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Abstract

Self-assembly of DNA is considered a fundamental operation in realization of molecular logic circuits. We propose a new
approach to implementation of data flow logical operations based on manipulating DNA strands. In our method the logic gates,
input, and output signals are represented by DNA molecules. Each logical operation is carried out as soon as the operands are
ready. This technique employs standard operations of genetic engineering including radioactive labeling as well as digestion
by the second class restriction nuclease and polymerase chain reaction (PCR). To check practical utility of the method a
series of genetic engineering experiments have been performed. The obtained information confirms interesting properties of
the DNA-based molecular data flow logic gates. Some experimental results demonstrating implementation of a single logic
NAND gate and only in one vessel calculation of a tree-like Boolean function with the help of the PCR are provided. These
techniques may be utilized in massively parallel computers and on DNA chips. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Digital logic circuits create the base of computer ar-
chitecture [1,2,28]. In constructing computer hardware
different types of logic gates, e.g., OR, AND, XOR,
NAND are utilized. In conventional von Neumann ma-
chines, a program counter is used to perform in se-
quence the execution of instructions. These machines
are based on a control-flow mechanism by which the
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order of program execution is explicitly stated in the
user program.

In a data flow machine the flow of the program
is not determined sequentially, but rather each op-
eration is carried out as soon as the operands are
ready. This data-driven mechanism allows the execu-
tion of any instruction depending on data availabil-
ity. This permits a high degree of parallelism at the
instruction level and can be used in recent super-
scalar microprocessor architectures [31]. However, in
the field of parallel computing, data flow techniques
are still in the research stage and industry has not yet
adopted these techniques [3]. One of the approaches
suitable for massively parallel operations seems to be
DNA-based molecular computing [4], of course with
the help of DNA chips. These high density oligonu-
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cleotide DNA arrays were developed as tools for se-
quencing by hybridization (SBH) [22,24]. Now it is
possible to design and synthesize in situ on the support
using light-directed solid phase combinatorial chem-
istry [23,25] square inch high-density oligonucleotides
arrays for monitoring the expression levels of nearly
all (about 6500) yeast genes equaling no more than
14 MB of information [17].

The primary objective of this contribution is to
show striking adequacy of molecular computing for
data flow techniques. Logical operations considered
here are based on self-assembly of DNA strands
[6–8,18]. By self-assembly operation we understand
putting together fragments of DNA during the pro-
cess of hybridization [5]. We present a new approach
to implementation of logical operations suitable for
data flow architectures and report first experiments
with the second class enzyme and calculation of the
Boolean function with PCR in one vessel.

2. Computing properties of DNA molecules

A number of papers have appeared on general
concept of molecular computers [9–12]. In such an
approach computations are performed on molecular
level and different chemical compounds can be uti-
lized [32]. Deoxyribonucleic acid (DNA) is usually
used in molecular computing because this compound
serves as a carrier of information in living matter and
is easy to manipulate in genetic engineering labora-
tory.

The DNA molecule is composed of definite se-
quence of nucleotides. There are four different nu-
cleotides in such molecule depending on purine and
pyrimidine bases present in the given nucleotides,
which we denote by the letter: A, T, C, G (ade-
nine, thymine, cytosine, guanine). Thus, the DNA
molecule can be considered as a polynucleotide or
a strand or a string of letters. Since the strands may
be very long, they can carry an immense number
of bits. Therefore, particular molecules may serve
as information carriers. Another interesting property
of DNA is that particular bases may connect with
each other together forming pairs: A with T and C
with G [33]. This process known as hybridization or
annealing causes self-assembly of DNA fragments.
It occurs when two DNA strands are composed of

matching (complementary) nucleotide sequences.
Due to favored intermolecular interactions particular
molecules can recognize each other. As a result a kind
of key–lock decoding of information is possible. The
self-assembly property may be utilized to implement
the memory of an associate type [27,29]. According
to Baum [13] this memory may be of greater capacity
than that of human brain. The other important feature
of self-assembling is that particular molecules may
be considered as processing units performing some
computing [30,31]. The following techniques of the
genetic engineering will be utilized in our approach:
synthesis of DNA strands, labeling, hybridization,
analysis by DNA electrophoresis, digestion of dou-
ble strands by restriction enzymes, synthesis of DNA
strands by polymerase chain reaction (PCR) [14,15].

Examples given below show our DNA notation cre-
ated in order to simplify descriptions of our experi-
ments. One letter marks one strand as is seen in Fig. 1a.
In our systems the upper strand usually presents data
and lower (underlined) — logic devices, rules and so
on. Therefore, they cannot be exchanged. Symbolsd
andc denote position of single strands in space. A cor-
ner of such symbol represents 5’ end, while an open
edge represents 3’ end. An underlined one is always
in the same position (3’ on the left, 5’ on the right)
even in other double-stranded oligos.

