Hybrid Genetic Approach to Oligo Sets Optimization

Piotr Wasiewicz, Grzegorz Tomczuk, Jan J. Mulawka
Institute of Electronic Systems
Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland
{pwasiewi, gtomczuk}Q@elka.pw.edu.pl
{pwas,jml}@ise.pw.edu.pl

Abstract. DNA computing is a striking new information technology based on chemical reactions
in tubes utilizing specially designed with a help of computer programs DNA polymers. This
methodology provides new molecular mechanism for storing and processing information. DNA
macrostructures are bases of specially designed algorithms realized by so called soft hardware
applications. To obtain these structures a special DNA sequences design tool is required. A
custom genetic algorithm with new hybrid operators was involved in creating a set of DNA
strings. Changes in the input files and examples of string generation were introduced.

1 Introduction

In the new century a great progress in the area of nanoelectronics is expected. Traditional
methodologies will soon meet their technological limits. Possibilities of silicon electronic
chips further miniaturization are almost exhausted. Investigations indicate that different
other chemical compounds can be used to store and process information on molecular
scale. Especially organic substances used in biology are well suited for this purpose e.g.
nucleic acids and proteins.

One of first steps in this direction was developed by cooperation of computer scientists
and genetic engineers. As a result information technology based on computing utilizing
molecules during chemical reactions has appeared. This new methodology is called DNA
computing.

A single-strand DNA has a phospho-sugar backbone with two different, 5" and 3’ ends
and four bases Adenine, Thymine, Cytosine, Guanine denoted by the symbols A, T, C,
and G, respectively. A double-strand DNA may be formed of oriented in the opposite
directions two single strings due to hybridization or in other words annealing reaction,
because A is complementary with T, and C is complementary with G. Due to this reaction
the oligonucleotides may connect with each other during concatenation process called
ligation forming longer DNA chains [17]. A sequence of such operations on DNA strings
is called an algorithm. But in the typical DNA computing algorithm this sequence is
determined by a model of DNA strings similar to the soft hardware specialized architecture
driven here by heating, cooling and connected with them operations on DNA. Together
the operation sequence and the model make computation possible.

First DNA computing method was invented by Adleman [9]. He demonstrated how to
solve NP-complete combinatorial and graph problem of finding the Hamilton path that
is very difficult to solve for conventional computers. His work began in this field further
research, which was reported in many papers describing new DNA computing applica-
tions [1-15]. It has been demonstrated that DNA computing is suitable for programming
in logic [10, 11] and for solving NP-complete problems [10]. For example DNA computing
molecular inference systems [2]| are a first step towards creation of the fifth computer
hardware generation based on logic and the Prolog language structure. And multidimen-
sional DNA computing leads in future to applications of molecular electronics in at least

three dimensions. Emerging from it three dimensional molecular structures used in molec-
ular computing algorithms enable creating special macromolecules conducting electrons.
With such electronic molecules it will be possible to develop alternative architectures of
extremely miniaturized computers. Thus, multidimensional DNA structures are bases for
constructing alternative massively parallel computer architectures [4, 7, §].

In order to have correct molecular computation results, the proper encoding, and model
of DNA string set, and of course proper substrates such as enzymes are necessary to min-
imize the disadvantages of biological technology, especially extraction (5%), replication
(0.001%), ligation and annealing errors [15]. Thus, it is necessary for large, complicated
molecular systems to find at least optimal sequences of DNA strings in order to com-
pute right solution without hybridization mismatches. To obtain proper encoding genetic
algorithms were applied, what has been described in this paper.

2 The Genetic Algorithm Description

Genetic algorithms [18] belong to typical computation techniques that can be successfully
applied to NP-hard optimization problems e.g. for optimizing functions with many local
and one global optima. They consist of selections and different types of genetic operators
that are repeated in cycles on population individuals.

In this problem the given string set with correct hybridizations as joints is like the
function and the sequence of nucleotides is ascii coded. Each of these nucleotides is
described by one ascii character.

When an existing hybridization is not included in the string set model, then it is an
error and is called a mishybridization. Here a fitness of such the string set is proportional
to a value of all string mishybridizations with itself and other strings. The task of the
optimization was to find a DNA oligonucleotide string set, which hybridizes only in one
correct way defined in the input file Scheme.txt this means with a fitness value equal to
Zero.

