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Focus: Toward Soft Hardware

Molecular genetic programming

P. Wasiewicz, J. J. Mulawka

Abstract The paper addresses a new implementation of
genetic programming by using molecular approach. Our
method is based on dataflow techniques in DNA com-
puting. After description of fundamental operations on
DNA molecules and construction of logical functions the
genetic programming method is introduced. We propose a
way to handle these graph encoding molecules and which
can be considered a genetic programming algorithm; a
short discussion about experiments in implementing parts
of this procedure is added.

Keywords DNA computing, Evolutionary programming,
Genetic programming, Data flow computer

1
Introduction
Genetic programming [1, 2] has been recently developed as
one of evolutionary algorithms. Their earlier implementa-
tions are called: genetic algorithms [3] and evolution
strategies. On the whole, genetic programming is a meth-
odology to solve problems by genetically breeding popu-
lations of computer programs. In such an approach for a
particular problem sets of functions and terminals are
created. An initial population of LISP-like expressions is a
collection of random tree-like or graph-like compositions
of fundamental functions and terminals. Each expression
called also a program represents a possible solution to the
problem and is evaluated against this problem. Genetic
operators of selection and crossover are applied to create
new populations of programs. Evolutionary process is
continued until either a solution is found or a maximum
number of generations is reached. Thus, while terminate
condition is not true, the following cycle is performed:
increase the number of generation; select population(t)
from population(¢ — 1); recombine population(¢), using
crossover and mutation operators; evaluate population(t).
With the help of genetic programming, genetic opera-
tions on graph-like structures are performed. These
structures can describe e.g. logical functions. Genetic
operators like selection and crossover create new popula-
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tions of graphs in order to find the most appropriate so-
lutions. However, in traditional computers such programs
are not performed in parallel yet. In the von Neumann
machines instructions are written in the memory one after
another except for those after instructions of jumps to the
other memory parts. Instruction pointer aims usually at
the ready to sending (to a computational unit - processor),
next instruction. Multitasking, sometimes real-time and
with parallel execution systems e.g. Unix and Linux use the
very quick task exchange in the computational unit. Such
unit can execute only one task. More privileged tasks are
performed more often. Even after adding several thousands
of processors there are still great problems with fully par-
allel execution of tasks. And some tasks are still performed
in the sequences on appropriate computational units.

On the other hand, dataflow computers have fully par-
allel architectures. The execution of a program does not
depend on the sequence of the following one after another
instructions, but on the data flow. Sending the instruction
to the processor depends on the availability of all its data
arguments. Every ready instruction can be at once exe-
cuted. Data is held directly in the instructions. Results of
computation are sent to the next instructions as special
tokens with data. This asynchronous, parallel execution
without the shared memory nor the counter program
enables the creation of massively parallel computers [4].
However, dataflow techniques are in the research stage.

In the dataflow unit a program is described in the
structure of the directed graph. In recent years much
attention has been devoted to DNA computing [5-16]. It is
interesting to consider representation of the directed
graphs by means of DNA molecules. In the next points we
introduce a concept of molecular genetic programming.

2
Fundamental operations on DNA molecules
DNA computing [5, 7, 17, 18] is a new way of information
techniques implementation performed in real time during
chemical reactions. In such an approach a single molecule
is treated as an independent processor. A molecule anneals
to another one chosen almost at once even from several
million molecules placed in a very small volume. Two
appropriate molecules attract each other by chemical
means like a key and a lock. With this methodology it is
possible to construct an associative, quick memory vastly
larger than a human brain [6].