In Fig. 1b a sign+ at the right side ofb describes a
sticky end ofb shorter than the nearest complementary
stranda. In Fig. 1c a sign− at the right side ofb
describes a sticky end ofb longer than the nearest
complementary stranda. In Fig.1d the same signs−
at the same sides of complementary strandsa andb

mean that these strands form a double strand with blunt
ends. As is seen signs can be omitted or exchange by
the pair of+. If complementary strands have the same
letter, e.g.,a, then in order to distinguish them, a sign
tilde (∼) is added to the one.

In Figs. 2–6 examples of notation in different cases
are explained. Note that the sign+ may be addition-
ally applied to mark a symbolic disjunction between
two ligated strands and the sign− to lengthen a strand
&, of course only in the equations, not in real exper-
iments. PCR may be used to lengthen an oligo by a
length of a sticky end of a primer. A DNA oligo has
its length. In our experiments its length will be writ-
ten in an upper right index of an oligo letter, e.g.,a345

and ligated DNA strands with letters in brackets(and)
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Fig. 1. Analytical representation of DNA strands.

Fig. 2. The exemplary double strands described in the above
equation.

Fig. 3. The exemplary double strands described in the above
equation.

Fig. 5. The exemplary double strands described in the above equation.

Fig. 4. The exemplary double strands described in the above
equation.

or | and |, e.g.,(bcd)123 = |bcd|123, |ab|67 = (ab)67.
In Figs. 4–6 PCR process description is presented. 5’
ends of both primers are like [ and ] brackets and an
unknown (or not so important to be written) number
of PCR cycles is defined by a symbol $. In Fig. 5 both
5’ ends of primers terminates exactly above 3’ ends of
strandsa andd. Thus, brackets [ and ] are just between
strand letters. Now the number of amplification cycles
is equal to 35. After PCR reaction in a vessel there are
millions of amplified oligos and very small amounts
of others. Therefore, a sign' is also utilized in Fig. 5.
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Fig. 6. The exemplary double strands described in the above
equation.

3. Data flow parallel processing units

In a data flow machine [16], data availability rather
than a program counter is used to drive the execution
of instructions. It means that every instruction that has
all of its operands available can be executed in par-
allel. Such an evaluation of instructions permits the
instructions to be unordered in a data-driven program
[3]. Instead of being stored in a shared memory, data
are directly hold inside instructions. Computational re-
sults are passed directly between instructions via data
tokens. In a data flow processor the stored program is
represented as a directed graph. Such the graph may
be reduced by evaluation of branches or subgraphs.
Different parts of a graph or subgraph can be reduced
or evaluated in parallel upon demand. Nodes labeled
with particular operations calculate a result whenever
the inputs are valid, and pass that result on to other
nodes as soon as it is valid which is known as firing
a node. To illustrate this operation some process of
computation is described in Fig. 7. As is seen a node
representing a performed process has two incoming
branches, which represent inputs. The flow of data is
shown in these pictures by introducing data tokens de-
noted by black dots. In Fig. 7a there is a moment when
data on a single input has appeared and the processor
is waiting for a second data token while in Fig. 7b

Fig. 7. Successive phases of firing a node: (a) waiting for a second
data token, (b) ready to execute an operation, and (c) after firing
a new token is generated.

the processor is ready to execute its function and fi-
nally in Fig. 7c there is a situation after firing the
node. The data flow graphs usually are more compli-
cated and there are different types of operations ap-
plied.

Generally, molecular logic gates may be utilized in
constructing computer architecture based on data flow
graphs. Such graphs consisting of DNA strands can
exchange tokens as DNA single strings representing
gate inputs and outputs. Some sectors of strands can
transport values of variables or special constants. In
such a solution a number of gates–nodes (processing
units) and a number of data and control tokens may be
theoretically unlimitable. In Section 4 we demonstrate
how to realize data flow logical processing units using
DNA molecules.

4. A new concept of data flow logic gates

In classical computer any logic gate is an electronic
circuit that has one or more inputs and one output. In
such a circuit the electrical condition of the output at
any time is dependent on those of the inputs at that
time [1,2,28]. An alternative approach to implement
logic operations may be performed on molecular level
by self-assembly of DNA strands. In such methods
DNA molecules as is depicted in Fig. 8, respectively,
may represent the logic gates, input and output signals.

Assume that strands representing gates con-
sist of three sectors belonging to the follow-
ing groups: X̃ = {x̃1, x̃2, x̃3, . . . , x̃N }, Z̃ =
{z̃1, z̃2, z̃3, . . . , z̃

N
}, Ỹ = {ỹ

1
, ỹ

2
, ỹ

3
, . . . , ỹ

N
}.

Representing inputs strands are composed of two
sectors from groups:X = x1, x2, x3, . . . , xN , Y =
y1, y2, y3, . . . , yN . Representing outputs strands
consist of three sectors belonging to groups:X =
x1, x2, x3, . . . , xN , Z = z1, z2, z3, . . . , zN , Y =
y1, y2, y3, . . . , yN . The composition of DNA strands
from Fig. 8 are depicted in Fig. 9. To enable hybridiza-
tion process, input and output signal sectors from
the groupsX, Z, Y are complementary to adequate
sectors in logic gates strands:X̃, Z̃, Ỹ . This means
that two DNA strands can be connected together with
the two sequences in the following way:xi with x̃i or
zi with z̃

i
or yi with ỹ

i
. There must be one sequence:

xi or zi or yi in the first string and another comple-
mentary sequence:x̃i or z̃

i
or ỹ

i
in the second string.
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Fig. 8. Data flow molecular logic gate AND: a scheme of the gate, oligonucleotides representing the AND gate, input signalsI1, I2 and
a part of an outputI3.

