
Appeared in Proceedings of the 7th Int. Conf. on Artificial Intelligence and Soft
Computing, Zakopane, Poland, June 2004, pp. 934-941, c© Springer-Verlag

Intensive versus non-intensive actor-critic
reinforcement learning algorithms

Paweł Wawrzyński1 and Andrzej Pacut Senior Member, IEEE 2

Institute of Control and Computation Engineering
Warsaw University of Technology

00–665 Warsaw, Poland

1 P.Wawrzynski@elka.pw.edu.pl, http://home.elka.pw.edu.pl/∼pwawrzyn
2 A.Pacut@ia.pw.edu.pl, http://www.ia.pw.edu.pl/∼pacut

Abstract. Algorithms of reinforcement learning usually employ consec-
utive agent’s actions to construct gradients estimators to adjust agent’s
policy. The policy is a result of some kind of stochastic approximation.
Because of the slowness of stochastic approximation, such algorithms are
usually much too slow to be employed, e.g. in real-time adaptive control.
In this paper we analyze the replacing of the stochastic approximation
with the estimation based on the entire available history of an agent-
environment interaction. We design an algorithm of reinforcement learn-
ing in continuous space/action domain that is of orders of magnitude
faster then the classical methods.
Keywords: reinforcement learning, model-free control, importance sam-
pling

1 Introduction

The most popular algorithms of reinforcement learning such as Q-Learning [11]
and actor-critic methods [1, 10, 3] are constructed as a certain loop. A single
step of the loop comprises (i) observing the agent’s state, (ii) suggesting an
action to perform, (iii) observing the consequence of the action, (iv) performing
some finite (usually very small) set of operations on algorithm’s parameters.
For example, if the algorithm uses a neural network, weights of the network are
modified along a certain gradient. Convergence of such algorithms is then as slow
as slow is the network’s training. The slowness is not a problem when we think of
reinforcement learning as a tool for determining the policy in simulation tasks.
If, however, we think of reinforcement learning as a tool for adaptive control,
the slowness becomes disturbing.

Obviously, the rationing of computational expense discussed above is not the
only possible approach. In [8], Sutton introduces an architecture that is much
more computationally intensive. The architecture explores the dynamics of the
environment to build its model. In the meantime, the model is utilized to design a
policy with the use of asynchronous dynamic programming. In [5], the prioritized
sweeping is employed to optimize such an approach.

1



2

Building the model of environment and its use with some form of dynamic
programming may be satisfying in the case of finite state and action spaces.
In such a setting, the resulting model can be precise. In the case of continuous
environment, the precise model is usually impossible to obtain and the idea
of determining the policy directly from the experience is tempting. Such the
approach has already been utilized, see e.g. [4]. In this paper we follow the same
direction, however a solution we provide is different.

To show our motivation, let us discuss the following problem. We are given
samples X1, X2, . . . from some unknown scalar distribution. After each i-th sam-
ple, we are to provide an approximation mi of the median of the distribution.
One way is to employ the stochastic approximation, namely

mi = mi−1 + βi sign(Xi −mi−1)

where βi is decreasing sequence which satisfies some standard conditions.
Another way is to employ a ”batch” estimate, i.e. to take di/2e-th highest

value among X1, . . . , Xi. Obviously the second way provides better approxima-
tions. It, however, requires remembering the entire history of sampling and is
more computationally expensive.

In this article, we analyze a simple actor-critic algorithm [10, 3] and discuss
an issue of achieving a policy as a result of direct estimation, rather then as
a result of stochastic approximation. The paper is devoted to a discussion of
certain concepts, while the details of derivations are left to [13].

2 An actor-critic algorithm

We discuss a discounted Reinforcement Learning problem [9] with continuous
(possibly multi-dimensional) states s ∈ S, continuous (possibly multi-dimension-
al) actions a ∈ A, rewards r ∈ R, and discrete time t ∈ {1, 2, . . . }.

2.1 Actor

At each state s, the action a is drawn from the density ϕ(.; θ). The density
is parameterized by the vector θ ∈ Θ ⊂ Rm whose value is determined by
parametric approximator θ̃(s; wθ). The approximator is parameterized by the
weight vector wθ. Let ϕ satisfy the following conditions:
a) ϕ(a; θ) > 0 for a ∈ A, θ ∈ Θ,
b) for every a ∈ A, the mapping θ 7→ lnϕ(a; θ) is continuous and differentiable.