In DNA computing a DNA string or so called oligo is
represented by a sequence of four basic nucleotides and is
usually described by letters A, T, G, C. It may exist as a



separate DNA fragment or within a longer one e.g. a string
w may be denoted by a sequence: 5’AGTC3’ or may exist
within a longer string z = 5AGAAGTCCTA3'. Up to now
several DNA computing notation standards was worked
out e.g. DNA-Pascal, splicing [10, 19-21] and other

[11, 22-24]. Here we introduce our symbolic representa-
tion, which is useful for molecular genetic programming.
Digits 5, 3’ denoting orientation of a DNA string can be
replaced with symbols | ). The length of the string w is
denoted by: |w|, and its value is equal to a number of
symbols forming the string w e.g. |AGTC| denotes a length
of four basic symbols: nucleotides. Using exemplary
strings we can write:

w = |w) = |AGTC)

x = |x) = |[TCAGTCTAG)

z =|z) = |[AGAAGTCCTA) < z = |AGA xwx CTA)
s = (s| = (GATGACTGA|

|w| =4, |z| = 10

It should be noticed that a null string denoted by a symbol
¢ is a set with zero basic symbols. Thus |¢| = 0. In DNA
computing the null string represents logical zero. A right
part of the string w is described by a symbol ” in the
upper, right index of the letter w: w”, and a left part of the
string by a symbol ' in the upper, right index of the letter
w: w'. If a number of string parts is greater than three, then
in the upper, right letter index an ordinal number is placed
e.g. the string w is divided into four parts: w/, wi Wi v,

A string complementary to w is described by the same
letter, but with an added symbol tilde ( ~ ) this means w.
Two complementary strings w and w create after hybrid-
ization a double stranded string w made of complementary
pairs A =T, T = A, C = G, G = C. Note that a string with
an orientation 5 — 3’ is always the upper string or a single
string, and a single string with an orientation 3’ — 5’
should be underlined.

- |w) { WJ
w= =12

Wl |w
Operations on DNA oligos may be described in the
following way:
1. Hybridization or Renaturation means connecting of
single complementary DNA strings and forming double
stranded molecules. This operation is caused by cooling
down heat the test tube reaction solution and denoted by
symbol 1.
2. Denaturation means disconnecting single complemen-
tary strings from double stranded DNA molecules and is
caused by heating the test tube reaction solution. Usually
this operation is connected with the operation of mixing
the solution. It is denoted by heat T.
3. Cutting of a double DNA string into two parts is exe-
cuted in DNA computing with the help of enzymes. This
means that a given string z may be digested by the enzyme
in the presence of a hybridized complementary to z (at
least in the neighbourhood of a place to cut) string de-
noted by a letter v. The enzyme with an ordinal number
equal to 5 cuts the string z together with the string v what
is described below.
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A sign + at the side of a DNA string describes a sticky end
of it shorter than the nearest complementary oligo. A sign
— at the right side of the DNA string describes a sticky end
of it longer than the nearest complementary string. The
same signs at both ends of complementary strings mean
that these strings form a double stranded oligo with blunt
ends. Note that the sign + may be additionally applied to
mark a symbolic disjunction between two hybridized
primers, and the sign * to denote concatenation of strings
(after hybridization and ligation) and the sign — to
lengthen a string. These rules are obligatory only within
brackets [ and | or ( and ).
4. Concatenation of two strings is a string formed by
placing the second string after the first string without any
gap. In DNA computing joining of two strings is done
during hybridization and ligation. They form together a
longer single string. In order to concatenate two oligos w
and x the complementary to them in the place of joint,
hybridized third one is needed. Usually at least eight
complementary pairs without a gap are necessary (four
pairs for each joining string). The third string y is a con-
catenation of the oligo complementary to the first string
right part w” and the oligo complementary to the second
string left part x’.

y =w"xx = (TCAGAGTC|

Thus concatenation of two strings w and x in the presence
of the third one y is denoted by:

wx =w*x=w+x = {w,x} or

W+ x :*> Wk X
wx = |[AGTCTCAGTCTAG)
|wx| =13

In the given above quotation the symbol + means ap-
proach of two DNA strings from the set {w, x} with the
help of the complementary to them and hybridized third
one y written above the sign of equality. The formed
double string enables concatenation of first two DNA
fragments into longer one with the help of the ligation
process. The symbol * means in this case the concatena-
tion operation and the symbols = or = its execution. The
letters of joined strings after concatenation can be sepa-
rated by the symbol %, but it is not necessary. The null
string is the neutral element for concatenation this means
EXW=Wxe=wW.