Fig. 9. Data flow molecular logic gate AND execution: hybridized
oligos; A∗ — regions adding labeled radioactive adenine.

The mentioned two sequences hybridize each other
forming a double-strand fragment.

Thus the sectorsx1 andx2 of inputI1 andI2 strands
pair with matching sections (x̃1 and x̃2) in the AND
strand. Output signals are composed of input strands
and other DNA fragments. These fragments (z̃

i
) are

reserved to accomplish special tasks. For example,
they can transport additional information about logical
gates, nodes in a computer program, etc. The complete
molecule after annealing is shown in Fig. 9. In Eq. (1)
there is a symbolic description of the whole process.⌈

I1
⌋

,

⌈
I2

⌋
,

⌈
z
⌋

,

⌈
− & −

⌋

=
⌈

Ĩ1 z̃ Ĩ2

⌋
(1)

⌈
I1 z I2
+ & +

⌋
(2)

Note that the upper strand is labeled. Labeling of this
strand can be achieved by introducing radioactive,

biotinylated or fluorescent nucleotide. In our exper-
iments (see Section 6) in order to detect oligos we
have employed the technique of filling the gap (A∗)
made of several free tymine nucleotides in the area
betweenz1 and I2 by addition to a 3’ end ofz1 la-
beled radioactive adenine32PdATP using the Klenow
polymerase. All strands are ligated with T4 DNA lig-
ase and then the output strands are disconnected from
gate strands as is shown in Fig. 10 and then analyzed
using standard method of the DNA electrophoresis
in polyacrylamide gel. Single stranded radioactive
oligonucleotides representing output of the logic gate
are detected by autoradiography. Fragments of proper
length could be isolated from mentioned gel and used
as signal and data tokens in the next layer of molecular
gates. Both AND and OR gates have similar construc-
tion, but when OR gates have two or more inputs, then
two or more different molecules each with one input

Fig. 10. Data flow molecular logic gate AND detection: discon-
necting of the AND gate and an outputI3.
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Fig. 11. Ogihara’s molecular logic gate AND.

are created.⌈
I1

⌋
,

⌈
I2

⌋
,

⌈
&

⌋
,

⌈
s1

⌋

=
⌈

Ĩ1 + &̃

⌋
,

⌈
s2

⌋
=

⌈
&̃ + Ĩ2

⌋
(3)

⌈
I1 + & + I2
+ s1 + s2 +

⌋
(4)

Let us compare now our implementations with that of
Ogihara’s proposals [6,7]. Ogihara’s logic gate strands
from Fig. 11 and Eqs. (3) and (4) do not anneal to the
input strands and are bound to these input strands by
additional synthesized on-line splints as depicted in
Fig. 12, strands complementary in first half to an in-
put strand and in second half to a gate strand. Output
strands shown in Fig. 13 consist of ligated input and
gate strands. They are detected in a gel electrophore-
sis. In the case of an AND gate an output strand is
composed of two input strands and a gate strand sup-
ported in the middle. In the case of an OR gate an
output strand is made from one of two input strands

Fig. 12. Ogihara’s molecular logic gate AND: execution.

Fig. 13. Ogihara’s molecular logic gate AND: detection.

and a gate strand. Thus, logic gate strands are not sep-
arated. Therefore, it is not possible to use those gates
with DNA chips without problems.

5. DNA-based implementation of simple logic
network

A Boolean function is composed of binary vari-
ables, operation symbols, brackets and a symbol of
equivalence relation. The Boolean function describes
usually more complicated logic networks composed
of logic gates. Some number of connected logic gates
with sets of inputs and outputs is called a combina-
tional network. However, in a sequential network there
are not only logic gates, but also flip-flops with mem-
ory [1,28].

We have considered to implement simple com-
binational network by operations on DNA strands.
An example of a simple combinational network and
its implementation in DNA as well as its perfor-
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Fig. 14. Data flow molecular logic gate AND combinational net-
work: a scheme of the logic system, oligonucleotides representing
logic gates.

Fig. 15. Data flow molecular logic gate AND system first level
execution: hybridized oligonucleotides of gates AND1, AND2 with
oligos of inputs signals and parts of output signals; A∗ regions of
adding labeled radioactive adenine.

mance are shown in Figs. 14–17. The logic gates are
DNA oligonucleotides. Two gates AND1, AND2 are
self-assembling molecules. These two molecules an-
neal to DNA strand of the AND3 gate. The regions
named A∗ are for adding labeled radioactive adenine
by the Klenow polymerase to a 3’ end of oligonu-
cleotides as described in Section 4. It should be noted
that E1,2 restriction sites are ready for digestion if
there is a double DNA strand there. After hybridiza-
tion and ligation a process of digestion a double strand
molecule by restriction enzymes is performed. The

Fig. 16. Data flow molecular logic gate AND system second level execution: hybridized an oligonucleotide of the AND3 gate with
hybridized earlier oligos of gates AND1 and AND2; E1,2 restriction sites ready for digestion if there is a double DNA strand there.

