Virus-enhanced Genetic Algorithms Inspired
by DNA Computing

Jan J. Mulawka, Piotr Wasiewicz, Katarzyna Pigtak

Warsaw University of Technology, Nowowiejska 15/19, Warsaw, Poland
{jml,pwas } @ipe.pw.edu.pl

Abstract. DNA computing is a new promising paradigm to develop an
alternative generation of computers. Such approach is based on
biochemical reactions using DNA strands which should be carefully
designed. To this purpose a special DNA sequences design tool is
required. The primary objective of this contribution is to present a
virus-enhanced genetic algorithms for global optimization to create a set
of DNA strands. The main feature of the algorithms are mechanisms
included specially for searching solution space of problems with
complex bounds. Formulae, describing bounds of power of sequences’
sets, which satisfy criteria and estimation functions are expressed. A
computer program, called Mismatch, was implemented in C++ and runs
on Windows NT platform.

1 Introduction

1.1 The development of molecular computing

Traditional computer systems are implemented with electronic networks
comprising transistors. This technique has been under development for recent
50 years. A couple of years ago however, a new technique of computing based
on molecules (called molecular computing) has appeared [1,2,3]. In this
approach different chemical compounds can be used to store and process
information. The calculations are performed in vitro by adequate interpretation
of chemical reactions. Investigations indicate that organic substances used in
biology are well suited for this purpose, especially nucleic acids and proteins.
For example DNA molecules provide high degree of selectivity of biochemical
reaction and therefore can serve as an information carriers. The approach based
on DNA molecules is an interesting alternative for electronic computation.

The molecular method of computing has been initiated by Adleman [1] who
demonstrated how to solve NP-complete combinatorial and graph problems
which are difficult for conventional computers. A number of possible
applications of DNA computing has been repored so far. For example it has
been demonstrated that DNA computing is suitable for programming in
logic [4]. Expert systems can aso be redlized by this technique. In [5]
implementation of the inference engine based on a backward chaining

agorithm has been discussed. However, other paradigms of reasoning also may
be used.

A single-strand has a phospho-sugar backbone and four bases Adenine,
Thymine, Cytosine, Guanine denoted by the symbols A, T, C, and G,
respectively. A double-strand may be formed of two single-strands due to
hybridization or in other words annealing reaction, because A is
complementary with T and C is complementary with G. Due to this reaction the
oligonucleotides may connect with each other forming longer double-strand
DNA chains.

1.2 Potentials of DNA computing

Molecular technology offers the following potential advantages over the
classical electronic computers.

Speed of operation. In a single test tube there may exist 10°° DNA strands.
Average reaction time of biological operation performed on a strand is 1000s.
The speed of parallel operations [6] performed may amount V=10'* MIPS. By
automatization of the biological operations and by reducing the reaction time
below 1000s gives a chance to speed up the performance. It should be noted
that existing supercomputers comprising a couple of thousand of processors
may achieve the speed up to 10°MIPS (ASCI Red - 1,8Tflops, 9256
processors) [7].

Data capacity. Assuming that in molecular computing particular strand is
coded with about 500-800 bits, data memory realized on DNA strands in a
single test tube (1dm’ of water solution comprises approximately 10? strands)
may amount to 1 bit/nm’. It allows to achieve the memory about 10° times
greater than current magnetic memories (2500010° bit/inch®). A concept of
DNA memory exceeding about 10° times human memory has been proposed by
Baum [8]. An important feature of such approach is that the DNA memory is of
an associative type.

Energy saving. In molecular technology the calculations are performed on
DNA molecules. For biochemical reactions adequate temperatures are
required. The energetic efficiency of these operations is high. It amounts
approximately 10" op/J [9] comparing to 10° op/J for traditional
supercomputers.

2 Limitations of DNA computing

DNA computing is based on the technology of genetic engineering which
suffers a number of drawbacks. DNA operations initiated by a human are using
biochemical reactions prone to errors [10,11]. Unexpected results in these
reactions are due to many factors such as not exact temperature, specifity of the
chemical reaction performed in a solution, etc. The main factors which cause
mistakes of biological operations are the following:

Extraction - 5 % errors. It may happen that during extraction unproper
strand is selected. To decrease the chance for such mistake it is proposed to
keep a constant amount of reacting strands in a vessel. It may be accomplished
by replicating the strands during reaction. Some improvements are also
achieved by making change in coding manner, by taking double quantity of the
input data, etc.

