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Streszczenie

W niniejszej pracy problem uczenia się przez wzmacnianie jest przedyskutowany w
języku statystyki jako zagadnienie estymacji. Zaproponowana zostaje rodzina algo-
rytmów uczenia się przez wzmacnianie które wyznaczają politykę sterowania w pro-
cesie obliczeniowym przetwarzającym całą dostępną historię interakcji między ster-
wnikiem a urządzeniem. Aproksymacja stochastyczna jako mechanizm odpowiedzial-
ny za zbieżność algorytmów uczenia się przez wzmacnianie jest zastąpiona przez
estymację opartą na całej próbie. Zaprezentowane badania symulacyjne pokazują,
że uzyskane w ten sposób algorytmy są w stanie zidentifikować parametery nietry-
wialnych sterowników w ciągu kilkudziesięciu minut sterowania urządzeniem. Czyni
je to wielokrotnie wydajniejszymi od istniejących odpowiedników.
Słowa kluczowe: Sztuczna Inteligencja, Uczenie się Maszyn, Uczenie
się przez Wzmocnianie, Przybliżone Programowanie Dynamiczne, Sieci
neuronowe, Sterowanie adaptacyjne.

Abstract

The Reinforcement Learning (RL) problem is analyzed in this dissertation in the
language of statistics as an estimation issue. A family of RL algorithms is intro-
duced. They determine a control policy by processing the entire known history of
plant-controller interactions. Stochastic approximation as a mechanism that makes
the classical RL algorithms converge is replaced with batch estimation. The experi-
mental study shows that the algorithms obtained are able to identify parameters of
nontrivial controllers within a few dozens of minutes of control. This makes them a
number of times more efficient than their existing equivalents.
Keywords: Artificial Inteligence, Machine Learning, Reinforcement
Learning, Approximate Dynamic Programming, Neural Networks, Ad-
aptive Control.
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Notational conventions

• Vectors and matrices are denoted with the use of standard mathematical font:
x, w, etc.

• For the vector function f : Rn 7→ Rm, the matrix of its partial derivatives will
be denoted by

df(x)
dx

=




∂f1
∂x1

· · · ∂fm
∂x1

... . . . ...
∂f1
∂xn

· · · ∂fm
∂xn


 .

• Parametric aproximators are denoted with the use of wide tilde. E.g. f̃(x;w)
is an approximator parameterised by the vector w whose input is x.

• Predicates in formulae

[predicate] =

{
1 if the predicate is true
0 otherwise

e.g. sign(x) = −[x < 0] + [x > 0].

• Parameterized distributions are denoted by ϕ(z; θ) where ϕ is a density (or
a probability in the discrete case) and θ is the parameter. The caption
Y ∼ ϕ(· ; θ) means that the random variable Y is drawn with the use of
the distribution ϕ(· ; θ). Let r be a predicate, f be a function, and they both
depend on Y . When the probability of r(Y ) and the expected value of f(Y )
is calculated for Y ∼ ϕ(· ; θ), the probability is denoted by Pθ(r(Y )) and the
expected value is denoted by Eθf(Y ).

• The normal distribution with mean θ and covariance matrix C is denoted by
N(θ, C).

• Control policies (or simply “policies”) are denoted by π. If a policy depends
on a parameter, it is denoted by π(w), where w is the parameter.

xi





Chapter 1

Introduction

Bodies of living organisms constitute very complex mechanical systems. So far, no
methods are known that enable to design control mechanisms for artificial systems
characterized by such complexity. It is believed that living organisms learn with
the use of trials and errors to control their bodies. The topic of this dissertation
may be understood as biologically inspired methodology of automatic trial and error
optimization of control.

From the practical point of view, we deal with the following problem. Suppose
there is a controller together with a plant characterized by unknown dynamics. The
controller, in order to work properly, has to optimize its parameters. The only way
to do so available to the controller is an interaction with the plant, its observation,
and analysis of consequences of executed control actions.

Modern methodology of control system design in most cases involves some prelim-
inary knowledge of the controlled plant. One extremal setting is that the dynamics
of the controlled plant is known entirely in the sense that its exact motion equations
are available and there are no external disturbances. That may require some pre-
liminary tests with the use of the working plant. However, before the design of the
control system is begun, all the necessary knowledge about the plant’s dynamics is
gathered. This setting prevails in the practice of control system design. The field of
automatic control provides satisfying tools for a controller design in this case. The
designer does not have to engage the plant because everything he would like to know
about it and its control he may check in derivations and/or simulations. Whenever
he knows less than enough about the plant, the control system must be optimized
while it is working. In this case methods of adaptive control [2, 40] must be in use.

Usually the designer of the controller knows something about the controlled sys-
tem. Usually some of its components have been produced by humans. For instance
the designer may know motion equations of the system yet he may be uncertain
about values of some parameters. In case that their values imply the controller’s

1



2 CHAPTER 1. INTRODUCTION

behavior (the control policy), they may be estimated when the plant is working
and the control takes place. The estimates determine then the control policy. This
methodology is called indirect adaptive control. Alternatively, observation of the
control process may imply the controller’s behavior directly without the model esti-
mation. This methodology of control optimization is called direct adaptive control.
In this dissertation we deal with direct adaptive control of a plant whose dynamics
is initially unknown, yet we suspect that it is too complex to try to build its model.

1.1 Reinforcement Learning

From the point of view of modern engineering the exhibited by natural organisms
ability to control motion of their bodies is indeed impressive. Suppose we were to
design a control system for a humanoid robot that is to dig pits in the ground with a
shovel. Human’s skeleton is, from the point of view of robotics, a manipulator whose
number of degrees of freedom exceeds one hundred1. We are completely unable to
provide a model of its motion. In fact, the modeling of a manipulator whose number
of degrees of freedom exceeds 10, constitutes an enormous challenge. Furthermore,
even if we had the model, we would still have to describe the desired behavior of
the robot. In robotics this means that we are to provide trajectories of each of
120 degrees of freedom. It is even difficult to imagine how such a task could be
completed. Nevertheless, almost each adult human is able to learn to dig pits in the
ground with a shovel.

The biologically inspired methodology of control systems optimization discussed
in the presented dissertation is reinforcement learning (RL). We shall understand
here RL as follows. Let us consider a plant. At each moment it is in a certain state
that characterizes a current position and dynamics of the plant as well as a current
objective of its operation2. At each moment a controller applies a control stimulus
to the plant and receives a numeric reward (or reinforcement). The closer the plant
is to attain its current objective, the bigger the reward is. The goal of controller’s
reinforcement learning is to find with the use of trials and errors the optimal way
of determining control stimuli on the basis of states. Optimality means here that
starting from each state the controller may expect to receive the biggest possible
sum of future (discounted) rewards.

1There are 204 bones, 460 muscles, and over one hundred joints in human body; the number of
joints is difficult to provide, it depends on how one defines a single joint.

2Note that in control theory the state does not include the objective of the plant’s operation.
Here we understand the state as all the current information the controller may need to control the
plant.