Fig. 17. Data flow molecular logic gate AND system detection:
digestion by restriction enzyme of the restriction sitesE1, E2,
disconnecting of the AND gates and outputsI7 and I8.

enzymes cut the double strand in areasE1 and E2
yielding three fragments from which output strands
could be potentially rescued after strand separation. It
is necessary to remove enzymes and redundant strings
before further computation. The redundant strings are
removed in a process of electrophoresis.

Neighboring logic gates layers could be connected
with each other to form the combinational network.
A number of layers may be theoretically unlimitable
if the oligonucleotides are recycled during computing
after the execution of some number of layers. For con-
struction of our molecular gate layers one can envisage
use of solid support. These gates can be for example
attached to DNA chips. If the AND3 gate strand was
attached to the DNA chip and the AND1 and AND2
gate strands to the magnetic beads with biotin, then
output strings could be easily separated.

6. Initial results of experiments

To confirm oligonucleotide self-assembling as a
technique useful in data flow logical operations two
experiments were performed. Ten oligonucleotides
were designed for self-assembling. The lower strands
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are composed of longest oligonucleotides named
AND(30 bp), AND2(36 bp), AND3(42 bp) and the
upper strand of three other:I1(16 bp), SR(12 bp),
SR2(20 bp), SR3(24 bp) andI2(16 bp).

In the first experimentI1 and/orI2 were hybridized
to AND in presence of SR oligonucleotide. Typically
5–10 pM of each oligonucleotide were used and hy-
bridization was performed in T4 DNA bacteriophage
ligase buffer for 5–30 min in 40◦C. Under these condi-
tions formation of the SR/AND hybrid was preferred.
In the next step 5mCi of 32PdATP (3000 Ci mM−1,
Amersham-USB), 100 pM dGTP and 10ml of Klenow
polymerase (Amersham-USB) were added, and sam-
ples were incubated for 30 min at 37◦C. Afterwards
the temperature was lowered to 25◦C (to hybridize
I1 and/or I2 to AND) and samples were incubated
for 30 min. 5ml of T4 DNA ligase (Promega) were
added. Ligations were performed at 25◦C for 2 h,
and at 14◦C for 2–24 h. Ligation reactions were ter-
minated by addition of the equal volume of the stop
mixture (formamide with 0.05% bromophenol blue
and 0.05% xylene cyanol). Samples were denatured
by 5 min incubation in 80◦C and loaded onto poly-
acrylamide (8 or 20%) denaturing (8 M urea) gel.
Electrophoresis was performed under standard con-
ditions [14]. Radioactive single stranded DNA were
detected in electrophoretograms by autoradiogra-
phy (Figs. 18 and 19). Typically only proper single
stranded DNA fragments were detected as depicted
in Fig. 18. In the lane A the oligonucleotide SR was

Fig. 18. The first autoradiogram of ligation products and sequences of used DNA strands. Ligation products single stranded DNA were
analyzed by electophoresis in denaturing 8% polyacrylamide gel.

hybridized to oligonucleotide AND and radioactive
nucleotides (A∗) was added to 3’ end of oligonu-
cleotide SR by Klenow polymerase; in the lane B,
self-assembly of oligonucleotidesI1 and SR with
oligonucleotide AND; in the lane C, self-assembly
of oligonucleotides SR andI2 with oligonucleotide
AND. Oligonucleotide self-assembling was not dis-
turbed by addition of the random oligonucleotide
(100 pM per reaction) (in Fig. 19 A1, B1 and C1).

In the second experimentI1 and/or I2 were hy-
bridized to AND in presence of SR oligonucleotide
and to AND2 in presence of SR2 oligonucleotide.
Further steps were the same as during the first ex-
periment, but radioactive32 PdATP (3000 Ci/mM,
Amersham-USB) labeling adenine was exchange for
32γ ATP (7000 Ci/mM, New England BioLabs) added
to 3’ end of SR, SR2, SR3 by the same Klenow poly-
merase. Oligos, T4 DNA ligase (Promega) and ligase
buffer was incubated for 3 h in 14◦C, then for 12 h
in 4◦C. Results are depicted in Fig. 20. Experiments
with AND3 have not been so successful. Therefore
our logic system is incomplete, but there are enough
results to confirm our expectations.

7. Construction of logic NAND gate using genetic
methods

In theory of logic design [1] a simple NAND (¬&)
gate with two inputsI1, I2 and one output is described
by the truth table as shown in Table 1.
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Fig. 19. The second autoradiogram of ligation products and sequences of used DNA strands. Ligation products single stranded DNA were
analyzed by electrophoresis in denaturing 20% polyacrylamide gel.

