign − to lengthen a string,
e.g., &, of course, only in the equations, not in real experiments. Polymerase Chain Reaction (PCR)
may be used to lengthen an oligo by a length of a sticky end of a primer. A DNA oligo has its length.
In our experiments, its length will be written in an upper right index of an oligo letter, e.g., a345, and
ligated DNA strings with letters in brackets | and |, e.g., |bcd|123, |ab|67.

In Figure 4-6, PCR process description is presented. The 5’ ends of both primers are like [and]
brackets and an unknown (or not so important to be written) number of PCR cycles is defined by a
symbol $. In Figure 5, both 5’ ends of primers terminate exactly above 3’ ends of oligos a and d.
Thus, brackets [and] are just between oligo letters. Now the number of PCR cycles is equal to 35.
After PCR reaction in a vessel, there are millions of amplified molecules and very small amounts of
others. Therefore, a sign ' is also utilized in Figure 5. As is seen, oligos are amplified from 5’ end
of the primer number 1 to 5’ end of the primer number 2.

5

THE INFERENCE MECHANISMS

Knowledge representation plays an important role in inference systems (Mulawka, 1996), where the
knowledge should be formalized and structured. One of the methods that can support knowledge
structuring is known as production rules. Such rules are also referred to as IF-THEN rules. An al-
ternative designation for IF-THEN rules is that of condition-action or premise-conclusion statements.
There may be several premise statements within a single rule. Among rules we can distinguish those
ones whose conclusions are not final for the inference system. Such rules are called indirect rules. In
our approach the rules will be represented by DNA molecules, which are described in the next point.

Another part of the knowledge base constitutes facts. As a fact, we consider a statement to be
valid. The fact exists in our inference system if adequate DNA oligo representing it is included in the
knowledge base (Baum, 1995). If the premise of a rule is satisfied based on the facts and its conclusion
part has been implemented, the rule is said to fire. In traditional expert systems, the knowledge base
not only stores rules for processing knowledge and individual facts, it also includes complex objects,
their attributes, relationships between objects, and rules for deriving new knowledge from existing
knowledge, i.e., heuristics. However, in our approach the knowledge base is simplified to rules and
facts only.

The inference mechanism, in general, is a part of an expert system that draws inferences from a
knowledge base according to a fixed problem-solving method. The functions of the inference mech-
anism in classical systems include controlling the actions between the individual parts of the expert
system, determining the time for and the type of rule processing, controlling the dialogue with the
users. In simple case, the rules may be graphically represented by so-called inference networks.
These networks comprise assertions and intermediate conclusions which may be combined by logical
connectives, specifically AND or OR operators. The inference mechanism can often be made clearer
by means of the inference network.

A method used by the inference mechanism in problem solving is called inference strategy. Three
main strategies may be distinguished: forward chaining, backward chaining, and mixed chaining. For
example, in backward chaining all rules in the knowledge base leading to the hypothesis are selected,
followed by a check to determine whether applicable rules exist that can be used for satisfying the
conclusions. The same procedure is used for the conditions of these rules. On the contrary, in forward
chaining the knowledge base is searched for the rules associated with known facts and the action part
of these rules is executed until the solution is reached or no more rules can be applied.

The ordinary premise may be denoted by the symbol Sk for k ∈ {1, K} (K - a number of such
premises), and their set by S. The ordinary conclusion (always as the first premise of the next rule)
is depicted by the symbol Zl for l ∈ {1, L} (L - a number of all such conclusions), and their set by
Z. The symbol

∑
signifies hybridization, and

∏
- concatenation for Sk ∈ S and Zl ∈ Z. The rule

S1
k ∧ S2

k ∧ . . . ∧ SM
k ⇒ Zl is represented by connected oligonucleotides creating linear form:

R =<
m=M∑

m=1

Sm
k Zl| =< S1

k . . . SM
k Zl|.

6

Premises and conclusions are just DNA strings with orientation 3′ → 5′ and are connected in com-
plementary manner with their ”halves” to DNA fragments sh for h ∈ N:

R̂ =

⌈
+ sh + sh+1 . . . sh−1+M + sh+M +
S1

k + S2
k + . . . + SM

k + Zl

⌋

The premise S1
k is the first in the rule number k. The next premises are with indices m up to the

conclusion Zl at the end of the rule string. Indices of strings s are not connected with indices of
premises and conclusions. Hybridized with the help of these strings premises and conclusions can be
concatenated.

The given in the work of Mulawka et al. (1998a) method called ”modus ponens” has been applied.
Molecules representing rules create inference paths during the inference process consisting of the
following operations: hybridization, concatenation, and resulting string detection. These paths are
truth paths for hypotheses (last conclusions in the paths). Conclusions Zl of first rules become first
premises S1

k of second rules creating the complete reasoning path, which can be represented by the
sequence of DNA strings:

R1 · RW =
w=W∑

w=1

Rw = R1 + R2 + . . . + RW =< S1
k

w=W∑

w=1

{
m=Mw∑

m=2

Sm
k,w + Zl,w

}
|

∗
⇒< S1

k

w=W∏

w=1

{
m=Mw∏

m=2

Sm
k,w ∗ Zl,w

}
| =

w=W∏

w=1

Rw = R1 ∗ R2 ∗ . . . ∗ RW

where W is a number of rules in the path, and Mw - a number of premises in the rule number w.
The orientation 3′ → 5′ is denoted by signs: < and |. The sign ∗

⇒ means execution of concatenation
process. Next, premises Sk (from the second one to the last one number Mw) are basic facts known at
the beginning of inference process. If the fact has a value equal to TRUTH, than its representing string
is present in the reaction vessel. To distinguish between premises of different rules, the ordinal number
of rule Rw is written after a comma in the lower, right index of the premise: Sm

k,w, the conclusion:
Zl,w, and the complementary string: sh,w.