1.1. REINFORCEMENT LEARNING 3

Barto and Dietterich are perhaps the most appropriate people to explain relations
between the field of reinforcement learning and other sciences. In [5] they write:
“The term reinforcement comes from studies of animal learning in experimental
psychology, where it refers to the occurrence of an event, in the proper relation
to a response, that tends to increase the probability that the response will occur
again in the same situation. The simplest reinforcement learning algorithms make
use of the commonsense idea that if an action is followed by a satisfactory state
of affairs, or an improvement in the state of affairs, then the tendency to produce
that action is strengthened, that is, reinforced. This is the principle articulated
by Thorndike in his famous Law of Effect [46]. Instead of the term reinforcement
learning, however, psychologists use the terms instrumental conditioning, or operant
conditioning, to refer to experimental situation in which what an animal actually
does is a critical factor in determining the occurrence of subsequent events. These
situations are said to include response contingencies, in contrast to Pavlovian, or
classical, conditioning situations in which the animal’s responses do not influence
subsequent events, at least not those controlled by the experimenter.”

It is no wonder that the very idea of designing control systems that adapt like
natural “controllers” do is sound and has existed in control systems community for
a very long time; see e.g. [39, 21, 55]. However, the field of reinforcement learning
[4, 44] seems to be founded outside this community and is driven by the idea of
creation of artificial intelligent systems [24, 35, 48] that adapt to their environments.
The perceived control engineering problems seem to be of less relevance for RL. This
dissertation stands somewhere between these approaches. Our research is driven
both by the idea of creation artificial intelligent systems and by perceived control
problems.

In fact, reinforcement learning, as well as other forms of direct adaptive control,
introduces an approach to control system design that is alternative to the standard,
model based methodology. We do not bother with the model of a process, but
design a controller that learns to control. Potentially, we replace the procedure
lasting for months and involving system modeling and identification, building of a
simulator, and designing of the controller, with the process of controller learning,
which lasts for maybe several hours and involves only human supervision. As far as
the author is aware, at the beginning of 21st century there is nobody, who makes
money designing control systems that learn to control physical devices with the use
of trials and errors. This dissertation belongs to publications intended to bring the
moment of appearance of such people nearer.

Obviously several questions emerge. The most important one concerns security.
There are some devices, which are expensive, unique and easy to destroy by inap-
propriate control. Is it possible to “learn” to control such machines? On the other
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hand, if we think of cheap, mass-produced robots, the destruction of one of them
during the controller training may not matter.

1.2 Scope of the work

This dissertation deals with reinforcement learning methods applicable for control
system training. The area of reinforcement learning is not homogenous. From
variety of approaches, the spirit of the dissertation is closest to the one associated
with randomized Actor-Critic algorithms [4, 16, 45, 17].

The theses of the presented dissertation are as follows.

1. A natural theoretic base for prevailing reinforcement learning algorithms is
stochastic approximation. Such methods utilize information obtained from
each consecutive control step to construct a gradient estimator of a certain
global performance index and use it to alter the parameters of the control
policy.

We claim that one may also design an RL algorithm based on batch esti-
mation. It is possible to construct an estimator of the global performance
index parameterized by the policy parameters. We claim that optimization of
this estimator with respect to the parameters leads to the optimization of the
performance.

2. The objective of each reinforcement learning algorithm is to exploit observa-
tions of the control process to optimize the control policy. Let us analyze an
RL algorithm as a procedure that receives certain input data (observations of
a control process) and produces certain output data (parameters of a control
policy). All but few RL algorithms are so constructed that they process the
input data sequentially, piece by piece.

We claim that it is possible to design much faster algorithms when the above
sequentiality constraint is discarded. Such algorithms may optimize the esti-
mator of the performance index with respect to the policy parameters. They
may have properties very similar to those of the methods based on stochastic
approximation, yet they exploit available data much more efficiently.

3. We design a family of algorithms that put information of occurring control
steps in a database and optimize the control policy in a computational process
that is conducted simultaneously with the control process. The introduced
algorithms have the form of certain optimization issues. We propose numerical
methods to tackle these particular issues.
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We claim that the proposed algorithms are feasible and substantially faster
than the comparable ones. When applied to problems of moderate complexity,
they are able to optimize the control policy far before the stored data fill in
the memory capacity of a typical computer.

This document is organized as follows. Chapter 2 introduces the RL problem. It
distinguishes short-term-memory and long-term-memory RL algorithms depending
on whether they process the occurring control steps consecutively or not. The chap-
ter also overviews main approaches in the field of RL. RL methods we introduce here
are based on properties of certain probabilistic distributions. These are discussed
in Chapter 3. Subsequent chapter discusses existing short-term-memory random-
ized Actor-Critic algorithms in the language that will be further utilized to present
new methods. Chapter 5 constitutes the core of the dissertation. It introduces a
basic long-term-memory Actor-Critic algorithm. Subsequent chapter extends the
basic method to an entire family of algorithms. Chapter 7 contains an experimen-
tal study that compares existing methods to the ones proposed here. Chapter 8
concludes and overviews directions of possible future work.
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Chapter 2

The problem of Reinforcement
Learning

We put the initial issue of control optimization into the framework of reinforcement
learning (RL). The first formulation of RL comes from artificial intelligence (see
[44] for exhaustive insight). It was then reformulated in the language of automatic
control (e.g. [7]) which is used below.

This chapter has also the intention of presenting the background of methods
introduced in the following chapters. There are three trends in RL we are aware
of, and we try to borrow from all of them. In the first and probably the most
influential approach, RL is viewed as a computer implementation of adaptation
observed in natural organisms. It is mainly inspired by biology and psychology.
Within the second approach the objective of a learning control system is to identify
a model of the controlled plant and determine a policy by means of approximate
Dynamic Programming. Within the third approach the RL problem is solved by
direct search of the policy space that takes little advantage of the particular features
of the problem. We overview compactly each of these approaches. We also refer an
interested reader to [7, 44, 38] for deeper insight.

2.1 Problem definition

In the RL framework, a learning controller interacts with a plant over a series of
time steps t = 1, 2, 3, . . . . At each time t, the controller observes the plant’s state,
xt ∈ X , and chooses a control action, ut ∈ U , which causes the plant to transition
to state xt+1. The controller receives then a reinforcement or reward, rt+1 ∈ R. The
next state and reinforcement depend only on the preceding state and action, and

7



8 CHAPTER 2. THE PROBLEM OF REINFORCEMENT LEARNING

they depend on these in a stochastic manner, namely

xt+1 ∼ Px′|x,u(·|xt, ut)
rt+1 ∼ Pr|x,u(·|xt, ut)

where Px′|x,u and Pr|x,u are certain stationary conditional distributions. The control
action selection is governed by a policy, π, that determines the probability distri-
bution of controls for each state. The policy maps the state space to the space of
probability distributions over U .

π : X 7→ {P : B(U) 7→ [0, 1]}

where B(U) denotes a family of Borel subsets of U . The entire stochastic depen-
dence between the current action and previous ones is carried by the current state.
Technically that means that at each moment the action is drawn independently only
on the basis of the state.

Let γ ∈ [0, 1) be a discount factor. The controller, starting from the state xt at
the moment t receives a return equal to the sum of discounted future rewards

Rt =
∑
i≥0

γirt+1+i

For the initial state x and the policy π in use, one defines the value function V π(x)
as the expected return, namely

V π(x) = E (
Rt

∣∣ xt = x, policy = π
)

(2.1)

where E denotes the expectation operator.
Let the first state x1 be drawn from the distribution P1. We assume there is a

family of policies Π and for the fixed π ∈ Π, the sequence of states {xt} forms a
Markov chain {xt}. Suppose {xt} has a stationary distribution ηπ(·). The objective
is to find the policy π ∈ Π that maximizes the averaged value function

Φ(π) =
∫

x∈X

V π(x) dηπ(x)

provided that Px′|x,u and Pr|x,u are initially unknown and it is only possible to observe
plant–controller interactions and modify the controller’s policy π ∈ Π.