Fig. 20. The sequences of two next logic gates AND2, AND3 and the third autoradiogram of ligation products made from AND1, AND2.
Ligation product single stranded DNA were analyzed by electrophoresis in denaturing 10% polyacrylamide gel.
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Table 1
Logic gate¬& inputs and outputs

I1 I2 I1¬&I2

0 0 1
0 1 1
1 0 1
1 1 0

In further described experiments all combinations
of inputs are implemented. In molecular computing
logic gates inputs and outputs are represented by DNA
molecules, strands. To enable hybridization process,
input signals are complementary to adequate sectors
in logic gates strands. Two strands, which are comple-
mentary, anneal to each other. This means stick or bind
together forming a double-stranded fragment. Imple-
mentation of the¬& gate is provided in Fig. 21. As
follows from this figure, it consists of three strands. A
first input strand is complementary to a sector of the
¬& gate. A second input strand is complementary to
the another¬& gate strand sector. If an input signal is
equal to 0, an adequate input strand is absent. If both
input signals are equal to 1 this means they are present
in a reaction, so an output of an¬& gate is equal to
0. Thus, a final molecule after annealing is illustrated
in Fig. 21. Equations of creation of the logic gate¬&
are the following:

Fig. 21. Implementation of a logic¬& gate: its scheme, its DNA strands representing the gate and input signals:I1, I2, its hybridized and
digested by the second class enzyme strands; if both input signals are present, the gate and the second input are destroyed.

When both input strands are present then appropriate
strands can be cut, digested by the second class re-
striction enzyme. An area closed in a rectangle is just
the restriction site of the second class enzyme, at the
ends of arrows — the digestion site of the second class
enzyme. The symbol # has a very important way in
describing enzyme restriction and digestion sites. The
first class enzymes have both sites in the same place
and two cuts only for double-stranded oligos, e.g., for
an enzyme with no 1 are two cuts: 1 from top and1̃
from bottom . Thus, their cuts are marked by lower
indices of the symbol #. The second class enzymes
have different restriction and digestion sites. There-
fore, they cut sometimes far from their restriction site,
where they connect to and their cuts at the restriction
site are marked by upper indices of # in order to iden-
tify enzymes, but at the digestion site — by lower in-
dices of # as in the case of the first class enzymes.

Annealing is the opposite process of melting tak-
ing place during heating, where a test tube is cooled,
permitting complementary strands to hybridize. If
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double-stranded DNA has no links between nu-
cleotides then a unified strand may be created by
DNA ligase, but in this experiment ligase is not uti-
lized. After hybridization a digestion process by a
second class restriction enzyme is performed. The
enzyme destroys¬& gate and inputI2 strand as is
shown in Fig. 21 only on that condition that two in-
put and one gate strands are present in the reaction
so a result of operation equals logic zero. Resulting
from molecular computation logic ones are the whole
¬& strands, and are extracted in the process of elec-
trophoresis. In future it will be possible to protect¬&
gate strands against the digestion and synthesize on a
DNA chip. Thus logic ones will be in this case when
the second input strand is cut.

In another implementation of NAND gate we ap-
ply a concept of a fluorogenic probe. A new idea in
the area of DNA sequence detection emerged in 1991
[26]. It employs the fluorogenic probe, which consists
of a strand with both a reporter (R) and a quencher
dye (Q) attached and separated. A fluorogenic probe
anneals specifically if and only if the target sequence
is present. Subsequently, not hybridized parts of the
probe are cleaved by special nucleases. Cleavage of the
probe destroys free single-stranded parts and causes
contacting of the quencher dye with the reporter dye.
In this case it generates an increase in the fluorescence
intensity of the reporter dye. It is possible to imple-
ment this methodology in the field of molecular gates.
In our case the fluorogenic probe will be connected
with the second strand and the second class enzyme
will destroy this strand causing an increase in the flu-
orescence. Of course, an image of a DNA chip with
such¬& gates can be obtained with a specially de-
signed scanning confocal fluorescence microscope.

It is a well-known fact that double-stranded DNA
may be dissolved into single strands (or denatured) by
heating to a temperature determined by the composi-
tion of the strand. Heating breaks the hydrogen bonds
between complementary strands. By the way since
G–C pair is joined by three hydrogen bonds, the tem-
perature required to break it is slightly higher than that
for an A–T pair, joined by only two hydrogen bonds.
This factor must be considered during designing se-
quences to represent computational elements [5,15].
In described below experiments sequences of strands
are balanced. This means about 50% for G–C pairs
and 50% for A–T pairs.

Fig. 22. The gate AND with overflow after adding two input logic
ones.

After digestion remained double-stranded DNA is
melted to single strands, because input signals are
attached to the gate strands with some sectors (Fig.
21). The output or gate strands may be then sep-
arated and extracted. For example the NAND gate
strands may have a 5’ end biotinylated and attached to
streptavidin-coated microplates, polystyrene, or mag-
netic beads or synthesized on a DNA chip. The not
bonded, cut input strands then may be washed and
the NAND gates used in next molecular computation.
Of course, the¬& strand have to be synthesized in a
special way in order not to be digested by the restric-
tion enzyme. In Fig. 22 the adding two inputs AND
gate with possibility of sending overflow (adding two
ones generates else another one during ordinary binary
computation) is presented.