For example, ϕ(a; θ) may be the normal density with the mean equal to θ and
a constant variance, whereas θ̃(s,wθ) can be a neural network. In this example,
the output of the network determines a center of the distribution the action is
drawn from.

For the given ϕ and θ̃, the discussed action selection mechanism forms a
policy which depends only on wθ. We denote this policy by π(wθ). For each
fixed wθ, the sequence of states {st} forms a Markov chain. Suppose {st} has
stationary distribution η(s,wθ).



Intensive versus non-intensive actor-critic reinforcement learning algorithms 3

To determine our objective, let us define in a standard manner the value
function for a generic policy π, namely V π(s) = E

(∑
i≥0 γ

irt+1+i

∣∣∣st = s;π
)

.
The ideal but not necessary realistic objective is to find wθ that maximizes
V π(wθ)(s) for each s. The realistic objective is to maximize the averaged value
function, namely

Φ(wθ) =
∫

s∈S

V π(wθ)(s) dη(s,wθ).

2.2 Critic

In general, actor-critic algorithms employ some estimators of the gradient∇Φ(wθ)
to maximize Φ(wθ). In order to construct such the estimators, we employ the
approximator Ṽ (s; wV ) of the value function V π(wθ)(s) for the current policy.
The approximator (e.g., a neural network) is parameterized by the weight vec-
tor wV . For the approximator Ṽ to be useful in policy improvement, it should
minimize the mean-square error

Ψ(wV ,wθ) =
∫

s∈S

(
V π(wθ)(s)− Ṽ (s; wV )

)2
dη(s,wθ)

with respect to wV .
The action-value function Qπ : S×A 7→ R is typically defined as the expected

value of future discounted rewards the agent may expect starting from the state
s, performing the action a, and following the policy π afterwards [11], namely

Qπ(s, a) = E (
rt+1 + γV π(st+1)

∣∣st = s, at = a
)

(1)

We are interested in the parameter that governs the action selection rather then
the action itself. Let us define the pre-action-value function Uπ : S ×Θ 7→ R, as
the expected value of future discounted rewards the agent may expect starting
from the state s, performing an action drawn from the distribution characterized
by the parameter θ, and following the policy π afterwards [12]:

Uπ(s, θ) = E (
rt+1 + γV π(st+1)

∣∣st = s; at ∼ ϕ(.; θ)
)

= EθQπ(s,Y) (2)

where Eθ denotes the expected value calculated for the random vector Y drawn
from ϕ(.; θ). Note that by definition, V π(wθ)(s) = Uπ(wθ)

(
s, θ̃(s; wθ)

)
.

Summing up, the considered problem is to find wθ that maximizes

Φ(wθ) =
∫

s∈S

Uπ(wθ)
(
s, θ̃(s; wθ)

)
dη(s,wθ) (3)

This in turn requires to solve the auxiliary problem of minimization of

Ψ(wV ,wθ)=
∫

s∈S

(
Uπ(wθ)(s, θ̃(s; wθ)

)− Ṽ (s; wV )
)2

dη(s,wθ) (4)

with respect to wV .



4

3 Two alternative approaches to the problem

Both approaches we discuss are based on policy iteration: they alternate two
steps: (i) modification of wθ to optimize the first step of each trajectory, i.e.
to maximize Uπ(wθ)(s, θ̃(s; wθ)) with π(wθ) fixed and (ii) improvements of the
estimates of Uπ(wθ).

3.1 Non-intensive approach based on stochastic approximation

An actor-critic algorithm based on the standard (non-intensive, as it might be
called) approach comprises the following operations at consecutive t:

1. Regard st as drawn from η(.,wθ). Draw the control action at ∼ ϕ(.; θ̃(st; wθ)).
Observe rt+1 and st+1.

2. Policy improvement. Modify wθ along the direction of some estimator of

d
dwθ

Uπ(st, θ̃(st; wθ))

for fixed π = π(wθ).
3. Policy evaluation. Modify wV along the direction of

(
vt − Ṽ (st; wV )

) dṼ (st,wV )
dwV

where vt is some „better” estimation of V π(wθ)(st). In the simplest case,
vt = rt+1 + γṼ (st+1; wV ).

