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Abstract

We propose a method of recurrent estimation of con-

ditional quantiles stemming from stochastic approxima-

tion. The method employs a sigmoidal neural network

and specialized training algorithm to approximate the

conditional quantiles. The approach may by used in

a wide range of fields, in partricular in econometrics,

medicine, data mining, and modeling.

Keywords: quantile regression, neural networks, data

mining, modeling, discretization.

1 Introduction

Stochastic dependence between variables is commonly

employed in various applications. Typically, the depen-

dence is presented in a form of the conditional expected

value as a function of the condition. Quite often yet the

expected value is not a sufficient representation of this

dependence, and the conditional distribution as a func-

tion of the condition is required. Estimation of con-

ditional quantiles as a powerful tool for modeling the

conditional distributions has been widely recognized in

the field of econometrics (see, e.g. [1, 2, 3, 7]) and

medicine (see, e.g. [6]). Parametric estimation of con-

ditional quantiles from a finite sample (quantile regres-

sion) leads to a problem of minimization of a functional

that is not differentiable in parameters, which require

non-standard minimization techniques, like the one pro-

posed by Koenker and Park [4].

In this paper we propose a method of conditional

quantiles as a function of condition based on stochas-

tic approximation (see e.g. [5]). The problem of non-

differentiability is then avoided. The proposed method

is recurrent and can be applied “on line”. We investigate

the use of sigmoidal neural networks, which allows to

estimate an entire family of conditional quantiles. Such

conditional multi-quantile models can be used in prob-

lems occurring in econometrics, and also in data mining

and modeling. Some of potential applications are dis-

cussed in the paper.
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2 Quantiles

In this section we introduce the notation and recall some

definitions related to quantiles and conditional quantiles.

Random variables will be denoted by capital letters, and

their values by lower case letters. For multi-dimensional

random variables and their values we use bold letters.

We typically represent distributions by their distribution

functions, and denote the distribution function of Y by

FY . Values of the conditional distribution of Y con-

ditioned on X = x will be denoted by FY |X=x(y) or

FY |X(y|x).

Definition 1 (Quantiles) Consider one dimensional

random variable Y of distribution function FY . For

a fixed α ∈ (0, 1), the α-quantile qα is defined as any

number y that fulfills the relations

P (Y ≤ y) ≥ α

P (Y ≥ y) ≥ 1− α
(1)

It can be easily seen that while such y always ex-

ists, it is not necessarily unique, since (1) may be ful-

filled by all points of some interval. To avoid non-

uniqueness, it is customary in such cases to choose a

representative of the set of points that fulfill (1), typi-

cally by taking the lower end of the interval. With this

addition, qα as a function of α is an inverse function to

the distribution function and is defined everywhere on

(0, 1). This enable to formulate the following property.

Proposition 1 (Representation Property) Any one-

dimensional distribution is defined by the family of all

its quantiles.

The equation qα = F
−1(α) takes place for all α ∈

(0, 1) such that F−1(α) is determined.

The representation property enables to approx-

imate distribution functions through their quantiles.

More specifically, we may formulate the following

proposition.

Proposition 2 (Approximation) Any scalar distribu-

tion can by arbitrarily well approximated by a finite

number of quantiles.
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0.3-quantile of PY |X=x
0.7-quantile of PY |X=x

Drawings from P

Figure 1. A sample from a two-dimensional distribu-

tion FX,Y and two conditional quantiles: q0.3(x) and

q0.7(x). As little as two quantiles already give some

representation of the distribution function.

Consider a discrete distribution Sn concentrated at n
equi-probable points, where i-th point is located at (i−
0.5)/n-quantile of a distribution F . It is straightforward

to show that Sn weekly converges with n to F , hence

Sn may serve as an approximate discrete distribution of

F .

Note that the Approximation Property may serve

as the base for sampling from the approximating distri-

bution described above.