8. Further laboratory verifications

To check our concept experimentally a simple logic
NAND gate (denoted by¬&) was designed and tested
in the laboratory of genetic engineering. The FokI en-
zyme was selected as the second class restriction nu-
clease.

According to Fig. 21 particular oligonucleotides
were chosen as shown in Fig. 23. Synthetic oligonu-
cleotides INF1 (I1, 16 bp), INF2 (I2, 19 bp) and
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Fig. 23. Sequences of experiment oligonucleotides together with
their appropriate lanes in the autoradiogram: in the lanes A with
both inputs equal to 1; in the lanes B with the first input equal to
0; in the lanes C with the second input equal to 0.

INF5 (¬& , 35 bp) were mixed in equimolar amounts,
60 pM each, in 20ml solution (10 mM Tris–HCl pH
7.5, 10 mM MgCl2, 50 mM NaCl, 1 mM dithioery-
thritol). The oligonucleotides were placed in 50◦C for
1 min and after that transferred to 37◦C. Half of the
sample was digested with 17 units FokI (Amersham)
restriction nuclease for 1 h at 37◦C. After digestion
5ml formamide was added to the digested and control
samples, denatured at 80◦C during 1 min and applied
on 15% polyacrylamide gel containing 7 M urea and
TBE buffer. The gel was run until bromophenol blue
passed 15 cm. After that the gel was soaked in SYBR
Green II RNA gel strain (Molecular Probes) and
photographed. The strands were cut by the second
class enzyme in such a way as described in Fig. 23.
The photographs of electrophoretic gel are shown in
Fig. 24.

In the provided experiment the NAND gate was con-
structed from the strand INF5 complementary to two
input strands INF1 and INF2. The first input strand
INF1 created with the strand INF5 a restriction site
for the second class enzyme FokI: GGATG N9/13 (the
eight position in the strand INF1 from the 5’ end). The
second input strand INF2 bonded to the strand INF5
enabled cutting by the enzyme. Thus, it demonstrates
that our biochemical reaction is equivalent to the logic
¬& gate operation under a condition that if both input

Fig. 24. The first electrophoretic pattern of synthetic oligonu-
cleotidesI1, I2 and ¬& hybridized and digested with the FokI
restriction nuclease.

signals are equal to logic one then a respective output
of the logic NAND gate is equal to logic zero. In or-
der to check whether lack of either one or both input
strands stopped digestion of the INF5 by the second
class enzyme, two successive experiments were per-
formed.

In the experiment as shown in Fig. 24 all combi-
nations of inputs (except that with two absent inputs)
were put in reactions. In the lane A both input strands
were present and in the lanes B reactions — the first
input strand was absent, during the C reactions —
the second input strand was absent. In the mentioned
figure it is placed a photograph of a gel used in the
process of electrophoresis. Lanes with the symbol —
were made of DNA taken from vessels before diges-
tion by the second class enzyme FokI: GGATG N9/13,
but after hybridization, and lanes with the symbol+
after hybridization and digestion. Results show that
the FokI enzyme may be useful for implementation
of the logic gate. The all states from the truth table
placed in Table 1 can be implemented. We have not
decreased the amount of strands in order to optimize
the reaction conditions. Thus gate and second input
strands did remain after digestion.

9. A new concept of calculating Boolean functions

After the first ideas and experiments [5–8,19–21]
we show a new method of calculating a Boolean
(logic) function interpreted as a graph or a tree which
is executed with the help of self-assembly DNA
molecules. The virtue of this method is to use auto-
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Fig. 25. The exemplary trees (a)x = f (a, b) = a ∧ b, (b)
x = f (a, b) = a ∨ b and (c)x = f (a, b, c) = a ∨ (b ∧ c) with
the predefined rootx.

mated DNA amplification process (PCR) in only one
vessel and check the experiment’s result only with
DNA length comparison process (electrophoresis)
during only few hours. Specially prepared DNA frag-
ments can be obtained from data flow machines or are
specially prepared. The exemplary Boolean function
is defined below as

f : {a, b, . . . } ⇒ x, where a, b, . . . , x

can be TRUE or FALSE.

Thus, each Boolean function can be formed only
with its arguments and three operations: negation
(NOT ¬), conjunction (AND∧) and disjunction
(OR∨). Each arithmetic or logical expression (in-
cluding the Boolean one or a rule with two premises
and one conclusion from a knowledge base) may be
presented as a tree. The construction of the tree starts
with creating nodes, which are related to function ar-
guments plus one node — root of the tree — named
x. Edges reflect the layout of operations in the ex-
pression, where each disjunction operation separates
engaged arguments (nodes) and each conjunction op-
eration lengthens participating ones. There are three
examples depicted in Fig. 25. The above model of
the logic function’s graph does not use the negation
operation (NOT) by now. The¬x and x are treated
as separated arguments and negative operations have
to be transformed to normal operations with nega-
tive arguments. Thus, the method cannot calculate all
Boolean functions and requires further research. The
function’s result is equal to TRUE when at least one
leaf of the tree can be reached from the root through
the successive nodes set only to TRUE. The new
method of calculating logic functions relies on the
above concept.