Replication by PCR (Polymerase Chain Reaction) - 0,001 % errors.
During biochemical reactions strands may be replicated with an error caused
by different speeds in connecting complementary nucleotides.

Ligation. Sometimes it happens that ligase enzyme causes connections of
unproper strands. To improve this mistake it is proposed to select the proper
enzyme for a given set of DNA strands.

Annealing. In ideal case during annealing two single-strands are connected
to produce double-strand of DNA. However, occasionally single strands are
folding and anneal with themself, or particular pairs of strands create irregular
shapes. These are so called hybridization mistakes. To eliminate annealing
errors the proper coding of input data is recommended.

As follows from the above considerations in molecular computing the
proper encoding and selection of DNA strands is necessary to minimize the
disadvantages of biological technology.

3 Description of virus-enhanced genetic algorithm for design
of DNA strands

Genetic algorithms [12] belong to techniques that can be successfully applied
to NP-hard optimization problems e.g. for optimizing functions with many
local and one global optima. They consist of selections and different types of
genetic operations which are repeated in cycles. It is assumed that genetic
algorithms search for the global optimum [13] of such functions with complex
constraints. In addition our algorithm implements an idea of viruses
(autonomous DNA strands) to optimization problems. We assume two different
types of viruses: fitness and reproduction ones. Each of the former has a unique
fixed transition position in an overwritten DNA strand and a fixed length. The
latter are created during reproduction and they have no fixed position in a
victim strand and random lengths. Both types have a fixed lifetime, but the
latter can die if they are not effective in action this means in improving the
fitness of individual by overwriting the part of its original chromosome (in
order to be copied with the infected individual and infect other).

The algorithm of Fig. 1 has been applied in the task of choosing DNA
sequences for molecular computing. In this problem the sequence of
nucleotides is binary coded. Each of these nucleotides is described by two bits
as shown in Fig. 2. They are ordered by their atomic weights.

| Initiation of a beginning populati0n|

v

Evaluation N
<
~
<
~
<
~
<
<

. ~

s it the end O
computation ?

Fig. 1. The structure of a virus enhanced genetic algorithm

C------- >00 ------- > 288,2 [dal ton]
T------- >01 ------- > 303, 2 [dal ton]
A------- >10 ------- > 312,2 [dal ton]
G------- >11 ------- > 328,2 [dalton]

Fig. 2 Binary coding of nucleotides

Thus every four nucleotides are coded in one byte. In Fig. 3 a process of
their coding is explained. The advantages of this approach are the following:
maximum density of information makes computation more easy, one change of
a bit causes a change of a non-complementary type of a nucleotide, very quick
testing of complementary strings with a logic function XOR as shown below.

C = G conplenentary pairs 00 XOR 11 = 11
T = A conplementary pairs 01 XOR 10 = 11
. number E
 S[AICITITICIAICITICIAIC] of nucteotiesn=11 !
¢coding
| bitj=theoldestbit bityy, number
E v \ of bits = 2n '
 [2fOoJ1]1]oJrjofrJoJofifoJi[1[Oo[1]1[1]1[OJO]O] rpe |
E bytel byte, bytes ofbytes=n/421

Fig. 3 The process of coding DNA strands into binary strings

Here a fitness of such strand is a number of strand mishybridizations with
itself and other strands. The less mishybridizations the better value of this
fitness function is obtained. It can be easy described when it is only the largest
mishybridization taken into consideration and such the fitness function of a
single oligonucleotide e.g. with number one is as follows

f,(a) = -(100k,, + 5O0Chot_unique- C,;,)

where fi(a;) - a fitness function of a DNA strand, k.. - length of the longest
mishybridization, c,;, - the smallest value of a fitness function in a strand
population, not_unique - equals 1 if there are more mishybridizations with the
same length, otherwise - 0. It is important to have always values above 0,
therefore ¢, is subtracted.