Note that in artificial intelligence, the controller does not apply control stimuli to
the plant, but rather an agent interacts with its environment by performing actions.
Its objective is to find a policy that advises the best action in each state, that is the
policy that gives the largest V π(x) in each state x.

In automatic control applications of RL, usually X = RnX , U = RnU , and “state”
describes the plant’s current position and velocity as well as their desired values. In
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this context “reinforcement” defines negative distance between the current and the
desired values. A good control policy is hence the one that enables to follow desired
trajectories as close as possible. Through the entire dissertation, X and U will have
the above meanings unless stated otherwise.

For instance, suppose we look for parameters for a PID controller that keeps a
certain variable close to its desired trajectory. Since each such controller is defined
by 3 real numbers, Π = R3. If we denote by ε the momentary error, the state
vector must contain ε, ε̇, and

∫
ε dt, but may also contain other variables describing

position of the entity that the PID controller is to regulate. Consequently, X = Rm,
where m ≥ 3. The action is equal to a real-valued stimulus applied, hence U = R.
In control theory we usually assume that the regulation takes place in continuous
time, however in digital implementation time is discrete. This is also the case here.
The control objective is to minimize root-mean-squared error, hence we define the
reward as negative squared error, namely rt+1 = −ε2t+1.

Let us consider a more advanced example that concerns an n degrees-of-freedom
robotic manipulator. The manipulator grabs items at certain positions and carries
them to others. State of the manipulator describes positions and velocities of all its
degrees of freedom and ultimate position of the manipulator’s end effector (where
an item is or is carried to). State vector is hence (2n + 3)-dimensional. An action
determines forces (or torques) applied at each degree of freedom. It is n-dimensional.
Reinforcement may be here defined as negative Euclidean distance between the
current and desired the position of the end effector. We may enrich this problem in
a number of ways. For instance, it is a natural requirement for the plant to reach
its goals as economically as possible. In this case we simply subtract a penalty for
energy utilization from the reinforcement.

2.2 Short-term-memory vs. long-term-memory
solutions

The most popular algorithms of reinforcement learning such as Q-Learning [50] and
Actor-Critic methods [4, 45, 17] are based on the same generic loop:

1. Observe the plant’s state.

2. Suggest an action to perform.

3. Observe consequences of the action, that is the immediate reward and the next
state.

4. Basing on information just gathered, adjust controller’s parameters with some
finite (usually very small) set of operations.
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Figure 2.1: Reinforcement Learning with the use of a short-term-memory algorithm.

5. Repeat from Step 1, with the next plant’s state.

Such algorithms do not employ any explicit “memory” of past events, at most its
compact representation, e.g. the eligibility trace [44, 10]. The occurring information
must be utilized immediately for a policy adjustment and forgotten.

The algorithms based on the alternative approach “remember” the occurring
events and, simultaneously to the control process, build the control policy in some
kind of computational process basing on the collected data. The generic method of
this kind consists of the two loops different in their nature. The first loop explores
plant’s dynamics:

1. Observe the plant’s state.

2. Suggest an action to perform.

3. Observe consequences of the action, that is the immediate reward and the next
state.

4. Add the description of the event to a database. The description encompasses
the state, action, reward, next state, and probably some additional informa-
tion.

5. Repeat from Step 1, with next plant’s state.

The second loop takes place simultaneously to the first one. It is a computational
process that determines the policy on the basis of the data collected so far. The
examples of such methods are Sutton’s DYNA architecture [43], and, to a certain
extend, the family of Adaptive Critic Designs [31].

For purposes of this dissertation we distinguish short-term-memory (Figure
2.1) and long-term-memory (Figure 2.2) methods of reinforcement learning, de-
pending on whether they process occurred events consecutively or not [52]. While
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Figure 2.2: Reinforcement Learning with the use of a long-term-memory algorithm.

the former are theoretically based on stochastic approximation, the natural theoret-
ical base for the later seems to be batch estimation.

Let us show the difference between short- and long-term-memory methods using
a metaphor. Namely, let us analyze the following problem. We collect samples
X1, X2, . . . from some unknown scalar distribution. After each i-th sample, we are
to provide an approximation mi of the median of the distribution. One way is to
employ stochastic approximation, namely

m1 = X1

mi = mi−1 + βi−1 sign(Xi −mi−1) for i = 2, 3, 4, . . .

where {βi, i ∈ N} is a decreasing sequence which satisfies the standard stochastic
approximation conditions, i.e.

∑
i≥1 βi = +∞ and

∑
i≥1 β

2
i < +∞.

Another way is to employ a batch estimator, i.e. to take mi equal to di/2e-th
highest value among X1, . . . , Xi. Obviously the second way provides better approx-
imations. However, it requires remembering the entire history of sampling and is
more computationally expensive.

Although short-term-memory RL methods prevail in the literature, this disser-
tation will focus mainly on long-term-memory ones. The reason for this is that
contemporary computers are powerful enough to keep in memory the entire history
of control. There is no justification for any waste of information.

2.3 The approach to RL inspired by biology

Very important ideas associated with reinforcement learning come from Andrew
Barto, Richard Sutton, and their associates [44]. What seems to be the most inspir-
ing for this group, are observations of adaptation in living organisms. Their interests
concern mainly RL in discrete domains. Consequently, many of their concepts can
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not be directly, or can not be at all applied to problems tackled in this dissertation,
i.e. to RL in continuous domain.

Many of the algorithms presented in the remaining part of this chapter are
somehow based on two fundamental functions. The first one is the value function
V π : X 7→ R, defined in (2.1). Note the following property of V π:

V π(x) = E
(
rt+1 + γV π(xt+1)

∣∣∣xt = x;π
)
. (2.2)

The action-value function Qπ : X × U 7→ R is typically defined as the expected
value of future discounted rewards the controller may expect when starting from a
state x, performing an action u, and following the policy π afterwards [50]:

Qπ(x, u) = E
(
rt+1 + γV π(xt+1)

∣∣∣xt = x, ut = u
)
. (2.3)

2.3.1 The prototype of randomized Actor-Critics

We start our discussion with Barto’s and Sutton’s algorithm [4, 45], which seems to
be the first one employing the methodology called later the reinforcement learning.

Suppose both X and U are finite. The method employs two functions, which both
are adjusted during the algorithm’s work. The first one, the Actor µ : X × U 7→ R
serves for action selection. Namely, the larger is the value µ(x, u), the higher is the
probability of selection of u in state x. The generic form of the algorithm does not
determine this mechanism. The probability of choosing u in x may be for instance
equal to

P (u|x) =
exp(µ(x, u))∑
u′ exp(µ(x, u′))

.

This action selection mechanism determines properly a control policy. Let us denote
this policy by π(µ). The second function, the Critic, V : X 7→ R approximates the
value function V π(µ).

The algorithm is presented in Table 2.1. Its step 3 is the key one. Let us denote
the temporal difference

dt = rt+1 + γV (xt+1)− V (xt).