5. Amplification (PCR) encreases a number of double DNA
strings chosen by specially designed primers two times in
each cycle. The ends of these primers (square brackets)
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denote ends of amplified oligos. A number of PCR cycles is
given in the upper, right corner of the right square bracket.
If the number is unknown it is replaced by a sign $. After
tens of amplification cycles in the test tube there are
millions of chosen DNA fragments copies, which are in
the majority.

heat |; w = a[w]$b; heat 1;

Given above amplification of double string can be de-
scribed in another way as an algorithm:

a x w — — % b
[ pa)*
[p1 ?
a * — — w % b
w o — — x b
$ ~
- [ ng :[Wf
[p1 ] w
a x - — w

where three amplification cycles are presented, and addi-
tional primers p;, p, are short oligos complementary to
small parts of the given double string. They are usually
added in great quantities to the test tube before amplifi-
cation. Every amplification described above is done in one
cycle between cooling (heat |) and heating (heat 7).
6. Mixing of DNA fragments enables their uniform dis-
tribution. It improves search for good hybridizations in
the space of all possible ones.

A formal language may be created from DNA strings.
The set of all single DNA strings over the alphabet
A ={A,T,G,C} is called the basic language of DNA
computing and denoted by A*.

3

Representing graphs by DNA molecules

for evolutionary programming

In the dataflow computers genetic programming may be
executed on the populations of graph-structures describing
logical functions [9, 15]. Each logical function consists of
three logical operations and their arguments v;: product -
conjunction (AND A), sum - disjunctive conjunction (OR
V), negation (NOT) [25]. The construction of the graph
starts with creating nodes, which are related to function
arguments plus one node - root - named x. Arcs reflect the
layout of operations in the expression. The conjunction
operation e.g. a A b adds to a node representing the argu-
ment a only one successor node representing b as is de-
picted in Fig. la. The disjunctive conjuction operation e.g.
a V b adds to the final node of the last operation (or x) two
successor nodes representing arguments a and b as is de-
scribed in Fig. 1b. If the predefined node x is connected by
the operation AND only with one node g, it can be bypassed
and replaced with the node a. It should be noted that some
logical functions have degenerated structures e.g. a function
f = a A ahas its structure simplified to a and a function
f =aVaAbsimplified to f = a A b. So the easiest to code
are sums of function argument products. Thus, the function

Fig. 1a-c. Exemplary graphs a) f(a,b) =aAb,b) f(a,b) =aVb
and c) f(a,b,d) = aV (b A d); all with the predefined first node x

result is equal to TRUE when at least one leaf of the graph
can be reached from the root through the successive nodes
set only to TRUE.

Implementation of the simple, evolutionary algorithm
on the graphs looks like this: for given arguments with
values TRUE or FALSE one mixes the graphs performing
the crossover operation are chosen. The best ones means
such ones with their value after computing equal to a value
of TRUE. Exchanging parts of cut arcs so called crossover
is the main operation in the cycle of genetic programming.
The finishing operation is checking whether the logical
function has an appropriate structure, which after
computing has a result value equal to TRUE.

In order to describe the mentioned method, the
exemplary logical function is denoted by:
fI{Vl,Vz,...,Vl’} = X 5
where vy, v,,...,v; fori € {1,...,M} (M is a number of
function arguments) and x can have one of two values:
TRUE or FALSE.

The created logical function graph is the directed graph
® = (V,E), where V is a set of function argument nodes.
This means V = {vy,va,...,vi} = {{x;i * z; x y;|} for
ic€{l,...,N} and N = M (a repeating of an argument in
the function does not increase a number of nodes in the
graph), where N is a number of graph nodes, and M is a
number of function arguments, and E is a set of ordered
node pairs called arcs. The arc from a to b is denoted by
a — b. One can write E = {v; — v;} = {(v] * s x v/} for
i,je{l,...,N} and h € {1,..., G}, where s, is a restric-
tion place for cutting enzymes and G is a number of such
places. The path from v, to v, in the graph is a sequence of
nodes vy, vy, ..., Vi, kK > 1, such that every v; — v;;; is an
arc for each i € {1,...,k}. If a — b is an arc, then a is a
predecessor of b, and b is a successor of a. The mentioned
path is denoted by v; - v. First nodes has no predecessors,
and final nodes has usually no successors, but in our
examples some of them have successors.