The estimator utilized in step 2. has the form

dθ̃(s; wθ)
dwθ

gt

where gt is some estimator of

dU(st, θ̃(st; wθ))

dθ̃(st; wθ)

and U is in turn an approximation of Uπ(wθ) for a fixed π(wθ). A way to construct
the estimator gt is known since the Williams’ REINFORCE algorithm [14]. It is
based on the following generic property:

∇θEθf(Y) = Eθ
(
(f(Y)− c)∇θ lnϕ(Y; θ)

)
(5)

where Y is drawn from the distribution ϕ(.; θ). The equation holds for any func-
tion f and constant c if certain liberal regularity conditions are satisfied. Why
is this property so important? We draw Y according to ϕ(.; θ) (i.e., perform the
action at) and obtain the return f(Y) (or an estimation of Qπ(wθ)(st, at)). The



Intensive versus non-intensive actor-critic reinforcement learning algorithms 5

larger is the return, the higher is the need to change the parameter θ to make
generating of this Y more plausible. Equation (5) states that in order to maxi-
mize Eθf(Y), θ should be adjusted along the direction of (f(Y)−c)∇θ lnϕ(Y; θ).
An implementation in reinforcement learning is straightforward: the larger is the
estimate of Qπ(wθ)(st, at), the larger should be the change of θ̃(st; wθ) to make
the action at more plausible. The gt estimator should be then something like

(Q(st, at)− c(st))∇ lnϕ(at; θ̃(st; wθ))

where Q(st, at) is an estimator of Qπ(wθ)(st, at) and c is any function. In [12],
we propose to employ:

gt = (rt+1 + γṼ (st+1; wV )− Ṽ (st; wV ))∇ lnϕ(at; θ̃(st; wθ))

which gives a satisfying behavior.

3.2 Intensive approach based on direct estimation

An algorithm based on the alternative approach comprises two activities per-
formed simultaneously:

1. Exploration of the environment by performing consecutive actions based on
the current policy π(wθ).

2. Approximation of the policy iteration:
(a) Policy evaluation. Adjustment of wθ to maximize an estimate Φ̂t(wθ,wV ),

of Φ(wθ) based on all events up to the current step t.
(b) Policy improvement. Adjustment of wV to minimize an estimate Ψ̂t(wV ,wθ),

of Ψ(wV ,wθ) based on all events up to the current step t.

The policy employed in step 1. is the one repeatedly modified by the process 2.
Worth noting is a similarity between the above policy determination and the

maximum likehood estimation. In the former, we look for the parameter that
maximizes the probability of generating the available data. Here, we look for the
parameters most plausible to generate the data we would like to draw.

In order to construct Φ̂t(wθ,wV ), we treat all previous states si as drawn
from η(.,wθ) and replace the integral with the average value

Φ̂t(wθ,wV ) =
1
t

t∑

i=1

Û(si, θ̃(si; wθ))

where Û is an estimator of Uπ(wθ). The estimator utilizes Ṽ (otherwise the critic
would be useless) and hence Φ̂t depends also on wV .

In the same way we construct Ψ̂t, namely

Ψ̂t(wV ,wθ) =
1
t

t∑

i=1

ê2
i



6

where ê2
i is an estimator of

(
Uπ(wθ)

(
si, θ̃(si; wθ)

)− Ṽ (si; wV )
)2

.

To construct particular forms of Û and ê2
i , one must take into consideration

that each action ai has been drawn from the distribution ϕ(.; θi), where, in
general, θi 6= θ̃(si; wθ) for the current value of wθ. In other words, the action
has been drawn from a “wrong” distribution. The construction of the appropriate
estimators may be based on importance sampling and the ideas developed by
Precup et al. in e.g. [6], [7]. We discuss the details in [13].

4 Illustration: Cart-Pole Swing-Up

The discussion above leads to two algorithms of reinforcement learning. First,
the non-intensive algorithm can be treated as a special version of the generic
algorithm discussed in [10]. We call it Randomized Policy Optimizer (RPO).
The second, the intensive one, is based on direct estimation and we call it the
Intensive Randomized Policy Optimizer (IRPO). We discuss its implementation
in more details in [13].

In this section, we briefly illustrate a behavior of RPO and IRPO algorithms
used to control the Cart-Pole Swing-Up [2], which is a modification of the in-
verted pendulum frequently used as a benchmark for reinforcement learning al-
gorithms. The control objective is to, by moving cart, swing up the pendulum
attached to the cart and stabilize it upwards.