If dt > 0, the algorithm infers that the expected return associated with control ut
is larger than the expected return in state xt. Consequently, µ(xt, ut) is increased.
Conversely, if dt < 0, the action ut is worse than expected and µ(xt, ut) is decreased.
Depending on the sign of dt, the action ut is made either more or less likely in the
state xt.

The correctness of this form of the randomized Actor-Critic method has not
been proved so far. Moreover, implementation of this algorithm in the case of con-
tinuous action is questionable. However, the very idea of increasing the probability
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0. Set t := 1. Initialize µ and V randomly.

1. Determine the action ut on the basis of µ(xt, ·).

2. Perform the action ut, observe the next state xt+1 and the reinforcement rt+1.

3. Increase µ(xt, ut) by the value proportional to rt+1 + γV (xt+1)− V (xt).

4. Adjust V (xt) towards rt+1 + γV (xt+1).

5. Set t := t+ 1 and repeat from Step 1.

Table 2.1: The prototype of randomized Actor-Critics.

of “good” actions and decreasing the probability of “bad” ones probably exists in
every reinforcement learning algorithm, as well as it is present in the algorithms
introduced in this dissertation.

Randomized Actor-Critic algorithms have evolved [57, 7, 45, 17]. The ideas
stemming from biology and psychology reached a mathematically strict meaning.
We present one of algorithms of this kind in detail in Chapter 4.

2.3.2 Q-Learning

The Q-Learning algorithm [49] employs only one function Q : X × U 7→ R. Its
objective is to approximate Qπ∗ where π∗ is the optimal policy.

Let X and U be finite. Table 2.2 presents the Q-Learning algorithm. It is
convergent, provided certain regularity conditions are satisfied [50]. First, the action

0. Set t := 1. Initialize Q randomly.

1. Determine the action ut on the basis of Q(xt, .).

2. Perform the action ut, observe the next state xt+1 and the reinforcement rt+1.

3. Adjust Q(xt, ut) towards rt+1 + γmaxu′ Q(xt+1, u
′).

4. Set t := t+ 1 and repeat from Step 1.

Table 2.2: The Q-Learning algorithm.
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selection in Step 1. should assure that each control in each state is performed
infinitely many times. It is usually achieved by a random mechanism giving higher
probabilities of selection for controls u associated with larger Q(xt, u). Second, the
adjustment in Step 3. should be implemented as

Q(xt, ut) := Q(xt, ut) + βt

(
rt+1 + γmax

u′
Q(xt+1, u

′)−Q(xt, ut)
)

for
∑

t≥1 βt =∞ and
∑

t≥1 β
2
t <∞. If these are true, then the algorithm makes Q

converge to Qπ∗ with probability one [50]. There is an incarnation of this algorithm
for continuous X and U [22], yet its convergence has not been proved.

2.4 The approach inspired by dynamic program-
ming

Adaptive Critic Designs (ACDs) constitute a family of tools for finding an approx-
imate solution of the Dynamic Programming [6] problem. These tools are mainly
based on, so-called, backpropagation through time [58, 62, 9]. Initially, ACDs were
proposed for determining a control policy in a computational process based on a
model of a controlled plant. However, possibility of adaptation of these methods for
on-line learning control tasks has been also investigated [37].

Each ACD algorithm1 assumes that an action to perform in a state x is an
output of a parametric approximator Ã(x;wA) parameterized by the weights’ vector
wA. The structure of the approximator Ã is constant and thus, this control policy
depends only on wA. Let denote it by π(wA). Notice that each policy π(wA) is
deterministic.

To simplify the below discussion of ACDs, we shall use the following properties.
Let f̃(x;w) be an approximator parameterized by the vector w. Suppose, there are
given x and the vector y whose dimension is equal to the dimension of the output
of f̃ . We want to bring f̃(x;w) closer to y. Notice that

d
dw

∥∥∥f̃(x;w)− y
∥∥∥

2
= 2

df̃(x;w)
dw

(f̃(x;w)− y).

To achieve the goal we may then add

β
df̃(x;w)

dw
(y − f̃(x;w))

to the vector w for a small positive constant β. We shall call such a modification
of w an adjustment of f̃(x;w) towards y. Similarly, we adjust f̃(x;w) along ∆y.

1The ACDs literature has its standard notation and style which are different than these used
in this dissertation. ACDs are presented here atypically enough.
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Namely, we exploit the fact that

d
dw

∥∥∥(f̃(x;w∗) + ∆y)− f̃(x;w)
∥∥∥

2
= 2

df̃(x;w)
dw

∆y.

(w∗ is fixed and equal to the current value of w). To achieve the goal we add

β
df̃(x;w)

dw
∆y

to the weights’ vector w for a small positive constant β.
In order to improve the policy π(wA), each ACD algorithm constructs d

duQ(x, u),
an estimate of d

duQ
π(wA)(x, u)|u=Ã(x;wA), and modifies Ã(x;wA) along this estimate.

This way Ã is modified for its output to produce actions that give larger returns.
Various algorithms from the family use different forms of this estimate, yet its usage
is similar. Namely, in its core activity, each such method uses the estimate for a
policy adjustment in one of the following ways:

• Increase Q(x, Ã(x;wA)) by modifying wA along the direction of

d
dwA

Q(x, Ã(x;wA)) =
dÃ(x;wA)

dwA

dQ(x, u)
du

∣∣∣∣
u=Ã(x;wA)

.

This is intended to modify the policy such that the expected return the con-
troller may expect is increased. See [31].

• Modify wA to decrease a distance between Q(x, Ã(x;wA)) and some previously
assumed numeric objective [37]. This objective should be as large as we hope
the expected return should be in the state x.

Since the above possibilities are similar in their spirit and differ only in technical
details, in the sequel we shall discuss only the first one.

2.4.1 Heuristic Dynamic Programming

Heuristic Dynamic Programming (HDP) [59, 60, 31] is a methodology of a generation
of a control policy rather than a well defined algorithm. This methodology involves
observing a working plant, building its model, and computing the policy. Table 2.3
presents probably the most popular version of HDP.

On the highest level, HDP alternates two activities, which differ a lot in their
very nature. The first one, the exploitation loop, is an observation of the control
process. The process may be real or simulated. In fact, the loop serves only for
determining which parts of the state space are visited by the plant. The second
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Initialize wA randomly.
Repeat until the policy π(wA) is satisfying:

1. The exploitation loop. Set i = 1 and repeat t times:

1.1. Observe xi and generate the action ui = Ã(xi;wA).

1.2. Apply ui. The plant moves to a next state.

1.3. Set i := i+ 1 and repeat from Step 1.1.

2. The internal loop. Basing on the data gathered in the exploitation loop, per-
form an approximate policy iteration. Namely, repeat until convergence:

2.1. Policy evaluation. Find

wV := arg min
w

1
t

t∑
i=1

(vi − Ṽ (xi;w))2

where vi is recalculated after every step of the above minimization as

vi = R(xi, Ã(xi;wA)) + γṼ (S(xi, Ã(xi;wA));wV )

2.2. Policy improvement. Find

wA := arg max
w

1
t

t∑
i=1

Q
HDP

(xi, Ã(xi;w), wV )

where
Q
HDP

(x, u, wV ) = R(x, u) + γṼ (S(xi, u);wV )

Table 2.3: Heuristic Dynamic Programming.
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activity is a computational process which determines the policy on the basis of the
model and information of the visited states. Let us discuss this process in detail.