As is seen, single strings representing graph nodes
consist of three sectors from the following groups:

X = {x17x25x3a s ,XM}, Z= {ZlaZZaz:iv s aZM})

Y = {y1,¥2,¥3,--.,ym}. Single strings representing graph
arcs are also made of three sectors from the following
groups: X = {x1,%2,%3,...,%xm}> S = {51,82,83,...,56}>

Y ={y1,¥2,¥3,-..,ym}. If a node v; is denoted by

(x; * zi * y;|, and his successor v;1; is described by

(xit1 * ziy1 * yir1), then the string of the arc between them
Vi — viy1 is denoted by (y; * sy * xi1] or (v} % s, % Vi 4.

The above model of the logical function graph does not
use the negation operation (NOT) by now. The —x and
x are treated as separated arguments and negative
operations have to be transformed to normal operations



with negative arguments. A node representing a negative
argument (a positive argument is called v;) is denoted by
vk = ¥; and is represented by a string (xy * z; * yy| for
k # i. Only the sector z; is complementary to the sector z;
of the positive argument string v;. The given method
cannot calculate all Boolean functions and requires further
research. It is true that every string in DNA computing is
represented by a hard to count group of the same strings.
Thus, it is impossible in practice to hybridize equal
numbers of v; and ¥;, but it is possible to destroy one sort
of DNA strings, if one string group is smaller than another
one and two strings after hybridization can be destroyed
by enzymes as is depicted in Fig. 2.

After creating graphs one should synthesize DNA
strings representing all function argument nodes (positive
and negative) and the special node x:

x=<x| )
Vi:<vi| foriE{l,...,Np} )
vi=(¥| forie{l,...,N,} ,

where N, is a number of positive function argument
nodes, and N, is a number of negative function argument
nodes, and N, + N, = N; and all graph arcs (and all |s)):

x — v = (x"ksp x|,

vi — vj = (V] % s % V]
forije{l,... Nyandhe{l,...,G} .
S = |5) for he {1,....G} ,

where N is a number of graph nodes, and an additional
DNA fragment p = |X) is used in the amplification of
paths in the graph.

As a result only the DNA string p is complementary to
the string x. The remained strings are not complementary
to each other and do not hybridize with each other. Of
course, this fact depends on appropriate coding of DNA
strings sequences [8, 15]. Exemplary experiments on
synthesized DNA strings were implemented and described
in [15].

4
Proposed method of genetic algorithm

The genetic programming algorithm cycle proceeds as
follows:

1. Initiation
e Ready for use arc strings together with comple-
mentary to them strings §;, are added to test tube
T;.
2. Operation of cutting arc strings by enzymes is per-
formed:

forke {1,...,L}and h € {1,...,G} doin parallel
begin

heat |; { 15 J
Xk iSh Jk
§/ + SN//
Xk s, + s,

where L is a number of arc strings and G is a number
of restriction places.

3. Concatenation of arc parts. New arcs are created and
in the consequence new function structures:

; heat 1;
)’k‘ eat |

end

Fig. 2a, b. Implementation of the negation
(NOT): a) two oligonucleotide sets
(arc strings are here without sectors zx),

¥ b) a logical function graph with g;
E - an enzyme restriction site

109



110

forie{l,...,L}andje {1,...,L}
and h € {1,...,G} do in parallel
begin

'5*/ _I_ g//
heat |; 51 + z
Xi S, + Sp

* Sy x5,

= |V : hooh J; heat T;
Xi 15p*Sp )

end

where L is a number of arc strings and G is a number

of restriction places.