2.1 The Algorithm Structure

The hybrid genetic algorithm has been applied in the task of choosing DNA sequences
for molecular computing and executed on a defined in a file Scheme.txt string set. The
program consists of the following genetic algorithm steps: 1. input data reading and
beginning population creating; 2. setting the algorithm specific parameters; 3. all mishy-
bridization and fitness string set value evaluating; 4. the tournament selection; 5. repro-
duction: putting the best solutions in the place of the worst ones and into the special elite
group of the best ones, classical crossover and mutation, hybrid crossover and mutation;
6. all mishybridization and fitness string set value evaluating; 7. if the STOP condition
is not satisfied, go to the point 4; 8. writing of the best solutions to the output files. The
STOP condition is usually connected with a number of generations this means loops from
the point 4 to the point 7 of the mentioned algorithm.

2.2 Evaluating of Optimization Results

Evaluating of all two-string hybridizations consists in partial estimation of each hybridiza-
tion case that can appear. In Fig. 1 it is shown how to process the analysis of string
complementarity. One string shifts sliding under another one (in this case its copy) one
nucleotide by one nucleotide and all matching base pairs with complementary bonds A
with T or G with C are called hybridizations. Starting from the double fragment begin-

ning progressive base pairs searching is marked with gray color. A base pair G=C value
equals 3, and a base pair A=T value equals 2. In the first case from Fig. 1 all hybridiza-
tions (two pairs G=C and two pairs A=T) have a value equal to 10. In the second case
their value is equal to 6 (two G=C base pairs), and there is no hybridization in the third
case.

Figure 1: String complementarity analysis

The final value of all such hybridizations between two strings with indices ¢, 7 or self-
hybridizations (i = 7) is denoted by:

N
€ij = ¢ (1)
p=1

where: N = L, + L, — 1 - a number of hybridizations, L, - a number of nucleotides
in the first string, L, - a number of nucleotides in the second string, e, - a value of p*"
hybridization.

It is worth mentioning that a relative error value, a relative error average value, a
threshold overflow value are denoted by:

n
PCi i
G _ ;) _ D 9
péij = ——; rpe; ; = ; ppeé;; = ; ()
me; ; n EMpeiTy * TPEe; ;

where: 4, j - string indices, pe;; - a relative value, e;; - an absolute value, me;; - a
maximum value resulted from a sum of all possible errors, which can exist during annealing
of the given strings, ¢ - a test index, n - a number of all tests, zpe; ; - an average value,
pei s - a relative value in the ™ test, empeizy - a threshold parameter with a string set
index k, ppe; ; - a threshold overflow value.

In general a fitness string set value of the received solution consists of the all possible
mishybridizations value sum. If this value is equal to zero, then all strings anneal to each
other only in correct ways, and all energy constraint requirements are satisfied. Thus
the fitness string set value emerges from analyses of hybridizations and selfhybridizations
evaluating. Mishybridizations have a value equal to a sum of neighboring complementary
base pair values e.g. |G=C|= 3, |[A=T|= 2. The length of such fragments is determined
by a mishybridization minimal length parameter. All correct (described in the scheme file
or with a length less than the minimal mishybridization parameter) hybridization values
equals zero. With neighboring complementary base pairs particular double fragments
have sum values multiplied by their weight parameters placed in a special input file. The
more neighboring nucleotide pairs, the greater parameter value. Additionally, interval, not
complementary base pair values are often less than zero and are added to the mentioned
error sum. They depend on potential hybridization arrangements. After adding all such
modified sum values e, the final fitness value of string set is obtained.

2.3 Classical Operators

The tournament selection is an operation of choosing strings with better fitness string
set value from the string set population in order to create the next loop better string
population or perform some operations on them. First a defined tournament group of
strings is chosen with uniform probability from the whole population. Second from this
group one or two strings with the best fitness string set value are chosen.

In the program two reproduction operator groups were implemented: the first classi-
cal one including typical crossover and mutation operators, the second hybrid one with
division operators. Apart from these groups, an operation, that eliminates single frag-
ments with the same type of nucleotides, was added e.g. for its parameter equal to
3 an exemplary string: ATGGGGGGGGGCTTG will be changed to the following one:
ATGGxGGzGGGCTTG where: x - is a nucleotide of type A, T or C.