The truth path in the inference process from the first premise Sk,1 of the first rule to the conclusion
Zl,W of the last rule number W is described by the expression < Sk,1 · Zl,W |. Such paths has their
own orientation, because they consist of premises and conclusions or complementary to premises
and conclusions strings sh. In the last case this complementary path is described by an expression
|S̃k,1 · Z̃l,W >. This is a need to detect the whole path < Sk,1 · Zl,W | or her complementary string
|S̃k,1·Z̃l,W > in order to prove the final hypothesis Zl,W . Paths built in the process of hybridization and
concatenation from DNA molecules are detected by their length in the process of electrophoresis. If
the DNA fragments called DBFs: |Z̃p

l,wS̃l
k,1 > are added to the reaction vessel, then circular molecules

are created from the whole paths. DNA basic fragments (DBFs) connect starting premises with final
hypotheses.

The decision tree, also called the tree of intermediate rules, has one node called the root S1
k,1 and

7

the rest of its nodes Zl,w = S1
k,v for v > w has exactly one node-predecessor S1

k,w and may have
several node-successors. Nodes without successors are final nodes called leaves. The path from the
root (the starting fact) to the leaf (final fact - hypothesis) is just named the inference path.

It is the first step to synthesize DNA strings representing premises, conclusions, and DNA frag-
ments called DBFs. The algorithm of the inference process looks like this:

1. Initiation. First all synthesized DNA strings are added to the reaction vessel;

2. heat ↑; - mixing

3. heat ↓; - hybridization

4. Concatenation of hybridized DNA strings;

5. Detection of complete inference paths and checking truth of ending conlusions - hypotheses.

Premise

Conclusion

5’
5’

IF Premise THEN Conclusion

Figure 7: The indirect rule.

Rk Rk+1 Rk+2

Figure 8: The indirect rules concatenation.

IMPLEMENTATION OF EXEMPLARY INFERENCE SYSTEM BASED ON CIRCU-
LAR DNA MOLECULES

In our approach, the idea of molecular inference system has been developed. Consider rule base
comprising a set of indirect rules. All these rules, with one premise and one conclusion, are converted
to double-stranded oligos with sticky ends. One of them is depicted in Figure 7. Such a molecule is
made of three sectors. The first single-stranded one encodes a given premise, the third single-stranded
- a given conclusion and the second double-stranded sector connects both previous. Two rules can
hybridize on that condition that the conclusion sector of one rule is complementary to the premise
sector of the second rule. Sticky ends of DNA fragments anneal to each other in the way depicted in
Figure 8.

8

A

B

C D

E F G

H

root

leaf 1 leaf 2

leaf 3

R
1

R 2
R

3

R
4

R
5

R
7

R
6

Figure 9: The complete rule tree.

A set of indirect rules may be interpreted as a rule tree. Indirect rules create edges of the rule tree.
In our approach this tree is implemented with the set of representing indirect rules molecules. In
nodes of the tree, a process of indirect rules self-hybridization is performed. In Figure 9, for example,
seven rules as edges of a graph have created the complete rule tree with a root at the top and leaves at
the bottom.

In our method, the knowledge base is represented by a water solution of DNA molecules for par-
ticular indirect rules. There can be different sets of DNA fragments in a vessel. If one or more rules
are absent, then a tree is incomplete as depicted in Figure 10, where it is without edges: R2 and R6

between adequate nodes representing premises. Thus, molecules describing these edges are absent in
water solution during biochemical operations.

In order to retrieve information about fired rules, we proceed as follows. We add DBFs to our test
tube. The structure of DBF is similar to the rule structure with this exception that the first single-
stranded part is complementary to the ending conclusion represented by a given leaf of the decision
tree and the second single-stranded part to the first rule - the tree root. So each of the DBFs can
hybridize like any rule, but only with the root and the leaves. In such a way after their hybridization,
the DBFs change a complete inference paths into circular DNA strings as shown in Figure 11. There
is also a possible detection of ending conclusions with DNA chips.

9

A

B

C D

E F G

H

root

leaf 1 leaf 2

leaf 3

R
1

R
3

R
4

R
5

R
7

Figure 10: The incomplete rule tree.

In our case as initial facts, we prepare water solution with a complete set of the DBFs, which
anneal to particular leaves. The inference mechanism depends on these fragments. Representing
rules, molecules are added to our test tube solution. As a result circular molecules can be formed.
Thus, for M leaves M circular molecules may be created. If they are detected with use of PCR and
primers, some inference is acknowledged. As explained in Figure 11, the primer number 3 can be
used to detect an adequate leaf conclusion.

To get more familiar with our approach the simplified inference system has been constructed and
tested. As an example, consider a small inference system composed of three rules, which can be
written as follows:

R1: A =¿ B
R2: B =¿ C
R3: B =¿ D

Next, the set of proper molecules was prepared as depicted in Figure 12. This set may be rep-
resented by the graph as is provided in Figure 13, where respective links between nodes are imple-
mented with DNA molecules. Complete sequences of the DBFs and their primers with places for

10

leaf

root

rules from root to leaf

5’

5’

Primer1

Primer2

Primer3

Figure 11: The circular molecule created from rules and one DBF.

A
B

5’
5’

TGGCGAATGGCTAGGTACGCCC5’ 3’
ATTACCGCTTACCGATCCATGC3’ 5’

B
C

5’
5’

AGTCCTGGTATGCGTCAACTTC5’ 3’
GGGTCAGGACCATACGCAGTTG3’ 5’

B
D

5’
5’

AGTCCTGGTATGCGTCAACTGC5’ 3’
GGGTCAGGACCATACGCAGTTG3’ 5’

C
A

5’
5’

CGGCTGG~~~~AAATGCCTTAA5’ 3’
AAGGCCGACC~~~~TTTACGGA3’ 5’

D
A

5’
5’

CGGCTGG~~~~AAATGCCTTAA5’ 3’
ACGGCCGACC~~~~TTTACGGA3’ 5’

Figure 12: Molecular rules: R1, R2, R3, Molecular bases: B1, B2 (from top to bottom) and their
sequences (aside).

11

A

B

CD

A
B

5’
5’

B

C

5’

5’D

B

5’

5’

D

A

5’

5’
A

C

5’

5’

Figure 13: The graph of DNA inference system.