5 Results of Experiments

In our experiments the first task was to find one DNA strand of /) nucleotides
with the smallest own complementarity. The solution has to be energeticly
stabilized. This means the capacity of GC pairs (%GC) has to be equal to 50%
with + GCMaxInequality[%]. During computation these strands are
transformed into 2n binary strings and are decoded only when they are
presented on a screen or written to a file. In order to have solutions within
constraints connected with energy (%GC) and weight (%CT) stability before
analyzing of such a string fitness this string has to be repaired.

IN

gc(a,)
olet(a))]

IN

GCMaxlInequality
CTMaxlInequality

Table 1. Results of optimal /00-nucleotide strand computation.

Genetic No of Without virus operations With virus operations
Operations trials
a fitness a number of a fitness a number of
function fitness function fitness
value function value function
evaluations evaluations
Crossover 1 -400 9700 -350 16600
mutation 2 -400 800 -400 11800
3 -400 11600 -350 32600
4 -400 2300 -400 7300
5 -350 17200 -350 8400
uniform 1 -350 45700 -350 17700
crossover 2 -350 49300 -400 3800
mutation 3 -400 11500 -350 4900
4 -400 13300 -400 400
5 -350 23000 -350 9000
uniform 1 -350 1567 -350 2848
crossover 2 -350 3829 -350 4485
subinversion 3 -450 100 -350 3158
4 -350 6611 -350 6120
5 -350 2025 -350 2920
The experiments were performed with the following values of parameters of
analysis
MinMatch 3 and ones of the genetic algorithm:
EnergeticRestrict 1
GCMaxlInequality 10 GA_PopulationSize 100
CTMaxlInequality 15 GA_NumberOfGenerations 500
MutationProbability 0.1
CrossoverProbability 0.4
RVirusCreationProbability 0.5
VirusInfectionProbability 0.2

and for n=100 and five trials, the results are depicted in Table 1.

In Fig. 5 it is shown how to process the analysis of selfcomplementarity of a

strand.

Fig. 5 Strand selfcomplementarity analysis

CAGACACGGCCACT CACCGGACT CTCACAGAAGCCGCT CACGGAAAGATGGAA
TACTCGGGACAGAACCACAGCAAACAGGAACACACTACATACAGACGT

Fig. 6 One of the best strands selected

One of the best strings found during optimization is depicted in Fig. 6.
Value of the function fitness is equal to 350 (the longest mishybridization of
three nucleotides and there are several the same sequences).

r
'+ a omputed set b, e b; b,

: i o1 b,

[A R RN RN R N NN R RO NN NN R R R URRR RN R ENR /RN NARANN LLCCCCII O
a omplementary set MO ,

} & compremear by B b} b

Fig. 7 The only allowed DNA set hybridization

The next task of the optimization was to find a set of |c| DNA n-nucleotide
strands which hybridize only in one way (Fig. 7) . The process of coding into
one 2|c|n binary string is depicted in Fig. 8. Its fitness function is described by
the formula shown below.

b, shafclr]rlcle]? [LTof1]xfofafoTfo o]1]1]
b, 5lr]alalcle]r]3 —» [o]1]1]of1]ofoTof1]1]o]1]
b, s[clalc]clrlal® [oTolxTofofolx a]oTaT1]o]

\

A
[1TolaTaTofaToTaTololaTaToTalaTolaToToTolaTaTola ToTolaToToloTaTaloTa o]
bl b2 b3

Fig. 8 Binary coding of a DNA strand set into one binary string

> fib)
f,(&) = —(100(K, . + 200others_count) + f, . (b) + J:lT

where fy(a;) - a fitness function of a DNA strand, k.. - length of the longest
mishybridization in the strand set, others count - equals 1 if there are more
mishybridizations with the same length in the strand set, otherwise - 0 (for > 4
equals 4), f7 ma(b) - the largest value of the single strand fitness function,
PRACY

J=1

25 - average of the single strand fitness function in the strand set.
c

With the same bounds and parameters for virus operations:

MaxVirusLife
WeekVirus

RVirusCreationProbability

10,
5,
0,

(these viruses cause mishybridizations)

parameters for GA:

GoodComplementarity
GA_PopulationSize

and for 1) = 20 the results described in Table 2 were obtained.