The algorithms employed by Doya [2] utilize the exact model of the plants
dynamics. They control the plant sufficiently well after 700 trials.

The learning curves for our algorithms are presented in Fig. 1. The RPO
algorithm, a simple model-free actor-critic algorithm learns a good behavior after
about 3000 trials (see [12] for details of its implementation). The IRPO achieves
a satisfying behavior after about 100 trials (see [13]), which makes about 15
minutes of the real time of the plant. Our algorithms do not use the Cart-Pole
Swing-Up model and yet RPO behavior is comparable to the one obtained in
[2] with the model, while IRPO behaves better then model-based technique.
Furthermore, IRPO performs all the computation in the real time of the plant;
the entire process of learning lasts for about 15 minutes.

5 Conclusions and further work

We replaced the stochastic approximation in actor-critic algorithms with esti-
mation based on the entire available history of actor-environment interactions.
The resulting algorithm of reinforcement learning in continuous space of states
and actions seems to be powerful enough to be used in adaptive control tasks in
real time. The algorithm does not use nor build a model of the environment.

Most algorithms of reinforcement learning suppress the randomization as the
learning continues. This is of course also possible for the IRPO. Extension of the
presented methodology that incorporates a decreasing exploration is a topic of
our current research.



Intensive versus non-intensive actor-critic reinforcement learning algorithms 7

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 500 1000 1500 2000 2500 3000 3500 4000

RPO
IRPO

Fig. 1. RPO and IRPO applied to the Cart-Pole Swing-Up: The average reinforce-
ment as a function of the trial number. Each point averages the reinforcements in 10
consecutive trials and each curve averages 10 runs (IRPO) or 100 runs (RPO).

References

1. A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike Adaptive Elements
That Can Learn Difficult Learning Control Problems, ” IEEE Trans. Syst., Man,
Cybern., vol. SMC-13, pp. 834-846, Sept.-Oct. 1983.

2. K. Doya, “Reinforcemente learning in continuous time and space,” Neural Com-
putation, 12:243-269, 2000.

3. V. R. Konda and J. N. Tsitsiklis, “Actor-Critic Algorithms,” SIAM Journal on
Control and Optimization, Vol. 42, No. 4, pp. 1143-1166, 2003.

4. M. G. Lagoudakis and R. Paar, “Model-free least-squares policy iteration,” Ad-
vances in Neural Information Processing Systems, volume 14, 2002.

5. A. W. Moore and C. G. Atkeson, “Prioritized Sweeping: Reinforcement Learning
with Less Data and Less Real Time,” Machine Learning, Vol. 13, October, 1993.

6. D. Precup, R. S. Sutton, S. Singh, “Eligibility Traces for Off-Policy Policy Eval-
uation,” Proceedings of the 17th International Conference on Machine Learning,
Morgan Kaufmann, 2000.

7. D. Precup, R. S. Sutton, S. Dasgupta, “Off-policy temporal-difference learning with
function approximation,” Proceedings of the Eighteenth International Conference
on Machine Learning, 2001.

8. R. S. Sutton, “Integrated Architectures For Learning, Planning, and Reacting
Based on Approximating Dynamic Programming,” Proceedings of the Seventh Int.
Conf. on Machine Learning, pp. 216-224, Morgan Kaufmann, 1990.

9. R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, MIT Press,
Cambridge, MA, 1998.

10. R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy Gradient Methods
for Reinforcement Learning with Function Approximation,” Advances in Informa-
tion Processing Systems 12, pp. 1057-1063, MIT Press, 2000.

11. C. Watkins and P. Dayan, “Q-Learning,” Machine Learning, vol. 8, pp. 279-292,
1992.

12. P. Wawrzynski, A. Pacut, “A simple actor-critic algorithm for
continuous environments,” submitted for publication, available at
http://home.elka.pw.edu.pl/∼pwawrzyn, 2003.



8

13. P. Wawrzynski, A. Pacut, “Model-free off-policy reinforcement learn-
ing in continuous environment,” submitted for publication, available at
http://home.elka.pw.edu.pl/∼pwawrzyn, 2004.

14. R. Williams, “Simple statistical gradient following algorithms for connectionist
reinforcement learning,” Machine Learning, 8:299-256, 1992.