GTCAGACCAAGTTTACTCATA5’ 3’

CTCCAGATTTATCAGCAATA5’ 3’

DBFs: B2 or B1

Primer 2

Primer 1

CGGCTGGCTGGTTTATTGCTGATAAATCTG5’ 3’
ACG or AAGGCCGACCGACCAAataacgactatttagac3’ 5’

GAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACT5’ 3’
ctcGGCCACTCGCACCCAGAGCGCCATAGTAACGTCGTGA3’ 5’

GGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTAC5’ 3’
CCCCGGTCTACCATTCGGGAGGGCATAGCATCAATAGATG3’ 5’

ACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGAC5’ 3’
TGCTGCCCCTCAGTCCGTTGATACCTACTTGCTTTATCTG3’ 5’

AGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA5’ 3’
TCTAGCGACTCTATCCACGGAGTGACTAATTCGTAACCAT3’ 5’

ACTgtcagaccaagtttactcataTATACTTTAGATTGAT5’ 3’
TGACAGTCTGGTTCAAATGAGTATATATGAAATCTAACTA3’ 5’

TTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGA5’ 3’
AATTTTGAAGTAAAAATTAAATTTTCCTAGATCCACTTCT3’ 5’

TCCTTTTTGATAATCTCATGACCAAAATGCCTTAA5’ 3’
AGGAAAAACTATTAGAGTACTGGTTTTACGGA3’ 5’

Figure 14: Primers for DBFs: primer1, primer2, DBFs: B1, B2 (from top to bottom).

12

GAAAACTGCCGTTAAGGCATTTTGGTCATG5’ 3’

CTCGGCCCTTCCGGCTGGC5’ 3’

CTCGGCCCTGCCGGCTGGCTGGTT5’ 3’

Primpbr 1

Primpbr 2

Primpbr 3

Figure 15: Primers for pBR322: primpbr1, primpbr2, primpbr3.

these primers, marked with small letters in the DBF code, are depicted in Figure 14. The sequences
of our DBFs in Figure 12 are not complete. Their two variants were obtained by PCR amplification
of pBR322 plasmid using primers, which sequences are shown in Figure 15. Sticky ends of the DBFs
were obtained after digestion with the enzyme BglI.

Plasmids usually transport genes into a host cell, but this ability will be used in the future ex-
periments. Circular molecules were multiplied with PCR and adequate primers as depicted in Fig-
ure 16 and 17. Two complete circular inference paths are shown there.

EXPERIMENTAL VERIFICATION

To verify the concept of simplified universal molecular reasoning engine some experiments were
performed (Ausubel & Struhl, 1995; Sambrook et al., 1989). We constructed two double-stranded
DNA fragments representing the DBFs B1 and B2. They are 305 base pairs long and they have 3
nucleotide sticky ends. One of the sticky ends is the same for B1 and B2: TAA. The second sticky end
for B1 is GAA and for B2 is GCA. In fact, this is the only difference between fragments representing
the DBFs. In addition primers Primer1 and Primer2 are complementary to some parts of these
fragments. These primers are used in the PCR reaction that is used to amplify the amount of correctly
formed circular oligos representing complete paths.

The interpretation of our computation is as follows: given fact A (represented by the TAA sticky
end of B1 or B2) and a set of rules R (represented by short double-stranded DNA fragments with
three nucleotide sticky ends at both sides) we can derive conclusion C or D (represented by the
second sticky end of B1 or B2). In our small knowledge base there are only three rules described in
Figure 12-13.

The computation consists of several steps:

• Preparation of fragments representing rules. Fragments representing rules were annealed (37oC
for 5 minutes) and phosphorylated by T4 polinucleotide kinase. Reactions were performed
according to manufacturer recommendation written by Sambrook et al. (1989).

• Annealing. Correct circles are formed when B1, R1, R2 or B2, R1, R3 are present during
annealing step. We call these test tubes B1+ and B2+, respectively. To check that our imple-

13

C

B

A

5’

5’

Primer1

Primer2

Primer3

Figure 16: The circular DNA inference path A ⇒ B ⇒ C ⇒ A.

D

B

A

5’

5’

Primer1

Primer2

Primer3

Figure 17: The circular DNA inference path A ⇒ B ⇒ D ⇒ A.

14

M B1 B2 M B1+ B2+

-20bp

-

-189bp

Figure 18: DNA electrophoretogram of the first experiment: M - marker lane, B - experiment lane,
ligation 24h in room temperature, PCR - 25 cycles.

mentation of reasoning engine works fine, we make 4 test tubes that should not form correct
circles. We call them: B1 (B1 only), B2 (B2 only), B1− (B1, R1, and R3) and B2− (B2, R1,
and R2). In the annealing step, we mix fragments that represent appropriate rules and the DBFs
in test tubes and let the annealing reaction occur for 5 minutes in 37oC.

• Ligation. Process of ligation was performed in different conditions and for several time periods.
Our goal was to determine perfect ligation conditions in which circles would be created only
for test tubes B1+ and B2+. Results of some experiments are shown in Figure 18, 19, and 20.
In all experiments, 1 Weiss unit of T4 DNA ligase was added to the test tubes. Ligation time
varied from 1h to 24h. Ligation temperature was 37oC or just room temperature.

• PCR. After renaturation (2 minutes in 95oC), 2 units Taq DNA polymerase were added to each
test tube. After that PCR was performed. Number of cycles was different in each experiment.
After 18, 21, 24, or 25 cycles the test tubes were kept for 30 seconds in 25oC.

• Electrophoresis and identification of the solution. PCR products were resolved in 6% acrylamid
gel. Correct strings are 189 base pair long. The identification of such a fragment in proper
lanes was possible because standard marker was also added. In most of the experiments correct
circles were observed in tubes B1+ and B2+. The number of correct circles observed in other
test tubes was much smaller (or there were none) (see Figures 18, 19, and 20).

In Figure 18, 19, and 20, the correct string size is equal to 189bp. It is seen in Figure 18 that
after 24h ligation and 25 cycles of PCR in the lanes, B1+ and B2+ are strong 189bp bands, but DBFs
sometimes anneal with themselves creating bands below those correct ones. In addition, 20bp and
21bp oligos were detected. They represent primers not used during PCR reaction. In the lanes B1

and B2 oligos corresponding to the correct product were not detected. This fact agrees with our
expectations. In the later experiments, shown in Figure 19 after 1h ligation, 21 cycles worse correct

15

M B1+B1−B2+ B2− M B1+ B1− B2+ B2−

-20bp

-

-189bp

Figure 19: DNA electrophoretogram of the second experiment: M - marker lane, B - experiment
lane, ligation 1h in room temperature, 21 cycles of PCR in four first exper. lanes, 24 cycles of PCR
in four last exper. lanes.

bands were obtained (with stronger wrong ones). In the lanes B1− and B2− other rules are inserted
in the place of the correct ones, e.g., in the B1− lane - R1, R3, B1 DNA fragments are used and in
the B2− lane - R1, R2, B2 DNA fragments are used. In Figure 20, after 1h ligation and 24 cycles of
PCR there was no improvement, but after 24 cycles there was a slight improvement in comparison
with previous experiment. In general, B2 lanes are better and this is caused by different sticky ends
of DBFs.