The crossover operation exchanges randomly chosen fragments between two strings
selected from a generated with uniform probability string list. In this case two-point
crossover is utilized. Two points at the ends or between nucleotides are randomly chosen
and parts between them are exchanged. The mutation operation changes randomly with
uniform distribution a chosen nucleotide type to another one.

2.4 Hybrid Custom Operators

Division operations were invented in order to speed up a process of optimization. A fitness
string set value emerges directly from interactions among set strings. The optimization
task for strings is to connect them with each other with the greatest probability in the way
described in the scheme file Scheme.txt. The more double fragments in the correct places or
the longer they are, the greater is probability of the connection. Thus, division operations
eliminate or divide with the use of typical mutation redundant mishybridizations and
selfmishybridizations in order to increase the previously mentioned probability.

Division operation is usually executed on strings with the longest mishybridizations.
Such a strategy quickly profits by efficient solution quality improvement. However, the
string modification depends on a chosen division operation. Operator mutl changes one
nucleotide in one part of one mishybridization, multimutl - one nucleotide in one part
of each mishybridization, mut3 - each nucleotide in one part of one mishybridization,
multimut3 - each nucleotide in one part of each mishybridization, mut5 - each nucleotide
change in every part of one mishybridization, multimut5 - each nucleotide change in
every part of each mishybridization. Operation hcrosl exchanges one base pair in one
hybridization, multihcros1 - one base pair in each hybridization, hcros3 - base pair half in
one hybridization, multihcros3 - base pair half in each hybridization, hcrosd - each base
pair in one hybridization, multihcrosd - each base pair in each hybridization.

/7%
1 2 3 4 5 6 7 8 9 10 1112 13
5’|GAGTT?I‘\(|Z(‘2TG‘A"I'I3'
3] AGCTGGGTTAC| 5’
1w 9 8 7 6 5 4 3 2 1
.
11

Figure 2: Base pair choosing in a longest mishybridization part selected for a division
operator, I - a selected double part, II - chosen base pair nucleotides

Usually, a base pair, in which one chosen at random nucleotide is mutated, is selected

by its position in the middle of the longest mishybridization part chosen by a division
operation. The change of one nucleotide means that in the chosen from selected mishy-
bridization base pair one of two nucleotides changes its kind e.g from A to G or C or
T. The exchange means that base pair nucleotides exchange their places from one string
to another and in the opposite direction e.g. in Fig. 2 in a base pair denoted by II a
nucleotide A is moved to a nucleotide T place and T to an A place e.g. hcross3 operates
on a half of string nucleotides, hcrossd on each nucleotide. Thus, on the contrary hcross
operators are executed on the correct defined in the scheme file hybridizations or slightly
possible mishybridizations.

Performing on each appropriate hybridization multi operators make more modifications,
but it should be considered that only strings with ppe > 1 are corrected by the division
operators. The empeiz parameter is changed from time to time during program execution
in order to assure that a number of string pairs is not greater than the twofold string
number. Thus, empeiz;, is the k" string set quality measure. For empeiz< 1 its change
step is equal to 0.01, and for empeiz> 1 equal to 0.1.

3 The Input Scheme File Description

The methodology of creating input files was introduced in [1]. The string set scheme
consists of two basic sections. Their description succession is obligatory during writing of
the scheme input file. At the beginning of each section there is a header name in square
brackets. Apart from these sections a section [POPULATION] may appear at the scheme
file beginning. This section cancels computer generation of string sets starting population
and allows its reading from the file Population.txt, so it permits searching of suboptimal
solution from the given point in the search space.

e [SEQUENCES]
In this section the lengths of the given strings with their names are written here.
Each particular string is described in a separated new line. All strings from the set
have to be described here. The string description scheme is the following:

<string-name—5'-3" > U <string-length>,
where a sign LI means a space e.g.: AC2 20

e [JOINTS]
In this section the strings names with their indices should be put in order to describe
their complementary fragments. The description scheme is the following:

<string-name> U = U <string-complementarity> [+ U <string-comple-
mentarity>],

where:

<string-complementarity>: <beginning-nucleotide-number> LI — LI <ending-
nucleotide-number> L <string-name> LI <beginning-nucleotide-number>

eg: DCl=7-16 AC24 +29-42DC33

Indices joint with a sign — are attached to the string from the left side of the sign =.
The beginning index, which appears before the sign + or at the line end, belongs to
the string put at its left side, but on the right side of the sign =. The string indices
increase from the 5’ end to the 3’ end. The sign L denotes a sign of space.

e [ASSIGNMENTS]
The constant fragments of DNA sequences are introduced here.