The algorithm uses two functions that constitute a model of the plant’s dynamics,
namely the model of rewards

R(x, u) = E(rt+1|xt = x, ut = u) (2.4)

and the model of next states (the state equation)

S(x, u) = E(xt+1|xt = x, ut = u). (2.5)

Note that when these functions are initially known, the algorithm is not a reinforce-
ment learning method any more. It does not learn to control from experience, but
from a model provided by a human designer. The algorithm may, however, become
a RL method when models R and S are built from the information gathered in the
exploitation loop. In Appendix A we provide an analysis of the algorithm’s behavior
in this case. We point there reasons to expect that the version of the HDP algorithm
that learns R and S on-line is likely to behave poorly. In Chapter 7 we provide an
empirical argument for this claim.

HDP employs an auxiliary approximator Ṽ (x;wV ) parameterized by the weight
vector wV . The objective of Ṽ is to approximate the value function V π(wA). The
plant model (2.4) and (2.5) together with the action-value function definition (2.3)
and the value function approximation serve to construct an approximation of the
action-value function

Q
HDP

(x, u, wV ) = R(x, u) + γṼ (S(x, u);wV ).

Notice that values of Q
HDP

are calculated on the basis of R, S, and Ṽ whenever it
is necessary.

Step 2. of HDP performs approximate Policy Iteration. Step 2.1. approximates
the value function V π(wA) for the fixed policy π(wA) to enable approximation of
Qπ(wA). Step 2.2. adjusts Ã(x;wA) to maximize the averaged approximation of
the action-value function. In this way Step 2.1. evaluates the policy and Step
2.2. optimizes the “first step along each trajectory”, as it is usually done in Policy
Iteration.

The above version of HDP is so far the first discussed long-term-memory algo-
rithm (see Section 2.2) as it requires keeping in memory an entire history of a control
process. The very idea of utilizing the history of control in some kind of approximate
Policy Iteration will be used in many algorithms presented in this dissertation.
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2.4.2 Action-Dependent HDP

Action-Dependent Heuristic Dynamic Programming [59, 31, 37] is basically a short-
term-memory method of reinforcement learning. There are, however, also its long-
term-memory versions [20]. The basic form of the algorithm is presented in Table
2.4.

Set t := 1. Initialize wA and wQ randomly.
Repeat until the policy π(wA) is satisfying:

1. ut = Ã(xt;wA).

2. Apply the control stimulus ut, observe the next state xt+1 and the reinforce-
ment rt+1.

3. Policy improvement. Adjust Ã(xt;wA) along d
dut
Q̃(xt, ut;wQ), namely

wA := wA + βAt
d

dwA
Ã(xt;wA)

d
dut

Q̃(xt, ut;wQ)

4. Policy evaluation. Adjust Q̃(xt, ut;wQ) towards rt+1+γQ̃(xt+1, ut+1;wQ), where
ut+1 = Ã(xt+1;wA), namely

qt := rt+1 + γQ̃(xt+1, Ã(xt+1;wA);wQ)

wQ := wQ + βQt
dQ̃(xt, ut;wQ)

dwQ

(
qt − Q̃(xt, ut;wQ)

)

5. Set t := t+ 1 and repeat from Step 1.

Table 2.4: Action-Dependent HDP.

The algorithm employs the auxiliary approximator Q̃(x, u;wQ) parameterized
by the weight vector wQ. Its objective is to approximate the action-value function
Qπ(wA). The algorithm simply modifies Ã(x;wA) along d

duQ̃(x, u;wQ)|u=Ã(x;wA) and
reapproximates Qπ(wA) for the changing policy π(wA).

2.4.3 Dual Heuristic Programming and its modifications

Dual Heuristic Programming (DHP) [59, 54, 31] is, in its spirit, very similar to HDP.
Both algorithms maximize the averaged approximation of the Q function. In order
to do so, they both use a gradient of the Q function approximation. In HDP, this
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gradient is calculated from the model and the approximation of the V π(wA) function.
In DHP a dedicated approximator is used for a direct calculation of this gradient.
The basic form of this algorithm is presented in Table 2.5.

This algorithm employs the auxiliary approximator λ̃(x, u;wλ) parameterized
by the weight vector wλ. Its objective is to approximate the gradient of the action-
value function d

duQ
π(wA)(x, u). The algorithm makes Ã(x;wA) approximately ascend

Qπ(wA) along λ̃ and reapproximates d
duQ

π(wA) for the changing policy π(wA).
In its core activity, the DHP algorithm maximizes an approximation of the Qπ(wA)

function. Here, this approximation is defined as

Q
DHP

(x, u, wλ) = Qπ(wA)(x, 0) +
∫

[0,u]

λ̃(x, u′;wλ) du′. (2.6)

[0, u] is here understood as the multi-dimensional interval [0, u1] × · · · × [0, udimU ],
where u = [u1, . . . , udimU ]. Notice that one does not have to calculate the integral
(2.6). This is the gradient d

duQDHP
(x, u, wλ) what is needed to maximize Q

DHP
,

whereas this gradient is equal to λ̃(x, u;wλ).
HDP, ADHDP, and DHP do not constitute all Adaptive Critic Designs. There

are several other modifications. Globalized Dual Heuristic Programming may be
viewed as a combination of HDP and DHP. It adjusts Ã(x;wA) along the vector
that is a weighted average of the HDP and DHP gradients. Algorithms HDP, DHP,
and GDHP have their versions modified in the way that the Ṽ approximator is
replaced with Q̃ that approximates Qπ(wA)(x, u). The entire family is discussed in a
number of publications [59, 60, 23, 30, 31].

2.5 The approach based on agnostic optimization

Let us analyze an issue slightly more general than the RL problem. We want to
choose the best policy from among a family Π parameterized by a vector w. Each
policy π(w) ∈ Π is characterized by a quality measure Φ(w). We may estimate Φ(w)
by observing the use of the policy π(w) for some time. For instance suppose we are
to provide parameters for a PID controller. We may check each triple of parameters
by observing a control process driven by the triple for some time. In this case it is
natural to define Φ(w) as the negative mean-squared difference between the actual
and the desired trajectory of the plant. We can only observe the control process for
a while, so the true value of Φ(w) is unavailable to us, but only its estimate.

We may treat the generic problem as an optimization issue

arg max
w

Φ(w)
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Initialize wA randomly.
Repeat until the policy π(wA) is satisfying:

1. The exploitation loop. Set i = 1 and repeat t times:

1.1. Observe xi and generate the action ui = Ã(xi;wA).

1.2. Perform ui (the plant moves to the next state).

1.3. Set i := i+ 1 and repeat from Step (a).

2. The internal loop. Basing on the data gathered in the exploitation loop, per-
form an approximate policy iteration. Namely, repeat until convergence:

2.1. Policy evaluation. Find

wλ := arg min
w

1
t

t∑
i=1

‖gi − λ̃(xi, Ã(xi;wA);w)‖2

where gi is recalculated after every step of the above minimization as

gi =
dR(xi, u)

du

∣∣∣∣
u=Ã(xi;wA)

+ γ
dS(xi, u)

du

∣∣∣∣
u=Ã(xi;wA)

dṼ (x;wV )
dx

∣∣∣∣
x=S(xi,Ã(xi;wA))

2.2. Policy improvement. Find

wA := arg max
w

1
t

t∑
i=1

Q
DHP

(xi, Ã(xi;w), wλ) (2.7)

for Q
DHP

defined in (2.6).