Thus, it is quite sure that in spite of short ligation, good correct bands can be obtained. Mismatches
in hybridization can be avoided by better design of oligos sequences and by carefully chosen, more
expensive, better quality products. Analysis of the results of experiments leads to conclusion that the
best ligation conditions are: 1h in room temperature. The number of cycles should be between 19 and
21 (however, more tests are needed to determine better conditions).

OPPORTUNITIES OF FURTHER INFERENCE SYSTEM DEVELOPMENT

In this point the idea first mentioned in work of Mulawka et al. (1998a), and modified in the previous
points, is developed and extended. Our objective is to construct a special DNA molecule representing
the rule with several premises, which may be conclusions of other rules. So far, every rule is permitted
to have only one premise, which might also be the another rule conclusion. This has been the first
premise in each rule. In the proposed below molecule, it is possible for the rule to have several such
premises.

The ordinary premise is denoted by the symbol Sk for k ∈ {1, K} (K - a number of such premises),
and their set by S. The ordinary conclusion (always as the first premise of the next rule) is depicted by
the symbol Zl for l ∈ {1, L} (L - a number of all such conclusions), and their set by Z. The new type
conclusion (and also the premise) is described by Yn for n ∈ {1, N} (N - a number of all modified

16

M B1+ B1− B2+ B2− M B1+B1− B2+B2−

-20bp

-

-189bp

Figure 20: DNA electrophoretogram of the third experiment: M - marker lane, B - experiment lane,
ligation 2h in room temperature, 21 cycles of PCR in four first exper. lanes, 24 cycles of PCR in four
last exper. lanes.

conclusions), and their set by Y. The rule is represented by connected oligonucleotides, which may
be written:

R =<
m=M∑

m=1

P m
j Xi| =< P 1

j . . . P M
j Xi|

where P 1
j ∧ P 2

j ∧ . . . ∧ P M
j ⇒ Xi; the symbol

∑
depicts hybridization, and after it concatenation

for m ∈ {1, M}, where M is a number of rule premises, and i ∈ {1, L + N}, j ∈ {1, K + N};
P ∈ S ∪ Y is a set of all possible premises, and X ∈ Z ∪ Y is a set of all possible conclusions.

As is seen, premises and conclusions are DNA strings with orientation 3′ → 5′ and are connected
by complementary to their ”halves” DNA fragments denoted by sh for h ∈ N:

R̂ =

⌈
+ sh + sh+1 . . . sh−1+M + sh+M +
P 1

j + P 2
j + . . . + P M

j + Xi

⌋

The first premise P 1
j , and further premises with indices m, can be distinguished up to the final hypoth-

esis at the end Xi. Indices of s strings are not connected with indices of premises and conclusions.
Hybridized by them, premises and conclusions may be concatenated.

The added premise, Yn = Y(n), and the rule Rt changes the structure of inference path:

17

R1 · RW =

+ sh,1 . . . + sg,u + sg+1,u . . . + sh+MW ,W +

S
1

k,1 + . . . S
g

k,u
+ Y r

(n) + . . . S
MW

k,W
+ Zl,W

Rt =

+ sh,t + . . . + sh+Mt,t

(n)

|

S
1

k,t
+ S

2

k,t
. . . S

Mt

k,t
+ +

where for h, t ∈ N, h < g < h + MW , w ∈ {1, W}, before inserting Y(n) in the place of the premise
S

g+1
k,u the inference path could be denoted by:

R1 · RW =
w=W∑

w=1

Rw =< S1
k

w=W∑

w=1

{
m=Mw∑

m=2

Sm
k,w + Zl,w

}
|.

The sequence of symbols < +−−(n)| represents the left part of the DNA string Y(n) = Y l
(n)∗Y r

(n) =<

+−−(n)|∗ < Y r
(n)|, which as the conclusion connects its left part with the rule Rt, and as the premise

- its right part with the rule Ru. Its left part is turn up with ++, and is finished by an index (n) of
the premise Y(n) in the following way: (n)

| showing the firm connection between them. Thus, after
hybridization two rules Rt and Ru are connected by one premise Y(n). The concatenation process
reveals no connection between the premise strings S

g
k,u and Y(n):

R1 · RW =

+ sh,1 . . . ∗ sg,u ∗ sg+1,u . . . ∗ sh+MW ,W +

S
1

k,1
∗ . . . S

g

k,u
+ Y r

(n)
∗ . . . S

MW

k,W
∗ Zl,W

Rt =

+ sh,t ∗ . . . ∗ sh+Mt,t

(n)

|

S
1

k,t
∗ S

t

k,t
. . . S

Mt

k,t
∗ +

Note that in the system of w + 1 rules, two inference paths |S̃1
k,1 · Z̃l,W > and < S1

k,t · Zl,W | are

created and two other < S1
k,1 · Zl,W | and |S̃1

k,t · Z̃l,W > are not created on the whole. The truth of the

conclusion Zl,W from the rule RW depends on the integrity of the inference path |S̃1
k,1 · Z̃l,W > and

on the truth of the premise Y(n) from the rule Ru. This premise is also a conclusion of the rule Rt.
The truth of the conclusion Y(n) depends on the integrity of the inference path < S1

k,t · Y(n)|, which is
the left part of the path < S1

k,t · Zl,W |. Thus, the truth of the final conclusion (hypothesis) Zl,W after

inserting Y(n) depends on the integrity of the inference path |S̃1
k,1 · Z̃l,W > and on the integrity of the

path < S1
k,t · Y(n)|, and in the consequence on the integrity of the inference path < S1

k,t · Zl,W |.
In order to insert a next premise Y(n+1), for example, in the place of the premise S2

k,1, the integrity

of the inference path < S1
k,1 · Zl,W | should be assured (of course, the path |S̃1

k,1 · Z̃l,W > has to be
concatenated, too), what is described in the following expression:

18

R1 · RW =

+ sh,1 . . . + sg,u + sg+1,u . . . + sh+MW ,W +

S
1

k,1
+ . . . S

g

k,u
+ T(n) + . . . S

MW

k,W
+ Zl,W

and concatenation is denoted by:

R1 · RW =

+ sh,1 . . . ∗ sg,u ∗ sg+1,u . . . ∗ sh+MW ,W +

S
1

k,1 ∗ . . . S
g

k,u
∗ T(n) ∗ . . . S

MW

k,W
∗ Zl,W

As is seen in order to obtain the mentioned integrity, the DNA string T(n) =< Y r
(n)| with the length

of the ordinary fact Sk together with the premise Y(n) is added to the reaction vessel. This enables
concatenation of the mentioned path and after it insertion of the new type premise Y(n+1) before the
DNA string T(n), which has been put in the place of the DNA fragment Y(n). Now in the place of the
premise S2

k,1 the premise Y(n+1) can be inserted and detected as in the case of the premise Y(n).
Next, in order to insert the new type premise Y(n+1), for example, in the place of the premise SMW

k,W ,

the integrity of the inference path |S̃1
k,t · Z̃l,W > should be assured (of course, the path < S1

k,t · Zl,W |

has to be concatenated, too). Thus, together with the premise Y(n), the string T̃(n) is added. The latter
oligonucleotide length enables concatenation of the mentioned path and inserting of the new type
premise Y(n+1) after the premise Y(n). Hybridization of premises with the string T̃(n) looks like this:

Rt + R
r

W
=

+ sh,t . . . + sh+Mt,t T̃(n) sg+1,u . . . + sh+MW ,W +

S
1

k,t
+ . . . S

Mt

k,t
+ Y(n) + . . . S

MW

k,W
+ Zl,W

and concatenation is denoted by:

Rt ∗ R
r

W
=

+ sh,t . . . ∗ sh+Mt,t T̃(n) sg+1,u . . . ∗ sh+MW ,W +

S
1

k,t
∗ . . . S

Mt

k,t
∗ Y(n) ∗ . . . S

MW

k,W
∗ Zl,W

Now in the place of the premise S
MW

k,W , the premise Y(n+1) can be inserted and detected as in the case
of the premise Y(n).

Thus, with every premise Y(n), strings T(n) and T̃(n) are added to the reaction vessel and they may
create the following, double-stranded DNA molecule:

⌈
T̃(n) +
− T(n)

⌋
=

⌈
T̃(n)

T(n) +

⌋
.

These strings enable self-assembling of inference paths (from any starting premise to conclusions) to
assure their integrity. The detection of the truth of the hypotheses can be done now.

The decision tree changes now to the decision graph, because it has several starting premises
called roots Ki = S1

k,1 and each its node Zl,w = S1
k,v for v 6= w can have several predecessors

S1
k,w, S1

k,w−1, . . . and can have several successors. Nodes without successors are final nodes called
leaves and represent hypotheses.

19

⌈
+ s1 + s2

A + Cr
(1)

+

⌋
,

⌈
sr
2 +

⌋
=

⌈
D̃

⌋

⌈
+ s3

(1)

|

B + +

⌋

5’

A C

B

3’

D̃l

3’ 5’

3’
5’

Figure 21: The rule representation with two premises A, C (B ⇒ C) and one conclusion D.

In order to explain our new method, we present exemplary inference systems consisted of DNA
molecules given in Figure 21-24. It is very important to remember that the upper oligos 5′ → 3′

represent hybridized or concatenated, complementary to premises and conclusions strings s and the
lower oligos 3′ → 5′ - these premises and conclusions. In Figure 21, the represented rule consists
from the premises A, C and the conclusion D. The premise C is the conclusion of another rule
B ⇒ C. DNA fragments s hybridizing to premises and conclusions create adequate structures.

⌈
+ s1 + s2 + s4

A + Cr
(1)

+ D +

⌋
,

⌈
sr
4 +

⌋
=

⌈
Ẽ

⌋

⌈
+ s3

(1)

|

B + +

⌋

5’

A C

B

D Ẽl

3’
3’ 5’

3’
5’

Figure 22: Hybridized two rules A ∧ C ∧ D ⇒ E and B ⇒ C.

It is obvious that one inference system implementation may have several logical descriptions. Each
of them is with different set of rules. The system in Figure 22 can be described in several ways:

20

A ∧ C ∧ D ⇒ E, B ⇒ C

A ∧ C ⇒ D, D ⇒ E, B ⇒ C

In order to assure the correct inference process, the conclusion C has to be true (it is the premise of
another rule, so checking the truth of its premises is very necessary).

⌈
+ s5 + s1 + s2 + s4 + B1;2

K1 + A + Cr
(1) + D + E +

⌋
,

⌈
Br

1;2

⌋
=

⌈
K̃ l

1;2

⌋

⌈
+ s6 + s3

(1)

|

K2 + B + +

⌋

5’
3’

K1 A C

B

K2

3’

D L = E K̃ l
1;2

5’

3’
5’

Figure 23: The decision graph with the joint in the place of the premise C from Figure 22 creating
two roots K1 i K2.