<string-name—"5'-3" > LI <beginning-nucleotide-number> L = U <nucleotide-
letter> [<nucleotide-letter>],

where <nucleotide-letter>: A|G|T|C e.g. DC1 15 = CTGCAG means that the DC1
string has five nucleotides CTGCAG in the positions from 15 to 19.

e [ENERGY]
In this section there are placed additional constraints connected with the capacity
of the G= C base pairs in double strings or G, and C nucleotides in single strings.
For double fragments the description scheme is the following:

<string-name—>5-3' > LI <beginning-nucleotide-number> LI <string-name—>5'-
3 > U <beginning-nucleotide-number> LI = LU <G= C capacity in %>

This described by the beginning nucleotide numbers hybridization has to be men-
tioned in the section [JOINTS], so the beginning nucleotides from this section and
from the section [JOINTS] have to be the same. For single strings the description
scheme is the following:

<string-name—>5"-3" > U <beginning-nucleotide-number> LI = U <G= C ca-
pacity in %>

Both last scheme sections require that there is no common part among defined double
or single fragments. The practical use of some mentioned description schemes is described
in the next points.

4 String Cell Examples

Introduced in [7] the automata model is preserved in a one-dimensional tape, in which
every cell contains a symbol from a finite alphabet. The next computation step is to copy
an input tape contents with a help of a rule table to a new output tape. All cells are
copied in parallel.

This model takes advantage of this fact that DNA strings annealing to each other
can construct not only double strings, but also miscellaneous two or three-dimensional
shapes. Depicted in Fig. 3 rule exchanges symbols like a crossover operator: f(A, B) = B,
g(A, B) = A, where A is denoted by AGTCA and B is denoted by GTTAC.

Every rule defining symbols on the new tape is coded by the identical two-dimensional
construction made from optimized specially sequences, but with unique single strings
called usually sticky ends this means they can hybridize with complementary ones and

for example are described as output signals by symbols (A, B) and as input signals by
symbols (B, A).

3’ —TCTGAACA-5
- JrCTT[GTAGTCA-37
dqG| |A
ATl 19
TRLA
—TCAGITAGAGAICTCAATG—D"

[5"-AGCTCcCGA-31

RHOH O

Figure 3: An exemplary automata rule f(A, B) = B, g(A,B) = A

In solution all rules connect with each other by their sticky ends forming multitape
structure. Free rules attach with their complementary lower single string ends to formerly
connected in a tape line other ones and denote with their upper sticky ends the next tape.
A concatenation process called ligation follows hybridization. After melting characteristic
long single strings are extracted and sequenced in order to read tape contents. Results are
interesting by reason of utilizing only two operations on DNA: hybridization and ligation.

Such string cells sequences should be first optimized. The whole string set should be
described in the input file. This operation looks like this: designer should put the chosen
string set into the section [SEQUENCES], now each string has its length (a number of
nucleotides); DNA strings from the section [SEQUENCES] correct complementary joints to
the strings also from the section [SEQUENCES] are put into the section [JOINTS]; constant
DNA fragments are added to the section [ASSIGNMENTS]. All errors in the file Scheme.txt
e.g. overlapping double fragments or hybridizations going beyond defined single strings
are detected and reported by the program during beginning input file reading.

BBB 15 23

DDD 21 17

Figure 4: The exemplary DNA string set described in the file Scheme.txt from Example
1. There are illustrated strings with their names and lengths, numbers of nucleotides at
the points of junctions and hybridizations.

4.1 Example 1

The exemplary DNA string set is illustrated in Fig. 4. The contents of the Scheme.txt
input file are placed below. Its particular sections e.g. [JOINTS] were described at
the previous point. The results of the string set from Fig. 4 sequence optimization are
written as 5 — 3’ DNA strings in the output file SchGroup.txt placed on the right side of
the Scheme.txt.