2,
20

Table 1. Results of optimal 20-nucleotide 20-strand set computation.

f2: a value max f1 avg fl max length | anumber

Genetic of DNA set | max. value of | avg. value of of fitness
Operations fitness the single of the single | mishybridi- | function

strand fitness | strand zation evaluations

fitness
uniform -1140.0 -350 -110.0 6 6300
crossover -1175.0 -350 -125.0 7 4400
mutation -1190.0 -400 -130.0 6 1200
without
reproduction
viruses
uniform -1132.5 -350 -102.5 6 6000
crossover -1165.0 -350 -95.0 7 10050
mutation -1152.5 -350 -142.5 6 10900
without
reproduction
viruses
The output of the program - a set of optimized DNA strands:

ACAACCTTGACGCAATTCGT TACTAATAGAGGAAGCATCG
GITGTTGAAGGGTCTTATGTA TAAAGCTCGGTCCCCCTGTA
GAGAAGAGGCCGTGITCGAG TTCGGCGAAGAATGT GCCCA
CGAAAGGCTTGGCAGGATTA TTATCGAGTACAAGACCTAG
CATGAAGAAGT CGAACGGTA GGTGGACCTACGAGTICTGTT
TTGAGCTGCACTGCTTGAAC AGTGAGAGCCGCCTATCTTA
GCCTGCTCCTGAACGTAGTT GCAACTTACTAGCGCTATAT
TTGAGACGGCGGTACTGAGA AGCCTACCAATGCAATCAAT
GAATCCTCCTCTAGTAGECC TTACGCTCTATCACACGAAC
CCCTGATGTACTGTIGITGIC AATGATGTCTCAACGTGTCT

6 Conclusions

We have presented the method of optimizing DNA strands suitable for DNA
computing by special designed genetic algorithms. In description of molecular

computing, applications, profits and problems relevant to DNA-based
technology were discussed and need for creation of a special DNA sequences
design tool is explained. Changes in sequences of oligonucleotides can be well-
controlled by viruses. They are to remember single strands with small own
complementarity and within constraints connected with weight and energy
stability. Viruses can have a variable length or are equal to 21 and overwrite
oligonucleotides. Proper design of oligonucleotide sequences is very important
for further development and applications of DNA computing.

Acknowledgments

This work was supported by the KBN Grant No 8T11F00816.

References

[1] L.M. Adleman, Moleallar Computation of Solutions to Combinatorial
Problems, Science266(11/1994), 10211024

[2] 3J. Mulawka, Moleallar Computing - promise for new generation of
computers, Proc. Workshop an Circuit Theory, Signal Processng and Appl.,
Budapest, 94-99, Warsaw University of Technology, 1997

[3] JJ. Mulawka, P. Wasiewicz, Obliczenia molekularne - nowy kierunek
technik informagyjnych, Informatyka 7/8, 1998

[4] M. Ogihara, A. Ray, Simulating Bodlean Circuits on a DNA Compulter,
University of Rochester, USA, 1996

[5] 3.J. Mulawka, P. Borsuk , P. Weglenski: Implementation of the inference
engine based on moleaular computing technique, Proc. |EEE Int. Conf.
Evolutionary Computation (ICEC'98), Anchorage 493-4981998

[6] L.M. Adleman, On Constructing a Moleaular Computer, University of
Southern California, Los Angeles, USA, 1995

[7] T. Glanvill e, The Intel ASCI Red Supercomputer, 1997

http://www.frontiernet.net/~tglanvil/ ASCI/Report.htm

[8] E. Baum, Building an Assciative Memory Vastly Larger Than the Brain,
Science, vol.268 583-585 April 1996

[9] T.A. Bass Gene Genie, 1995

http://www.cs.princeton.edu/~dabo/biocomp/mol ecul ar.html

[10] K. Langohr, Sources of Error in DNA Computation, University of
Ontario, 1997

[11] R. Lipton et a., Making DNA Computers Error Resistant, Princeton
University, 1996

[12] D.E. Goldberg, Algorytmy genetycznei ich zastosowania, WNT, 1995

[13] Z. Michalewicz, Algorytmy genetyczne + struktury danych = programy
ewolucyjne, WNT, 1996