To demonstrate the inference process, consider the following example. Let the proposed inference
system consist of four rules and two DNA fragments DBFs written below:

R1 : A ∧ C ∧ D ⇒ E

R2 : B ⇒ C

R3 : K1 ⇒ A

R4 : K2 ⇒ B

B1 : Ẽr ∗ K̃ l
1

B2 : Ẽr ∗ K̃ l
2

The rule R1 represented in Figure 22 has three premises A, C, and D, and the second premise is
the conclusion of second rule R2. After hybridizing of these two rules and ligation the upper oligos
5′ → 3′ of the first rule and the lower oligos 3′ → 5′ of the second rule are concatenated. Detection
of these two oligo paths proves the truth of the first rule conclusion. In the decision graph during
detection only one new type conclusion can exist (in order to insert another new type conclusion it
is necessary to insert in the place of the previous new type conclusion special fragments T(1) or T̃(1),
which assure integrity of the truth paths), as is depicted in Figure 23. In the case of the root K1

21

detection with the help of the DNA string B1 and creation of the circular, inference molecule, the
upper oligos 5′ → 3′ are completely concatenated. Their path can be amplified and detected. Alike
in the case of the root K2 detection with the help of the DNA string B2 and creation of the circular,
inference molecule the lower oligos 3′ → 5′ are completely concatenated. Their path can be amplified
and detected. Of course, in order to check the truth of the conclusion C, the detection of the root K1

⌈
+ s6 + s3 T̃1 s2 + s4 + B2;3

K2 + B + C (1) + Dr
(2)

+ E +

⌋
,

⌈
B

p
2;3

⌋
=

⌈
K̃ l

2;3

⌋

⌈
+ s8 + s7

(2)

|

K3 + F + +

⌋

5’
3’

K2 B C

T̃1

F

K3

3’

D L = E K̃ l
2;3

5’

3’
5’

Figure 24: The decision graph with the joint in the place of the premise D from Figure 23 creating
two roots K2 i K3.

has to be proceeded after the detection of the root K2, because the truth path from K1 to E depends
on the integrity of the truth path from K2 to C.

If the next new type conclusion is inserted (together with the whole truth path from the root K3

with rules K3 ⇒ F and F ⇒ D) in the place of the ordinary premise D, the branch with the root K1

should be removed and replaced by DNA string T̃1, as is depicted in Figure 24. Changes are denoted
by the following actions: in the symbol of the premise C the expression (1) is moved from the lower
index to the upper index; then to the new type conclusion D lower index the expression (2) is added.
During detection it is easy to distinguish the complete, circular inference paths from roots Ki to DNA
strings DBF denoted by the symbol Bn, which right ”halves” are complementary to some roots K

and which left ”halves” are complementary to some leaves L. Of course, like in the previous case the
truth of the conclusion C, now the truth of the conclusion D depends on the integrity of the inference
path from K3 to L, and the truth of the inference path from K2 to L depends on the truth of the
conclusion D. Thus, the integrity of the main inference path from K1 to L depends on the integrity of
the inference path from K2 to L and in the consequence, on the integrity of the inference path from
K3 to L. In this way, next new type premise-conclusions can be added to the inference system.

22

Complete inference paths can be created after adding to the reaction vessel all necessary premises,
conclusions, and complementary to them DNA strings si, and DNA strings Y(n) together with ad-
equate DNA strings T̃n, Tn assuring integrity of the truth paths. During chemical reactions, correct
conclusion premise joints are formed. After involving of n new type conclusions in the reaction, n+1
circular truth paths should be created.

The mentioned inference system with three roots Ki for i ∈ 1, 2, 3 would consist of six rules and
three DBF strings.

R1 : A ∧ C ∧ D ⇒ E

R2 : B ⇒ C

R3 : F ⇒ D

R4 : K1 ⇒ A

R5 : K2 ⇒ B

R6 : K3 ⇒ F

B1 : Ẽr ∗ K̃ l
1

B2 : Ẽr ∗ K̃ l
2

B3 : Ẽr ∗ K̃ l
3

It should be noted that in the system provided there may be more leaves (final conclusions-hypotheses),
because from one premise we can have several conclusions. In this case dependencies would be de-
noted by several additional DNA strings representing rules, DBF fragments for each pair root-leaf
Ki − Lj , and primers for amplification.

CONCLUSIONS

In this paper, novel approach to implementation of inference engine based on molecular comput-
ing paradigm has been discussed. It has been shown how knowledge can be structured, and stored
by means of DNA circular molecules to implement an inference engine. Such a system can store
knowledge for a narrowly defined subject area and solve problems by making logical deductions. The
inference mechanism performs these tasks by manipulating on DNA circular molecules. It provides
the problem-solving methods by which the rules are processed. The inference algorithm is simple.
Standard genetic engineering DNA techniques such as annealing, ligation, and electrophoresis are
required. Several experiments have been conducted to assess the performance of inference engine
realized by biochemical reactions. The results of these experiments indicate interesting feature of the
method. By using circular fragments derived from plasmids, the drawn inferences can be ”read” after
the experiments with higher precision and efficiency. To achieve reliable performance, some param-
eters of reactions - temperatures, concentrations of oligos, times of reactions, etc. (Langohr, 1997;
Lipton et al., 1996; Roweis & Winfree, 1999) have been experimentally tested. Our results show that
molecular approach has a potential value for building the inference engine.

This approach reveals a number of advantages over traditional electronic machine. Self-assembling
of molecules mimics the properties of associative memory (Jonoska et al., 1998; Winfree, 1998). This
technique has the potential value to analyse large knowledge bases, thereby in principle, paves the way

23

to new methods of programming in logic (Mihalache, 1997). Thus, molecular inference engine seems
to be a good choice for implementation of an expert system with a huge knowledge base in the parallel
hardware where both data retrieval and inference process would be relatively fast.

In future experiments, plasmids with inference paths can be multiplied in bacteria cells after trans-
formation into these cells. More sophisticated inference systems with rules having several premises
and conclusions should be developed and improved.

ACKNOWLEDGMENTS

This work was supported by the Polish State Committee for Scientific Research, through the KBN
grant number 8T11F00816. This article was processed with the LATEX 2ε macros package.

BIBLIOGRAPHY

Adleman, L.M. 1994. Molecular computation of solutions to combinatorial problems. Science
266:1021-1024.

Adleman, L.M., P.W.K. Rothemund, S. Roweis, and E. Winfree. 1999. On applying molecular
computation to the data encryption standard. Journal of Computational Biology 6(1):53-63.

Amos M.. 1997. DNA Computation. Ph.D. Thesis, Department of Computer Science, University of
Warwick UK.

Amos M., and P.E. Dunne. 1997. DNA Simulation of Boolean Circuits. Technical Report CTAG-
97009, Department of Computer Science, University of Liverpool, UK.