Definition 2 (Conditional Quantiles) Let Y be

a scalar random variable Y , and X be a random

vector, and assume that the conditional distribution

FY |X=x is well defined. The conditional quantile

qα(x) is defined as the α-quantile of the conditional

distribution FY |X=x

The conditional quantiles are functions of the condition

and may approximate the conditional distributions. Fig-

ure 1 shows how only two conditional quantiles qα(x)
can approximately represent the conditional distribution

FY |X=x for any given value of x. If the quantiles of

X are also known, the joint distribution of (X,Y ) can

also be approximated.

3 Approximation of conditional quantiles

To approximate the conditional quantiles we may

use any parameterized approximator, for example

the multilayer perceptron. Denote by Nw(x) =
[N1,w(x), . . . , Nn,w(x)]

T the output vector of a neural

network Nw parameterized by the weight vector w, and

whose input is equal to x. We assume that Ni,w(x) are

continuously differentiable functions of w for all x and

i = 1 . . . n. This assumption is satisfied, for instance,

by sigmoidal multilayer perceptrons.

Let (X, Y ) be a random variable and consider the

problem of approximation the conditional distribution

FY |X by the use of quantiles. In this order we need to

approximate a set of quantiles of the conditional distri-

bution, of orders α1, . . . , αn ∈ (0, 1) evenly covering

1-a a

L y,N( )

y-N

a

Figure 2. The loss function used in quantile estimation

the interval (0, 1). Here we design a n-output neural

network Nw(.) that approximates such quantiles. First,

we introduce a certain convex minimization problem for

a neural network and prove that its solution appropri-

ates the desired set of conditional quantiles. Then, we

propose a training regime that make weights w of the

network Nw(.) to approximate this solution.

For simplicity, we first consider a scalar α ∈ (0, 1)
and design a network Nw with a single output that ap-

proximates the α-quantile of the conditional distribution

FY |X. Define a loss function L. (Fig. 2)

Lα(y,N) =

{

(y −N)α, y ≥ N
(N − y) (1− α), y < N

(2)

This function can be understood as a momentary loss

for a network whose output is equal to N while the

desired value is equal to y. Now we assume that the de-

sired output Y is random, and consider the expected loss

for a given value x of the random variable X , namely

Qα(x,N) = E
(

Lα(Y,N)|X = x
)

(3)

We consider the following minimization problem

min
h(·)
E

(

Lα(Y, h(X))
)

(4)

Since

E
(

Lα(Y, h(X))
)

= E
(

E
(

Lα(Y, h(X))|X
))

= E
(

Qα(X, h(X))
)

problem (4) is solved if h(x) minimizes Qα(x, h(x))
for almost all x.

Theorem 1 Suppose the conditional expected value

E
(

Y
∣

∣X
)

is defined almost everywhere. The solution

to (4) is equal to α-quantile of FY |X.

Proof: By definition

Qα(x, N) = (1− α)

N
∫

−∞

(N − y)P (dy|X = x)

+ α

∞
∫

N

(y −N)P (dy|X = x)

(5)

We transform the formual above in two steps. First we

split the integration interval into two parts for an arbi-

trary constant c. Second we differentiate by parts. We
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obtain:

Qα(x, N) = C(c)−αN+

N
∫

c

P (Y < y|X = x)dy (6)

where C is another constants. Let fix x and consider

the derivative

dQα(x, N)

dN
= P (Y < N |X = x)− α (7)

= 1− α+ P (Y ≥ N |X = x) (8)

Note that the derivative does not depend on c. If N is

smaller then the α-quantile, then by (7) the derivative

is smaller then 0. Reversely, by (8), if N is greater

than the α-quantile, the derivative is greater then zero.

In the non unique case, the derivative is equal to zero

inside the quantile interval. Consequently, Qα(x, .) is

minimized for the α-quantile of PY |x.

Corollary 1 Solution to the minimization problem

min
h1(.),...,hn(.)

E

( n
∑

i=1

Lαi(Y, hi(X))

)

(9)

is the set of α1, . . . , αn quantiles of FY |X.