Scheme.txt SchGroup.txt

[SEQUENCES]

AAA 23

BBB 21

CCC 30

DDD 23

EEE 15

FFF 26

GGG 27 TATTGGAGTCGAAGTACGTGAGAGTGC
[JOINTS]

AAA =11 - 15 FFF 17 + 19 - 23 GGG 7 | AGGAAGAGAAACCCAACACGACT
BBB=1-6GGG 1+ 15-21DDD 17 | CCAATAAGGGGCAGCGTAGGT
CCC=1-5FFF 1+ 26-30 FFF 22 TTCAAACGACAGAAATGAATGGGAGCAGGC
DDD = 7- 12 EEE 1 ACAGACATCGGAGTGGACCTACG

EEE = 11 - 15 GGG 23 TCCGATAAGCGCACT

FFF =9 - 13 GGG 15 TTGAAAACACGTAAGGTGGGTGCCTG

TGACATAAAGCTC
@D ACTGTATTTCGAG
|

13 44

CTGAAGCGGATTCTAC
GACTTCGCCTAAGATG

59 60

GAGTCGCTGGGAA
CTCAGCGACCCTT —

72
83

60 59
23 27 28

44 |1z
43 4 18

O 8 22
< GTTAT
CAATA
03 9

GC

GCTAT
CGATA
138 14 43

44 32

AAGGTGTTGGCACAGT
TTCCACAACCGTGTCA

CCGTC
GGCAG
28 27 21
31 23

3
<> AGTCGATT
TCAGCTAA

CTTGATCGGGGTT
GAACTAGCCCCAA

[S,) L 8 19 31

CAGGGACTGCTTC
GTCCCTGACGAAG
32 44

1Y
9 13
TGTTT O
acara &
22 18

7

8 Yo
ceaccoae™®
elelslelelelele

45 52 @

Figure 5: The exemplary DNA string set introduced in [8] and described in the file
Scheme.txt from Example 2. There are illustrated strings with their names and lengths,
numbers of nucleotides at the points of junctions and hybridizations.

4.2 Example 2

The exemplary DNA string set [8] is illustrated in Fig. 5. The contents of the Scheme.txt
input file are placed nearby.

Scheme.txt contents

[SEQUENCES]
5152

52 52

S3 72

S4 72
[JOINTS]

S1=1-13S5360+ 14-18S5323 + 19-445219 4 45-52541
S2=1-135460+ 14-18 5S4 23 + 45-52S531
S3=9-13S5318 4 28-43 5428 4 44 - 59 54 44

S4=9-135418
[ASSIGNMENTS]
S3 14 = ACCG
S4 14 = GCAC

The results of the string set from Fig. 5 sequence optimization are written in the output

file SchGroup.txt, which contents are following;:
S1: TTCCCAGCGACTCCCGTCCTTCGTCAGGGACTTGGGGCTAGTTCTTAGCTGA
S2: TGACATAAAGCTCATAGCGAACTAGCCCCAAGTCCCTGACGAAGGCCGGGCG
$3: CGCCCGGCTTTGTACCGACAAAGACGGACTGTGCCAACACCTTCTGAAGCGG

ATTCTACGAGTCGCTGGGAA

S4: TCAGCTAAATAACGCACGTTATGCTATAAGGTGTTGGCACAGTGTAGAATCC

GCTTCAGGAGCTTTATGTCA

Table 1: Division operators test sets

The set Division operator sets for successive thresholds

index || empeiz € {0;0.6} ‘ empeiz € {0.6;0.8} ‘ empeix > 0.8 ‘

1 mut1(1) mutl(1) mut1(1)

2 mul(0.9) mut1(0.9) mut1(0.9)

multimut1(0.1) multimut1(0.1) | multimut1(0.1)

3 mut1(0.9) mut1(0.75)

mut1(1) multimut1(0.1) mut3(0.2)

hcross1(0.05)

4 mut1(0.4) mut1(0.2)

mut1(0.6) multimut1(0.2) | multimut1(0.2)

mut3(0.2) mut3(0.2) mut3(0.2)

heross1(0.2) multimut3(0.2) | multimut3(0.2)

mut5(0.1)

multimut5(0.1)

5 Optimization Results

The string set from the example 1 was used in optimization process of setting best operator
parameter values. The genetic algorithm with a 30 individual population, a 2 individual
elite group, a 3 individual tournament group and 50 computation generations was utilized.
After exhaustive testing of different division operators together with different probability
values from Tab. 1 the best configuration was found. It consists of division operators mut
with probability 0.9 and multimut with 0.1 probability.