Ashoori R.C. 1996. Electrons in Artificial Atoms. Nature 379:413-417.
Ausubel F., and K. Struhl. 1995. Short Protocols in Molecular Biology. A Compendium of Methods

from Current Protocols in Molecular Biology, 3rd Ed. New York: John Wiley & Sons.
Baum E.B. 1995. Building an associative memory vastly larger than the brain. Science 268:583-585.
Baum E.B. 1996. Will Future Computers Be Made of DNA, Windows Mag., 6,

http://www.winweb.winmag.com/
Beth T. 1997. Quantum computers - A new concept in nanoelectronics. In Proc. ECCTD’97,

Budapest 271.
Biswas N.N. 1993. Logic Design Theory. Prentice-Hall Int. Editions, New York.
Collier C.P., E.W. Wong, M. Belohradsky, F.M. Raymo, J.F. Stoddart, P.J. Kuekues, R.S Williams, and

J.R. Heath. 1999. Electronically Configurable Molecular-Based Logic Gates. Science 285:391-393.
Csuhaj-Varjú E., L. Kari, G. Pun. 1996. Test tube distributed systems based on splicing. Computers

and AI 15(2-3):211–232.
Dassen R. 1999. A Bibliography of Molecular Computation and Splicing Systems, http://-

liinwww.ira.uka.de/bibliography/Misc/dna.html
Freund R., G. Pun, G. Rozenberg, and A. Salomaa. 1997. Watson-Crick Finite Automata. In Proc. of

the Third DIMACS Workshop on DNA-based Computers, Philadephia, PA, 305-317.
Gehani A., and J. Reif. 1998. Micro Flow Bio-Molecular Computation. In Proc. of the Fourth

DIMACS Workshop on DNA-based Computers, Pennsylvania, USA, 253-266.
Goldberg D.E.. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Reading,

MA: Addison-Wesley.

24

Gupta V., S. Parthasarathy, and M. Zaki. 1997. Arithmetic and Logic Operations with DNA. In Proc.
of the Third DIMACS Workshop on DNA-based computers, Philadelphia, PA, 212-220.

Head T. 1987. Formal language theory and DNA: an analysis of the generative capacity of recombi-
nant behaviors. In Bulletin of Mathematical Biology 49:737-759.

Head T., G. Pun, and D. Pixton. 1997. Language theory and molecular genetics. Generative mecha-
nisms suggested by DNA recombination In Handbook of Formal Languages, eds. G. Rozenberg,
and A. Salomaa. Heilderberg: Springer-Verlag.

Heath J.R., P.J. Kuekes, G.S. Snider, and R.S. Williams. 1999. A Defect-Tolerant Computer
Architecture: Opportunities for Nanotechnology. Science 280:1716-1721.

Hill F.J., and G.P Peterson. 1974. Switching Theory and Logical Design. New York: Wiley.
Jagielska A., L.Z. Stolarczyk, and L. Piela. 1998. Mnemon - a Hypothetical Molecule with Bistable

Electronic Ground State. In Proc. of the Int. Conf. on Rough Sets and Current Trends in Computing
- Spec. Session on DNA Comp., Warszawa, 6-16.

Jonoska N., S.A. Karl, and M. Saito. 1998. Three Dimensional DNA Structures in Computing.
In Proc. of the Fourth DIMACS Workshop on DNA-based Computers, Pennsylvania, USA, 189-200.

Kolata G.. 1995. A Vat of DNA May Become the Fast Computer of the Future. In New York Times.
Koza J.R.. 1992. Genetic Programming. MIT Press, Cambridge, MA.
Langohr K.. 1997. Sources of Error in DNA Computation. University of Western Ontario.
Leete T., J. Klein, and H. Rubin. 1997. Bit operations using a DNA template. In Proc. of the Third

DIMACS Workshop on DNA-based Computers, Philadephia, PA, 159–166.
Li Z. 1998. Algebraic properties of DNA operations. In Proc. of the Fourth DIMACS Workshop on

DNA-based Computers, PA, 57-70.
Lipton R.J. 1995. DNA Solution of Hard Computational Problems. Science 268:542–545.
Lipton R., D. Boneh, C. Dunworth. 1996. Making DNA Computers Error Resistant. Princeton:

Princeton University Press.
Liu Q., A. Frutos, L. Wang, A.J. Thiel, S.D. Gillmor, T. Strother, A.E. Condon, R.M. Corn,

M.G. Lagally, and L.M. Smith. 1998. Progress Toward Demonstration of a Surface Based DNA
Computation: a One Word Approach to Solve a Model Satisfiability Problem. In Proc. of the
Fourth DIMACS Workshop on DNA-based Computers, Pennsylvania, USA, 15-25.

Malone M.S. 1995. Beyond semiconductors. In The Microprocessor: A Biography. New York:
Springer-Verlag.

McCaskill J.S. 1997. Open Flow Microreactors. Tech. Report, IMB Company, Jena, Germany.
McCaskill J.S., T. Maeke, U. Gemm, L. Schulte, and U. Tangen. 1997. NGEN: A massively parallel

reconfigurable computer for biological simulation: towards a self-organizing computer. Lecture
Notes Comp. Sci. 1259:260-276.

Mihalache V. 1997. Prolog approach to dna computing. In Proc. of the IEEE International Con-
ference on Evolutionary Computation (ICEC97), Special Session on DNA-based Computation,
Indianapolis, IA.

Montemerlo M.S., J.C. Love, G.J. Opiteck, D. Goldhaber-Gordon, and Ellenbogen. 1996. Technolo-
gies and Designs for Electronic Nanocomputers. Mitre, McLean, VA.

Montemerlo M.S., J.C. Love, G.J. Opiteck, D. Goldhaber-Gordon, and Ellenbogen. 1997. Overview
of Nanoelectronic Devices. In Proc. IEEE 85/4:521-540.

Mulawka J.J. 1996. Expert Systems (in Polish). Warsaw: Wydawnictwa Naukowo-Techniczne
(WNT).

25

Mulawka J.J. 1997. Molecular Computing Promise for New Generation of Computers. In Proc. of
the Polish-Czech-Hungarian Workshop on Circuit Theory, Signal Processing and Applications,
Budapest, 94-99.

Mulawka J.J., P. Borsuk, and P. Wȩgleński. 1998. Implementation of the Inference Engine Based on
Molecular Computing Technique. In Proc. IEEE Int. Conf. Evolutionary Computation (ICEC’98),
Anchorage, AL, 493-498.