Corollary 2 Minimization of the risk functional

R(w) = E

( n
∑

i=1

Lαi(Y,Ni,w(x))

)

(10)

makes Ni,w(.) to approximate αi-quantile of PY |X in

a sense of minimization problem (4).

The corollary is a straightforward consequence of pre-

vious theorem and the fact that minimization problem

is convex.

Theorem 2 Suppose pairs 〈y,x〉 are drawn indepen-

dently from a continuous distribution whose conditional

expected values E
(

Y |X
)

exist. The weight update

mechanism

w := w − βδ(w,x, y) (11)

where

δ(w,x, y) =

n
∑

i=1

dNi,w(x)

dw

{

−αi y ≥ Ni,w(x)
(1− αi) y < Ni,w(x)

minimizes the cost functional (10) if β is a sequence

that satisfies the standard stochastic approximation con-

ditions.

Proof: Proof consists of showing that the expected value

of δ is equal to the gradient of the risk functional (10).

Modification of the weights according to (11) becomes

identical to minimization of the risk functional with

Robbins-Monroe procedure of stochastic approximation.

Consider a function:

Ri(w) = E
(

Qαi(X, Ni,w(X))
)

(12)

We can calculate the gradient of Ri, namely

dRi(w)

dw
=

d

dw
E

(

Qαi(X,Ni,w(X))
)

= E

(

d

dw
Qαi(X,Ni,w(X))

)

= E

(

dNi,w(X)

dw
× (13)

×
(

− αi + P (Y<Ni,w(X)|X)
)

)

On the other hand, consider a function:

δi(w,x, y) =
dNi,w(x)

dw

{

−αi y ≥ Ni,w(x)
(1− αi) y < Ni,w(x)

and its expected value:

Eδi(w,X, Y )=E

(

dNi,w(X)

dw
× (14)

×
(

− αiP (Y≥Ni,w(X)|X)

+ (1− αi)P (Y<Ni,w(X)|X)
)

)

By (13) and (14), we obtain

Eδi(w,X, Y ) =
dRi(w)

dw

Straightforward calculation

E δ(w,X, Y ) =

n
∑

i=1

E δi(w,X, Y ) =
dR(w)

dw

completes the proof.

According to the above theorem, (11) leads to the

quantile approximation when the underlaying distribu-

tion is continuous. Some technical difficulties emerge

in general case that will not be discussed here.

To give some intuition on how the approximator

works, suppose that n = 1, and rewrite (11) in the form

w := w + β
dN1,w(x)

dw

{

α1 N1,w(x) ≤ y
−(1− α1) N1,w(x) > y

Whenever N1,w(x) happens be smaller than y, its value

is increased and, reversely, whenever N1,w(x) is greater

then y it is decreased. The average change of N1,w(x)
for a given x is related to the weighted frequency of

those two actions, weighted by α1 or (1 − α1) and, on

the average, moves N1,w(x) toward qα1(x).

4 From conditional quantiles to multidi-

mensional distributions

Modeling a multidimensional distribution with the use

of conditional quantiles is possible through the applica-

tion of the Bayes rule, namely

FX1,...,Xm(x1, . . . , xm) =

= FX1(x1) FX2|X1(x2|x1) · · · ×

× FXm|Xm−1,...,X1(xm|xm−1, . . . , x1)
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Note that the problem of approximation of an m-

dimensional distribution is converted here to an equiva-

lent problem of modeling 1 one-dimensional distribution

and m−1 one-dimensional conditional distributions. A

multidimensional conditional distribution FY|X can be

modeled in a similar way, namely

FY1,...,Ym|X(y1, . . . , ym|x) =

=FY1|X(y1|x) FY2|Y1,X(y2|y1,x) · · · ×

× FYm|Ym−1,...,Y1,X(ym|ym−1, . . . , y1,x)

Again, approximation of an m-dimensional conditional

distribution is converted here to an equivalent problem

of modeling m one-dimensional conditional distribu-

tions. As it results from Proposition 2, if the ranges

of the quantiles are distributed evenly over the interval

(0, 1), drawing them is identical to drawing from the

source distribution.