Table 2.5: Dual Heuristic Programming.
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such that the only available means to solve it encomapass choosing w and drawing an
unbiased estimator of Φ(w). The gradient ∇Φ is unavailable because its calculations
would have to be based on additional assumptions and these are given up here. We
do not take advantage of the structure of the problem which is the reason we called
this approach the “agnostic” one.

Genetic algorithms constitute a family of methods useful for solving problems
defined in this generic way. Indeed, they have been used for the RL problem [26].
What they try to do is a kind of a global search of Π. There are also methods that
are intended to perform a local search. One of these is the Simple Random Search
algorithm [33]. Its idea is to draw and evaluate the parameters vector w in the
vicinity of the best parameters found so far. It assumes that it is able to check the
value of Φ(w) (instead of its unbiased estimator) within a single control trial for a
chosen w.

Let us consider the relation between this approach and the one discussed in
Section 2.3. The algorithm presented there were so constructed that they, roughly
speaking, for each state, checked each control action and watched what happened.
Here, an algorithm checks each possible policy and observes what happens. This
“checking and watching what happens” is moved from the level of actions to the
level of policies. On one hand, a direct search of the space of policies introduces a
lot of redundancy: we do not take advantage of the fact that policies may be similar
in the sense that they produce the same actions in the same states. On the other
hand, exploitation of this redundancy is difficult; it forces us to use approximators
of limited accuracy and we loose optimality. A direct search of the space of policies
may be very slow, yet sometimes it is the only method that leads to satisfying results.
We may always change parameters of the system and see what happens until the
system’s behavior becomes satisfying.
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Chapter 3

Smoothly exploring distributions

Reinforcement learning algorithms presented in the remaining of this dissertation
share the same mechanism of action selection. Namely, at each state x an action
u is drawn from a density ϕ(· ; θ). The density is parameterized by the vector θ
whose value is determined by a parametric approximator θ̃(x;wθ) with input x and
parameters wθ.

For example, ϕ(u; θ) can be the normal density with mean θ and constant vari-
ance whereas θ̃(x;wθ) can be a neural network with input x and weights wθ. In this
example, the output of the network determines a center of the distribution out of
which an action is drawn.

The two following sections are devoted to an analysis of ϕ without references to
its usage in reinforcement learning. Let U ⊂ Rn, Θ be a bounded and closed subset
of Rm, and ϕ : U ×Θ 7→ R+ be a function which, for each fixed value θ of its second
argument, is a density of a certain random vector Y in Rn. Obviously, ϕ defines a
family of distributions in U . Let f : U 7→ R be an unknown function and denote by
Eθf(Y ) the expected value of f(Y ) for Y drawn from the distribution selected from
ϕ by setting the parameter to θ. We look for

arg max
θ
Eθf(Y )

assuming that we are just able to repeatedly draw Y and check f(Y ). Notice the
simple fact that f(Y ) is an unbiased estimator of Eθf(Y ).
Eθf(Y ) interests us as a function of θ. Let denote this function by (Hf)(θ), i.e.

(Hf)(θ) = Eθf(Y ) =
∫

U

f(z)ϕ(z; θ) dz (3.1)

Formally speaking, H is an operator defined by the family of distributions ϕ. It
maps each function f : U 7→ R to a certain function h : Θ 7→ R (see Figure 3.1).
While we provide ϕ and H as system designers, f and Hf are something we find in

23
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Figure 3.1: An example of f(Y ) and (Hf)(θ). U = Θ = R and ϕ(· ; θ) is the
normal density with mean θ and small constant variance. In this case (Hf)(θ) =∫∞
−∞ f(z)ϕ(z; θ) dz may be understood as a result of local averaging of f .

the real world. In the remaining of the chapter we shall outline the properties of
Hf that enable the maximization of this function. The properties are based on the
following assumptions concerning ϕ.

(A) ϕ(z; θ) > 0 for z ∈ U , θ ∈ Θ,

(B) for every z ∈ U , the mapping θ 7→ ϕ(z; θ) is continuous and differentiable,

(C) Fisher Information I(θ) = Eθ
(∇θ lnϕ(Y ; θ)

)(∇θ lnϕ(Y ; θ)
)T is a bounded

function of θ,

(D) the hessian ∇2
θ lnϕ(z; θ) is uniformly bounded.

The families of distributions satisfying the above conditions will be called smoothly
exploring1. For example, the family of normal distributions with constant non-
singular variance, parameterized by the expected value, satisfies the conditions.
However, the family of normal distributions with constant mean, parameterized by
non-zero variance, does not. It does not satisfy Condition (C).

In the discussion below the convention will be held that whenever Y and θ occur
in the same formula, Y is drawn from the distribution with density ϕ(· ; θ). All
integrals in proofs of propositions are over U .

1This name is given just for simplicity. Actually, it is nothing unusual for families of distributions
considered in statistics to satisfy conditions (A), (B), (C), and (D).
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3.1 Short-term-memory optimization

In this section we will prove that under certain, quite liberal, conditions Hf is
uniformly continuous. We show how to estimate its gradient and prove that the
variance of the estimator is bounded. This, taken together, enables us to maximize
Hf by means of Robbins-Monroe procedure of stochastic approximation [18]. The
content of this section is based on [57].

Before we shall begin with continuity, let us prove the following useful lemma.

Lemma 1. If distributions of Y are smoothly exploring then there exists M such
that for each θ1, θ2 ∈ Θ the inequality

∫ ∣∣ϕ(z; θ2)− ϕ(z; θ1)
∣∣ dz ≤M‖θ2 − θ1‖ (3.2)

holds.

Proof : The property (C) of smoothly exploring distributions, together with
Hölder inequality, implies that Eθ

∥∥∇θ lnϕ(Y ; θ)
∥∥ is bounded. Since ∇θ lnϕ(z; θ) =

∇θϕ(z;θ)
ϕ(z;θ) , M1 exists such that

M1 = sup
θ
Eθ‖∇θ lnϕ(Y ; θ)‖ = sup

θ

∫
‖∇θϕ(z; θ)‖ dz.

The expression in the integral
∫ ∣∣ϕ(z; θ2)− ϕ(z; θ1)

∣∣ dz

can be bounded by a sum of k increments of ϕ at θ1 +∆i and θ1 +∆i−1, i = 1, . . . , k,
where ∆i = i

k
(θ2 − θ1) for some k. Consequently

∫ ∣∣ϕ(z; θ2)− ϕ(z; θ1)
∣∣ dz

≤
∫ k∑

i=1

∣∣∣ϕ(z; θ1 + ∆i)− ϕ(z; θ1 + ∆i−1)
∣∣∣ dz.

The inequality takes place for each k, thus it also takes place in the limit, hence
∫ ∣∣ϕ(z; θ2)− ϕ(z; θ1)

∣∣ dz

≤
∫ ∫

[θ1,θ2]

‖∇θ′ϕ(z; θ′)‖ dθ′ dz

=
∫

[θ1,θ2]

∫
‖∇θ′ϕ(z; θ′)‖ dz dθ′

≤M1‖θ2 − θ1‖
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Now we are ready to prove the uniform continuity.