Mulawka J.J., and M.J. Oćwieja. 1998b. Molecular Inference via Unidirectional Chemical Reactions.
In Proc. of II Inter. Conf. on Evolvable Systems (ICES’98), Lausanna, Switzerland, 372–379.

Mulawka J.J., T. Janczak, P. Borsuk, and P. Wȩgleński. 1998. Reasoning via DNA Based Decision
Trees. In Proc. of First Inter. Conf. on Rough Sets and Current Trends in Computing (RSCTC’98),
Warsaw, 17-26.

Mulawka J.J., P. Wa̧siewicz, and A. Płucienniczak. 1998. Logical Operations with DNA Strands. In
Proc. of the Int. Conf. on Rough Sets and Current Trends in Computing - Spec. Session on DNA
Comp., Warsaw, Poland, 27-36.

Mulawka J.J., and P. Wa̧siewicz. 1998. Molecular Computing - New challenge of information
technology (in Polish). Informatyka Polish Journal 7/8:36-39.

Mulawka J.J., P. Wa̧siewicz, and A.P. Płucienniczak. 1999a. Another Logical Molecular NAND Gate
System. In Proc. of the 7th Int. Conf. on Microelectronics for Neural, Fuzzy, and Bio-Inspired
Systems (MicroNeuro’99), Granada, Spain, 340-345.

Mulawka J.J., P. Wa̧siewicz, and K. Piȩtak. 1999. Virus-enhanced genetic algorithms inspired by
DNA computing. Lecture Notes Art. Int. - Subseries LNCS 1609:527-537.

Mulawka J.J., T. Janczak, A. Malinowski, and R. Nowak. 1999. DNA computing - Promise for
information processing. Universitatis Jagellonicae Acta Informaticae, Krakow.

Mulawka J.J., and R. Nowak. 1999. Molecular Implementation of Logical Operations via Elec-
trophoretical methods. In Proc. Nat. Conf. On Evol. Algorithms and Global Optimization, Potok
Zloty.

Murphy R.C., R. Deaton, D.R. Franceschetti, S.E. Stevens, and M. Garzon. 1997. A new algorithm
for DNA based computation. In Proc. IEEE Int. Conf. Evolutionary Computation (ICEC’97),
Indianapolis, IN, 207–212.

Ogihara M., and A. Ray. 1996. Simulating Boolean Circuits On a DNA Computer. TR 631, University
of Rochester, Computer Science Department, NY.

Ogihara M., and A. Ray. 1998. The Minimum DNA Computation Model and Its Computational
Power. TR 672, University of Rochester, NY.

Pun G., G. Rozenberg, A. Salomaa. 1998. DNA Computing - New Computing Paradigms. Berlin,
Heidelberg: Springer-Verlag.

Pederson K. 1989. Expert System Programming. New York: Wiley.
Pisanti N. 1997. A survey on DNA computing. Technical Report TR-97-07, University di Pisa, Pisa

Italy.
Rooß D., and K.W. Wagner. 1995,1996.On the power of DNA-computers. Technical reports, Univer-

sity of Wurzburg, Germany.
Roweis S., E. Winfree, R. Burgoyne, N. Chelyapov, M. Goodman, P. Rothemund, and L.M.

Adleman. 1998. A Sticker-Based Model for DNA Computation. Journal of Computational Biology
5(4):615-629.

26

Roweis S., and E. Winfree. 1999. On the reduction of errors in DNA computation. Journal of
Computational Biology 6(1):65-75.

Sakamoto K., D. Kiga, K. Komiya, H. Gouzu, S. Yokoyama, S. Ikeda, H. Sugiyama, and M. Hagiya.
1998. State Transitions by Molecules. In Proc. of the Fourth DIMACS Workshop on DNA-based
Computers, Pennsylvania, USA, 87-100.

Sambrook J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning. A Laboratory Manual., 2nd
Ed. Cold Spring Harbor Laboratory Press, New York.

Stańczak J.T., and J.J. Mulawka. 1999. Evolutionary Algorithms with an Improved Selection of Indi-
viduals. In Proc. of Int. Processing and Manufacturing of Materials, July 11-15, Honolulu, Hawaii.

Wa̧siewicz P., J.J. Mulawka, and B. Verma. 1997. Global Optimization and Genetic Methods. In Proc.
of the 1st Int. Conf. on Computational Intelligence and Multimedia Applications (ICCIMA-97),
Gold Coast, Australia, February 10-12, 30-36.

Wa̧siewicz P., and J.J. Mulawka. 1997. Genetic Programming in Optimization of Algorithms. In
Proc. of the 5th Fuzzy Days International Conference on Computational Intelligence, Dortmund,
Germany, April 28-30, 581-582.

Wa̧siewicz P., and G. Klebus. 1997. Genetic Programming Approach to CMAC Parameters Tuning.
In Proc. of he Third Conference on Evolutionary Computation (Evolution Artificielle 97), Nimes,
France, October 22-24, 287–296.

Wa̧siewicz P., P. Borsuk, J.J. Mulawka, and P. Wȩgleński. 1999. Implementation of Data Flow
Logical Operations via Self-Assembly of DNA. Lect. Not. Comp. Sci. 1586:174–182.

Wa̧siewicz P., T. Janczak, J.J. Mulawka, and A. Płucienniczak. 1999. The Inference Via DNA
Computing. In Proc. Congress on Evolutionary Computation (CEC’99), July 2, Washington, D.C.,
988-993.

Wa̧siewicz P., A. Malinowski, R. Nowak, J.J. Mulawka, P. Borsuk, P. Wȩgleński, and A.
Płucienniczak. 2001. DNA Computing: Implementation of Data Flow Logical Operations. Future
Generation Computer Systems Journal 17/4:361-378.

Wȩgleński P. 1995. Molecular Genetics (in Polish). Warsaw: Polish Scientific Publishers (PWN).
Winfree E. 1998. Whiplash PCR for O(1) Computing. In Proc. of the Fourth DIMACS on DNA-based

Computers, Pennsylvania, USA, 175-188.
Winfree E., X. Yang, and N.C. Seeman. 1996. Universal computation via self-assembly of DNA,

Some theory and experiments. DIMACS: Series in Discrete Mathematics and Theoretical Com-
puter Science, ISSN, 1052–1798.

27