5 Illustration

For illustration, we present some results of a numerical

experiments, Fig. 3. The data (xi, yi) were calculated

as xi = ri sinϕi, yi = ri cosϕi, where {ri}i≥1 and

{ϕi}i≥1 were generated independently from the normal

distribution N1, 0.152 and from the uniform distribution

U(0,2π), resp. Two models of this distribution were

investigated. In the first model we approximated the

distribution of (X,Y ) conditioned on Φ = ϕ for various

values of ϕ. The approximating system consists of two

neural networks that model the distributions PX|Φ=ϕ
and PY |X=x,Φ=ϕ. The first network, approximating

quantiles of the distribution PX|Φ=ϕ, was a two-layer

perceptron with 1 input, 6 neurons in the hidden layer

and 6 neurons in the output layer which approximated

(i−0.5)/6-quantiles, i = 1, . . . , 6. The second network,

modeling quantiles of the distribution PY |X=x,Φ=ϕ, was

implemented as a two-layer perceptron of exactly the

same structure as the first one, except that it has two

inputs.

In the second model we approximated the distri-

bution of (X,Y ). We first approximated the quantiles

of X . Then we approximated quantiles of PY |X=x by

a two-layer perceptron with a single input, 6 neurons

in the hidden layer, and 8 neurons in the output layer

which approximated the quantiles.

6 Applications

Data Mining An important issue in data mining is to

discover relations between variables, hence the method

of neural approximation of conditional quantiles can be

conveniently applied. As an example, suppose the ob-

jects are described by n + 1 variables: x1, . . . , xn, y.
Then, for the validation data that describe the objects

only by x1, . . . , xn, one is to derive, for every object in

the validation set, an interval as narrow as possible such

that the probability that y will hit the interval is not less

than 1 − 2α for some small α. The problem leads to

the estimation of conditional α- and (1−α)-quantiles

of y as functions of x1, . . . , xn. Figure 1 gives some

Figure 3. Results of sampling from a distribution and

its models. (top:) A 600-element sample from a two-

dimensional distribution (X,Y ) where X = R sinΦ,

Y = R cosΦ, with independent R of normal distribu-

tion and Φ of uniform distribution. (middle:) Results

of sampling from the model of (Y,X) conditioned on

Φ = ϕ for varying ϕ. (bottom:) Results of sampling

from the model of (Y,X).
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Figure 4. Illustration of discretisation with quantiles

intuition related to the problem and its solution. The

method gives, for any given x, an interval that is likely

to contain y. For small x, the value of y is determined

almost certainly — the interval is narrow. Conversely,

for large x, the stochastic dependence between x and y
is more „fuzzy” and the interval is wider.

Modeling Problem of modeling multidimensional

distributions arise in many fields. As already dis-

cussed, the m-dimensional distribution can be modeled

by putting together a quantile model of one-dimensional

distribution andm−1 quantile models of conditional dis-

tribution.

Discretization Conditional quantiles make an im-

portant tool in discretization of multi-dimensional dis-

tributions. First, a model of the underlying distribution

is builded. The model domain is than partitioned to

coherent areas. The space is first partitioned regarding

to the quantiles of x1 distribution. The resulting areas

are again partitioned, with conditional quantiles x2|x1.
The partitioning is continued until all the dimensions

are taken into account. The last division is done by

conditional quantiles xn|xn−1, . . . , x1. To continue Il-

lustration, the two-dimensional space obtained above is

first partitioned with the use of x-quantiles (Fig. 4, ver-

tical lines) and then with the use of conditional quantiles

y|x (Fig. 4, “horizontal” curves).

7 Conclusions

This paper proposes method of estimating conditional

quantiles, which can be conviniently used to train a sig-

moidal neural network. The presented weight update

mechanism allows neural network to approximate an an-

tire family of conditional quantiles. A few applications

of conditional quantiles in artificial intelligence are also

presented.
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