Proposition 1. If

(a) f is a bounded function Rn 7→ R,

(b) distributions of Y are smoothly exploring,

then Hf is uniformly continuous.

Proof : We will prove that a change in Eθf(Y ) caused by an incremental change
of θ is bounded linearly in ∆θ. Assumption (a) guarantees that

M1 = sup
z
|f(z)|

exists. We have

|Eθ+∆θf(Y )− Eθf(Y )|

=

∣∣∣∣∣
∫
f(z)ϕ(z; θ + ∆θ) dz −

∫
f(z)ϕ(z; θ) dz

∣∣∣∣∣

=

∣∣∣∣∣
∫
f(z)(ϕ(z; θ + ∆θ)− ϕ(z; θ)) dz

∣∣∣∣∣

≤M1

∫ ∣∣ϕ(z; θ + ∆θ)− ϕ(z; θ)
∣∣ dz.

According to Lemma 1 there exists M such that the value of the last integral is
smaller than M‖∆θ‖.

The next proposition enables us to design an unbiased estimator of the gradient
∇(Hf)(θ).

Proposition 2. Under the assumptions of Proposition 1, the following relation holds

∇(Hf)(θ) = Eθ
(
f(Y )∇θ lnϕ(Y ; θ)

)
. (3.3)

Proof : We directly calculate the i-th coordinate of the gradient

d
dθi
Eθf(Y ) = lim

δ→0

1
δ

(
Eθ+δeif(Y )− Eθf(Y )

)

= lim
δ→0

1
δ

(∫
f(z)ϕ(z; θ + δei) dz

−
∫
f(z)ϕ(z; θ) dz

)

= lim
δ→0

1
δ

∫ (
ϕ(z; θ + δei)− ϕ(z; θ)

)
f(z) dz
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where ei is the versor of the i-th coordinate, i.e. the vector of zeros except the unit
at the i-th position. The assumptions of Lebesgue dominated convergence theorem
are satisfied, hence

d
dθi
Eθf(Y )

=
∫

lim
δ→0

1
δ

(
ϕ(z; θ + δei)− ϕ(z; θ)

)
f(z) dz

=
∫
∇θiϕ(z; θ)f(z) dz

=
∫ ∇θiϕ(z; θ)

ϕ(z; θ)
f(z)ϕ(z; θ) dz.

Since ∇θϕ(z;θ)
ϕ(z;θ) = ∇θ lnϕ(z; θ), we finally obtain (3.3).

Proposition above leads to the main result of this section:

Proposition 3 (Unbiased estimator). Under the assumptions of Proposition 1,
the random vector

(
f(Y )− c)∇θ lnϕ(Y ; θ) (3.4)

is an unbiased estimator of ∇(Hf)(θ), regardless of c.

Proof : According to Proposition 2

f(Y )∇θ lnϕ(Y ; θ)

is an unbiased estimator of d
dθEθf(Y ). Obviously, it is also an unbiased estimator of

d
dθ

(Eθf(Y )− c) =
d
dθ
Eθ

(
f(Y )− c).

We take (f(Y )−c)∇θ lnϕ(Y ; θ) as an estimator of d
dθEθ(f(Y )−c) and consequently

as an estimator of d
dθEθf(Y ).

It is not clear how to choose the scalar c to obtain the best, in the sense of
variance minimization, estimator of the form (3.4). Note yet that taking c equal to an
approximation of Eθf(Y ) decreases the absolute value of the differences f(Y )−c and
seems to constrain the variance. However, this might not be the optimal solution.

A gradient estimator, in order to be useful in Robbins-Monroe procedure of
stochastic approximation, must be unbiased and its variance must be bounded. In
the following proposition we prove the latter property.

Proposition 4 (Variance bound existence). Under the assumptions of Propo-
sition 1, variance of estimator (3.4) is bounded.
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0. Set t := 1. Initialize θ1 ∈ Θ randomly.

1. Draw:
Yt ∼ ϕ(· ; θt)

2. Calculate:

θ̄t+1 = θt + βθt
(
f(Yt)− ct

)∇θ lnϕ(Yt; θ)|θ=θt (3.5)

θt+1 = arg min
θ∈Θ
‖θ − θ̄t+1‖ (3.6)

c̄t+1 = ct + βct (f(Yt)− ct) (3.7)

ct+1 = min{max{−M, c̄t+1},M} (3.8)

3. Set t := t+ 1 and move to Step 1.

Table 3.1: The SHORT-MEM-MAX algorithm of maximization of (Hf)(θ).

Proof : Let M1 be a bound of ‖f(z)‖. We have

Vθ
(
f(Y )− c)∇θ lnϕ(Y ; θ) ≤ Eθ

(
f(Y )− c)2(∇θ lnϕ(Y ; θ)

)(∇θ lnϕ(Y ; θ)
)T

≤ (M1 + |c|)2Eθ
(∇θ lnϕ(Y ; θ)

)(∇θ lnϕ(Y ; θ)
)T

which is bounded due to Property (C) of smoothly exploring distributions.
This section was entirely devoted to develop tools for the algorithm presented in

Table 3.1. The purpose of the algorithm is to make the sequence {θt, t = 1, 2, . . . }
converge to a local maximum of Hf . In its core activity (3.5) it modifies θ along an
estimator of∇(Hf). The role of ct is to approximate (Hf)(θt) and to be the reference
point for the estimator used in (3.5). The sequences {βct , t ∈ N} and {βθt , t ∈ N}
should satisfy standard stochastic approximation conditions. In (3.8) ct is bounded
to the interval [−M,M ] for a certain positive M . In (3.6) the algorithm makes θt
belong to Θ. The following proposition summarizes conditions of the algorithm’s
convergence.

Proposition 5 (SHORT-MEM-MAX convergence). Let assumptions of Propo-
sition 1 hold, the sequence {βθt , t = 1, 2, . . . } satisfies the conditions

∑
t≥1 β

θ
t = ∞

and
∑

t≥1(βθ)2
t < ∞, and M be some positive constant. The SHORT-MEM-MAX

algorithm converges with probability one to a local maximum of Hf .

The proof is a consequence of the fact that SHORT-MEM-MAX becomes a
Robbins-Monroe procedure of stochastic approximation. The gradient estimator
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used in (3.5) is unbiased (Proposition 3) and its variance is bounded (Proposition
4).
Notice that the SHORT-MEM-MAX algorithm (i) process each triple 〈θt, Yt, f(Yt)〉
separately and (ii) each triple is analyzed only once. Hence, the algorithm needs a
constant amount of memory.

3.2 Long-term-memory optimization

In the previous section we revealed how to maximize Hf with the use of consecutive
drawings from ϕ(· ; θ). The algorithm introduced uses each drawing for a single
adjustment of θ. Let us assume now that consecutive drawings are in a certain
sense expensive, in contrary to computational power and memory, which are cheap.
In this section we are looking for a method of Hf maximization that assumes that
after each drawing the entire sample is available for an exhaustive processing. The
idea is as follows: We derive an estimator (Ĥf)(θ) of (Hf)(θ) that is parameterized
by θ and based on the entire sample. In each its step the algorithm maximizes this
estimator with respect to θ. The maximization yields another value of θ which is
then employed to generate a next drawing. In another step the sample that enables
to estimate (Hf)(θ) is thus larger.