Finding values of function results and estimation of

function graph complexity. Thus, a certain quantity of

DNA from the test tube T; is transfered to the test tube

T, and the following operations are executed in T:

e The string p and negative argument strings are
added to the test tube T,. System waits for input
signal strings.

e Input signals are strings representing arguments
with values equal to TRUE (logical one), which
are added to the test tube in this step point
(T, = T, Uv;). The quantity of v; must be larger
than the quantity of v;.

e Operation of cutting by an enzyme number 2
strings consisted of hybridized v; with v;:

foric {1,...,Ny},ke{1,...,N,} and
vk = v; do in parallel

begin
heat |; Yk o1z Xk
Xi iZi )i
Yk Z + Zl x
= xi 7z + + 7! ) ; heat T;
i i i i
end

where N, is a number of arguments v; with val-
ues equal to TRUE, N, is a number of negative
arguments vx = v; for i € {1,...,N,} and
ke{l,...,N,}, N, + N, = N.
e for w=1to W do in parallel
begin
$ ~
X
heat |; Pp ] = { WJ; heat T;

— Xy Xw

for i =1 to I do in parallel begin

— xNW
heat |; { [ v +]$‘
= |Vx~w + ‘; heat T;

end
end

where W is a number of logical functions in the
genetic programming population, and I - a
number of first node successors.

e Cycles of amplification:

fori,je{l,...,N}andwe {1,..., W} do begin
$ ey
heat |; |V[p ) = |wa VZJ; heat T;
— Xy Vi Xy * Vi
— X

[ Vi—>Vj 'H

X Vi +
=
— Xw ViV

heat |; Pp }$ J

- Xw ViV

xmi — IA/;
= ; heat T;
Xw - Vi—=Vj
— Xﬁi — {/;
heat |; §
[ +]

Y

Xy - Vi — V]
=
— X,'W-Vj

heat |; |V

; heat T;

; heat T;

end,

where N is a number of graph nodes, and w is an
ordinal number of logical functions:

w e {1,..., W}, and v; is a successor node of v;
and at the end of amplification there exists paths
Xy - v; and x,, - v; from first nodes to final nodes
in the graph.

e Detection of the final results as the evaluation
process. In the final DNA solution detection of
the correct paths from first nodes to final nodes
is performed. It is enough for a function to have
only one such correct path in order to have a
result value equal to TRUE. In addition new
function graph structures are checked. Found
values decide whether DNA computing algorithm
should be terminated.

5. If termination is not executed, the next algorithm cycle
begins from the step point number 2.

In every algorithm cycle (in T;) there are four cycles of
lengthening 3’ ends of single DNA strings. Every function
graph has only one first node x,,. In the above mentioned
algorithm there are involved W logical functions. System is
so parallel that new function adding does not change the
mentioned algorithm structure and its execution time. In
parallel the same appropriate algorithms (each for one
function) will be executed at the same time.

In Figs. 3-5 the process of the arc crossover in the
graph f =aV (b A (cV d)) is illustrated. Respective arc
oligonucleotides are prepared for cutting by an enzyme as
is depicted in Fig. 3a. Strings s; create double molecules
with them enabling their cutting. After cutting by the



Fig. 3a, b. Implementation of the arc
string part crossover - situation before
cutting by an enzyme, a) oligonucleotides,
b) a logical function graph
f=avVv(bA(cVvd)

enzyme the solution is heated. During this operation en-
zymes are destroyed and DNA molecules are denatured as
is seen in Fig. 4a. All created strings are mixed in the test
tube and during hybridization again anneal (Fig. 5a). In

Fig. 4a, b. Implementation of the arc
string part crossover — situation after
cutting by an enzyme, a) oligonucleotides,
b) a logical function graph
f=av(bA(cVvd)

the given case after cutting, heating, mixing and hybrid-
ization 18 different, logical functions can be obtained. One
algorithm cycle (4 amplification cycles) is enough to have
all these functions in the test tube.
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