To explain this idea consider the implemented in
our laboratory logic function with four arguments as
follows:

x = f (a, b, c, d) = a ∧ (b ∨ (c ∧ d)).

The relating tree is depicted in Fig. 27a. If the pre-
defined nodex is connected by the operation AND
only with one node (a), it can be bypassed and re-
placed with the next one (a). The same mechanism
could be applied to the exemplary tree presented in
Fig. 25a — the nodex would be removed. After cre-
ating the function tree, it is necessary to design DNA
sequences with DNA molecules. The node oligos have
to be unique and meet the criteria of being not simi-
lar. Unwanted hybridization is not allowed here. Both
halves of an edge oligo ought to be complementary
with appropriate oligo halves of both nodes, which are
connected with this edge. The design is similar to that
one of Adleman [9] and ensures, that edges will an-
neal only with appropriate nodes as is seen in Fig. 26.
These neighboring DNA strands aresingleand their
presentation is not standard. The DNA fragmenta is
assumed as a sequence to be amplified, and the rest
of fragments(b, c, d, xp, a � b, a � c, a � d)˙— as
primers. Primers partially (in their halves) have iden-
tical sequences of nucleotides. An additional DNA
fragment (xp) will serve as a primer for PCR method
at the second end of (xa). TheTaq DNA polymerase
adds nucleotides to the 3’ end of primers annealed to
single DNA strands.

In Fig. 26 there are depicted nine double strands,
if we connect neighboring, completely complemen-
tary oligos. However, a number of internal reactions
on double-stranded oligos may be equal to five. For
one-time amplification reaction they may be written as⌈

xp
− a1

⌋
=

⌈[
xp
− a1

]$
⌋

=
⌈

ã1
a1

⌋

⌈ − ã1
a >> c +

⌋
=

⌈[ − ã1
a >> c +

]$
⌋

=
⌈

ã2
a2

⌋

⌈ − ã2
c +

⌋
=

⌈[ − ã2
c +

]$
⌋

=
⌈

ã3
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⌋

⌈ − ã3
c >> d +

⌋
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⌈[ − ã3
c >> d +

]$
⌋

=
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ã4
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⌋
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Fig. 26. The way of creating the longest DNA strand with one vessel PCR reaction (strands above aresingle).

⌈ − ã4
d +

⌋
=

⌈[ − ã4
d +

]$
⌋

=
⌈

ã5
a5

⌋
,

wherea1 < a2 < a3 < a4 < a5.
These single strands are created during PCR cycles

of lengthening primers annealed to DNA fragments.
Thus, white parts of single strands from Fig. 26 are
made byTaqDNA polymerase, but also with the help
of lengthened oligosxa or a. The successive cycles of
PCR process will create new DNA fragments, which
will be the lengthened sequences ofa. These new
copies are the possible ways from the rootxa to any
point in the graph expression (a node or an edge). It
is easy to see, that the lack of any primer (relative ar-
gument is set to FALSE) will not allow to build the
final solution — the lowest strandxd, only possible
solutions will be amplified.

Fig. 27b reveals the possibilities of getting TRUE
as a result. In this case, at least one of two sequences
must be realized: with a length of 376 or 418 (lengths
of hybridized fragments are written in upper indices).

Fig. 27. The exemplary tree ofx = f (a, b, c, d) = a∧(b∨(c∧d));
(a) and (b) without the bypassedx (a instead of xa); in (b)
additional information about lengths of DNA node and edge strands
created during PCR cycle.

No other combination of primers will create similar
solution. DNA fragments with the same number of nu-
cleotides cannot be obtained. All possible lengths of
created byTaq polymerase strands (from root to any
node in the tree) are shown in Fig. 27b. It is clear that
this coding is correct, because no other fragment com-
bination gives the length of 376 or 418. With the DNA
chips technology further obstacles will disappear. The
first halves of the oligosd from their 5’ end may be
synthesized on DNA chips, labeled with fluorescent
materials and detected on the microscope photograph
among many thousand other ones.

10. Implementation and verification of the
method from Section 9

To verify the concept presented in previous point we
performed the following experiments. It is the first step
to collect all required DNA fragments as described in
Fig. 28. The function’s arguments have the following
values:

a = TRUE, b = FALSE, c = TRUE, d = TRUE.

In this situation, the solution is naturally TRUE, be-
cause going from the root of the tree (a) it is pos-
sible to reach one of its leaves (d) through the node
c. The second solution (with the leaf-argumentb set
to FALSE) cannot be realized. The aim of the pro-
posed method is to show, whether it is possible to go
from the root of the tree to one of its leaves. In or-
der to prefer longer sequences in PCR process, two
parameters were tuned. The first method’s efficiency
depends on regulation of primer’s concentration, e.g.,
the whole experiment may be divided into five parts.
Table 2 presents all five parts and participating primers
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Fig. 28. Sequences of oligonucleotides used in the experiment.