Table 2: Results of the first experiment after 8 independent tests with 50 generations

The operator || The string set evalu- | The fitness value av- | The best fitness
set index ation number erage value

1 1322 12.778791 6.00000

1 1574 14.744251 4.00000

2 812 25.429571 5.00000

2 916 26.365063 4.00000

3 617 21.176756 5.00000

3 1274 24.923122 9.00000

4 950 38.321251 7.00000

4 1471 36.652889 5.00000

Operators hcros failed to obtain better results (Tab. 2). Additionally, the less maximum
mishybridization parameter, the worse results are achieved.

Table 3: The second experiment results
Crossover probability 0 0110203] 04| 05|06 |07 |08] 09
Division probability 1 09 |08 |07] 06|05 |04] 03] 0201
experiment 1st 3.08 | 2.79 | 2.83 | 2.63 | 2.79 | 3.60 | 3.69 | 3.74 | 3.62 | 4.08
experiment 2nd 2.82 1293|297 331298290 | 3.35|3.54 | 3.74 | 4.12
experiment 3rd 2.98 | 2.87 | 297 | 3.11 | 3.44 | 3.66 | 3.68 | 3.49 | 4.24 | 3.93
experiment 4th 2.98 | 2.84 | 3.66 | 2.93 | 3.12 | 3.49 | 3.54 | 3.16 | 3.30 | 4.47

\ average: [2.97]286]311]3.00]3.08]341|357]349 |3.73]4.15 |

In the second experiment classical mutation had a constant probability value equal to
0.05, but division operators had a variable probability value in the scope from 0.1 to 1,
and also a crossover in the scope from 0 to 0.9. The best probability values found for
division and crossover operators were 0.9 and 0.1 as is seen in Tab. 3.

In the third experiment described in Tab. 4 division and crossover operators with
constant probability values equal to 0.9 and 0.1 was attached to the classical mutation
with a variable probability value in the scope from 0 to 0.95 in the optimization process
of the mentioned string set from the example 1. Thus, all given above exemplary DNA
string sets were optimized with the use of division, crossover, and mutation operators
with probability values equal to 0.9, 0.1, 0.05.

After setting optimal operator parameters it was noticed that the solution quality very
often depends on the mishybridization minimal length value. The less mentioned param-
eter value, the greater final solution string set fitness value. Thus, with the decreasing
minimal mishybridization length value the result quality becomes worse what is seen in
Tab. 5.

Table 4: Results of the third experiment
Mutation probability || 0.00 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45
The best fitness value || 4.01 | 2.98 | 3.23 | 3.41 | 4.18 | 4.24 | 4.36 | 4.70 | 4.37 | 4.79

Mutation probability | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80 | 0.85 | 0.90 | 0.95
The best fitness value || 4.53 | 4.30 | 4.06 | 4.20 | 4.42 | 5.02 | 5.19 | 4.34 | 4.59 | 4.51

Table 5: Hybrid genetic computation results with 50 generations in each test

‘ minimal mishybridization length H fitness evaluation number ‘ fitness average ‘ best fitness value ‘

2 1578 123.492592 80.000000
2 1183 109.499428 77.000000
3 683 15.959213 5.000000
3 974 15.645994 5.000000
4 14 8.328825 1.000000
4 32 6.558132 1.000000

Table 6: Random method computation results with 70000 random solutions in each test

‘ minimal mishybridization length H fitness evaluation number ‘ fitness average ‘ best fitness value ‘

2 48209 223.726105 142.000000
2 3634 224.002625 147.000000
3 25172 99.703358 24.000000
3 29664 09.783474 23.000000
4 11403 15.737105 1.000000
4 2152 15.463757 1.000000

It should be noted that all mishybridizations from e; ; with different lengths have dif-
ferent weight parameters defined in a special input file named frag.txt. The greater mishy-
bridization length, the greater weigth parameter value.