Table 2
Subsets of oligos with their concentration

Part No. Used primers (concentrations are put in brackets (pM))

1 a � b (50)
2 a � b (5); a � c (50)
3 a � b (5); a � c (1); c (50)
4 a � b (5); a � c (1); c (1); c � d (50)
5 a � b (5); a � c (1); c (1); c � d (1); d (50)

with their concentrations. The last fifth subset was
used during this experiment, because the presence of
its primers satisfies assumptions described above and
depends on the results of previous experiments with
PCR [14]. As is shown, always the furthest primer
from the tree root has larger concentration. This en-
sures that when the competitive hybridization process
of PCR is taking place then the furthest primer is al-
ways preferred (the longest sequence will be ampli-
fied). It is the second method to increase the amount of
nucleotides of type G or C in primers. DNA fragments,
which mainly consist of G or C show better stability
of annealing and their hybridization performs faster.
In this experiment, the 18 bp part of primera � c,
which anneals tõa consists of 6 G or C. The 18 bp part
of ci, which hybridizes toc�̃d consists of 6 too, but

the second half ofc � d: 8 and the half ofd: 10. The
implementation started with preparing the following
reaction mixture (7×50ml): 10×TaqDNA polymerase
buffer (500 mM KCl, 25 mM MgCil2, Tris–HCl pH
9.0) (35ml), primer xp (7 ml), dNTP(14ml, 2.5 mM),
fragmenta (2ml), H2O (up to 50ml), TaqDNA poly-
merase (7ml, 7 units). Five samples of successive task
parts consisted of 46ml of MIX, 1 ml of each par-
ticipating primer shown in Table 2 and TE (10 mM
Tris–HCl, 1 mM EDTA, pH 8.0) till 50ml. It was the
next step to design a program of sequences for PCR
process presented in Table 3.

As is shown, this experiment does not only reveal
the Boolean function’s result (TRUE, because a leaf
d was reached; look at Fig. 27b), but it also confirms

Table 3
A sequence of operations with their appropriate times

PCR’s part Phase’s name Temperature (◦C) Time (s)

First part (12 cycles) Denaturation 94 60
Hybridization 50 60
Polymerization 72 30

Second part (18 cycles) Denaturation 94 30
Hybridization 60 30
Polymerization 72 30
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Fig. 29. DNA electrophoretogram of one-time PCR reaction.

all phases of lengthening (designed five parts of the
task). It confirms that presented method works.

The second part of amplification was performed
with increased hybridization temperature and less time
for reaction. It forced more stable DNA fragments to
participate more actively in the amplification process.
The result proved that the parameters of the stepwise
amplification leading to Boolean functions solution,
were correctly chosen. It was important to take care of
the amount of amplified sequences, because too many
copies would make a photo illegible. The further a
primer is from the root the later it participates in am-
plification. So, first samples (from Table 2) should be
removed from PCR machine earlier. Samples 1 and
2 (reachinga � b and a � c) were removed after
the 15th cycle of PCR, sample 3 (reachingc) after the
20th cycle, sample 4 after the 25th cycle and the last
subset at the end, i.e., after the 30th cycle.

When the whole PCR was finished 15ml of
0.05% bromophenol blue was added to each sample.
Then 7.5ml of each sample was put into the stan-
dard polyacrylamid gel and the electrophoresis was
started (170 V, 12 W). After 1.5 h the gel was soaked
for 10 min in ethidium bromide solution and pho-
tographed. The obtained result is depicted in Fig. 29.
It is worth considering, that the whole demonstration
with prepared oligos was done only during 4 h.

11. Conclusions

We have explored the possibility of implementa-
tion of data flow logical operations by DNA manip-
ulations. We have demonstrated that self-assembly of

DNA can be utilized to provide the flow of data. In our
approaches standard genetic operations are employed
among others digestion by the second class restriction
nuclease FokI. An appropriate DNA reactions have
been performed and their results confirmed our as-
sumptions. We think that our methodology has several
advantages when compared with that proposed by Ogi-
hara and Amos [6–8] and can be further improved by
the use of DNA chips in order to obtain their fluores-
cent images. Last described method in Sections 9 and
10 presents a new way of calculating logic functions
with an usage of DNA computing. The major virtue of
this method is to use one-time PCR in only one vessel
and electrophoresis. It practically shows the possibility
of quick implementation. Most significant fragments
are taken into consideration through the lengthening
process. Then the identification is performed with an
ordinary electrophoresis. Unfortunately, this method
does not include the negation operation. Implement-
ing logic circuits on DNA chips allows building more
sophisticated data flow devices. This would permit for
easy separation of output and input strands and would
provide an important step towards massively parallel
molecular computer. However, further research is re-
quired to gain better understanding of this area.
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