The solution dependence on the minimal mishybridization length was also analysed
with a random method. During computation in one test 70000 string sets was generated
at random and the one with the best fitness value was chosen. In comparison with the
hybrid method random computation has in general worse results except these one for the
minimal wrong hybridization length value equal to 4 as is provided in Tab. 6.

6 Conclusions

In this optimization approach hybrid genetic algorithms are utilized in optimization of
string set nucleotide sequences. The mentioned program written in C++4 is able to gen-
erate sequences of all possible string sets e.g. two dimensional sophisticated cellular au-
tomata or three dimensional structures suitable for more advanced DNA computing. With
a quite new input data scheme very different string set models can be easily introduced
with almost the same effort. In the paper criteria of evaluating string sets and constraints
were represented. Input files, data flow, output data structures and configuration ways
were mentioned. New hybrid genetic operators were described in detail.

After comparison with random methods and experiments with several string sets it
should be mentioned that the program hybrid method is very efficient in optimizing and
very often better or more universal than other approaches. Result quality dependency

on utilized operators and different input parameters was analyzed. The performed tests
prove, that for complex string sets with many single fragments or many double ones the
best results are obtained only with use of new hybrid division operators. The new way of
creating input string scheme files allows optimization of whatever string set that can be
designed with as many as needed strings, double fragments and sticky ends.

Acknowledgments

This work was supported by the KBN Grant No 8T11F00816.

References

[1] J.J. Mulawka, P. Wasiewicz, K. Pietak, Virus-enhanced genetic algorithms inspired
by DNA computing, LNAI - Subseries LNCS 1609 (1999) 527-537.

[2] P. Wasiewicz et al., The Inference Based on Molecular Computing, Cybernetics and
Systems: An Int. J., Taylor & Francis, vol. 31/3 (2000) 283-315.

[3] P. Wasiewicz, J.J. Mulawka, Molecular Genetic Programming, Soft Computing,
Springer, 5(2) (2001).

[4] A. Dydynski, P. Wasiewicz, Realization of Molecular Neural Networks, submitted to
IEEE (2002).

[5] G. Paun et al., DNA Computing - New Computing Paradigms, Springer-Verlag Berlin
1998).

[6] (The)Bz'bliogmphy of Molecular Computation and Splicing Systems, at http://-
liinwww.ira.uka.de/bibliography/Misc/dna.html .

[7] E. Winfree, X. Yang, N.C. Seeman, Universal computation via self-assembly of
DNA. 2nd Annual Meeting on DNA Based Computers, Princeton, DIMACS (1996)
1052-1798.

[8] T.H. LaBean, E. Winfree, J.H. Reif, Experimental progress in computation by
self-assembly of DNA tilings. 5th DIMACS Workshop on DNA Based Computers,
MIT, 54 USA (1999) 123-140.

[9] L.M Adleman, Molecular comput. of solutions to combinat. problems, Science 266
(1994) 1021-1024.

[10] R.J. Lipton, DNA Solution of Hard Computational Problems, Science 268 (1995)
542-545.

[11] M. Ogihara et al, Simulating Boolean Circuits On a DNA Computer, TR 631, Univ.
Rochester (1996).

[12] J.J. Mulawka, P. Borsuk, P. Weglenski, Implementation of the Inference Engine Based
on Molecular Computing Technique, Proc. IEEE Int. Conf. Evol. Comp. (ICEC’98),
USA (1998) 493-498.

[13] E.B. Baum, Building an associative memory vastly larger than the brain, Science 268
(1995) 583-585.

[14] R. Nowak et al, Molecular associative memory built on DNA, submitted to Soft
Comp. (2002).

[15] S. Roweis et al, On the reduction of errors in DNA computation, J. of Comp. Biology,
6(1) (1999) 65-75.

[16] J.R. Heath et al, A Defect-Tolerant Computer Architecture: Opportunities for
Nanotechnology, Science 280 (1999) 1716-1721.

[17] J. Sambrook et al, Molecular Cloning. A Laboratory Manual., Cold Spring Harbor
Press (1989).

[18] D.E. Goldberg, Genetic Algorithms in Search, Optim. and Machine Learning,
Addison-Wesley (1989).

[19] Mulawka J.J., Expert Systems (in Polish), WNT, Warsaw (1996).