3.2.1 Two estimation problems

Suppose we are given the triple 〈Y0, ϕ0(Y0), f(Y0)〉 where Y0 has been drawn from
the density ϕ0(·). We consider two problems. We want to estimate Eθf(Y ) for a
given θ and to estimate Eθ(f(Y )− c)2 for a given θ and c.

The quantity

f(Y0)
ϕ(Y0, θ)
ϕ0(Y0)

(3.9)

is an unbiased estimator of Eθf(Y ), since

E0

(
f(Y )

ϕ(Y ; θ)
ϕ0(Y )

)
=

∫
f(z)

ϕ(z; θ)
ϕ0(z)

ϕ0(z) dz

=
∫
f(z)ϕ(z; θ) dz

= Eθf(Y ) (3.10)

where E0 is the expected value for the random vector Y drawn from the density ϕ0.
The estimator2 (3.9) is unbiased, yet its variance can be large when the distributions

2This method of constructing estimators is known in statistics as importance sampling [34] and
has already been used in reinforcement learning; see [28, 29, 36].
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ϕ(· ; θ) and ϕ0(·) differ too much. Bounding the variance is an issue of importance.
A derivation similar to (3.10) proves that

c+ (f(Y0)− c)ϕ(Y0, θ)
ϕ0(Y0)

(3.11)

is also an unbiased estimator of Eθf(Y ) for each constant (non-random) reference
point c. The question arises, how to choose the reference point. It seems reasonable
to take c equal to some preliminary assessment of Eθf(Y ). If this assessment is
correct, it bounds the absolute value of f(Y0) − c for large values of the fraction
ϕ(Y0, θ)/ϕ0(Y0) and consequently confines variance of (3.11). Another method of
suppressing the variance is to replace the division of densities with

ρ(ϕ(Y0; θ), ϕ0(Y0)) = min
{
ϕ(Y0, θ)
ϕ0(Y0)

, b

}
(3.12)

where b is a number greater than 1. The larger the number, the smaller the bias yet
the larger variance. We obtain the estimator

c+ (f(Y0)− c)ρ(ϕ(Y0; θ), ϕ0(Y0)). (3.13)

It is biased, yet it possesses a property that is very useful for our purposes. Namely,
its bias vanishes when ϕ(· ; θ) approaches ϕ0(·). We will show it in Proposition 8.

The second problem is to estimate Eθ(f(Y )− c)2 for given θ and c. By applying
an argument similar to (3.10), we obtain that

(f(Y0)− c)2ϕ(Y0, θ)
ϕ0(Y0)

(3.14)

is an estimator we look for, and it is unbiased. Another estimator

(f(Y0)− c)2ρ(ϕ(Y0, θ), ϕ0(Y0)) (3.15)

has smaller variance. Once again, the estimator is biased and becomes unbiased for
ϕ(· ; θ) approaching ϕ0(·).

3.2.2 The LONG-MEM-MAX algorithm

Solutions of the two problems considered above lead to the LONG-MEM-MAX
algorithm that implements the idea mentioned at the beginning of this section. The
algorithm is outlined in Table 3.2. It uses each drawing to calculate an estimator
of (Hf)(θ) parameterized by θ. An average of these constitute the estimator Ĥk

t (θ)
that is maximized with respect to θ to obtain θk+1 (3.17), (3.18). In order to
construct Ĥk

t (θ), a reference point is required. As suggested above, the reference
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0. Set t := 1. Initialize θ1 ∈ Θ randomly.

1. Draw:
Yt ∼ ϕ(· ; θt)

and set ϕt := ϕ(Yt; θt).

2. Set k = 1, θ1 = θt, and θt+1 as a limit θk of the following internal loop:

ck := arg min
c∈R

1
t

t∑
i=1

(f(Yi)− c)2ρ(ϕ(Yi; θk), ϕi) (3.16)

θk+1 := arg max
θ∈Θ

Ĥk
t (θ) (3.17)

where Ĥk
t (θ) =

1
t

t∑
i=1

ck + (f(Yi)− ck)ρ(ϕ(Yi; θ), ϕi) (3.18)

k := k + 1

3. Set t := t+ 1 and move to Step 1.

Table 3.2: The LONG-MEM-MAX algorithm of maximization of (Hf)(θ).

point is picked as an estimator of (Hf)(θk) that is as the value ck that minimizes an
estimator of Eθk(f(Y ) − c)2 (3.16). Because the reference point changes when the
maximization is done, the estimation and maximization has to be repeated. Both
processes are repeatedly executed until convergence.

It is worth remembering that there is a similarity between this procedure and
the maximum likelihood estimation. In the former, we look for the parameter that
maximizes the probability of generating the available data. Here, we look for the
parameters most plausible to generate the data we would like to draw.

Implementation of LONG-MEM-MAX may seem difficult because of the infinite
internal loop in its Step 2. The following property reduces the loop to a simple
optimization issue.

Proposition 6 (LONG-MEM-MAX property). Let assumptions of Proposition
1 hold. After each step of the LONG-MEM-MAX algorithm the equality

θt+1 = arg max
θ
Ĥt(θ) (3.19)

holds where

Ĥt(θ) =
∑t

i=1 f(Yi)ρ(ϕ(Yi; θ), ϕi)∑t
i=1 ρ(ϕ(Yi; θ), ϕi)

. (3.20)
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Proof: First note that the optimization (3.16) is a minimization of a quadratic
function. Its solution is well defined as

ck =
∑t

i=1 f(Yi)ρ(ϕ(Yi; θk), ϕi)∑t
i=1 ρ(ϕ(Yi; θk), ϕi)

.

We see that ck = Ĥt(θk). The function optimized in 3.17 satisfies

Ĥk
t (θ) = ck +

1
t

t∑
i=1

f(Yi)ρ(ϕ(Yi; θ), ϕi)− ck 1
t

t∑
i=1

ρ(ϕ(Yi; θ), ϕi)

= ck +
(∑t

i=1 f(Yi)ρ(ϕ(Yi; θ), ϕi)∑t
i=1 ρ(ϕ(Yi; θ), ϕi)

− ck
)

1
t

t∑
i=1

ρ(ϕ(Yi; θ), ϕi)

= ck +
(
Ĥt(θ)− ck

) 1
t

t∑
i=1

ρ(ϕ(Yi; θ), ϕi)

= Ĥt(θk) +
(
Ĥt(θ)− Ĥt(θk)

)
gt(θ) (3.21)

where

gt(θ) =
1
t

t∑
i=1

ρ(ϕ(Yi; θ), ϕi).

Let us fix t. Since (i) Θ is bounded and closed, (ii) gt is positive, (iii) gt is continuous,
there exist m,M > 0 such that for all θ ∈ Θ, gt(θ) ∈ [m,M ]. Let θ∗ be one of the
vectors such that Ĥt(θ∗) = maxθ Ĥt(θ). The fact that θk+1 maximizes Ĥk

t implies
that

Ĥk
t (θk+1) ≥ Ĥk

t (θ∗),

which, together with (3.21), gives

Ĥt(θk) +
(
Ĥt(θk+1)− Ĥt(θk)

)
gt(θk+1) ≥ Ĥt(θk) +

(
Ĥt(θ∗)− Ĥt(θk)

)
gt(θ∗)

(
Ĥt(θk+1)− Ĥt(θk)

)
≥

(
Ĥt(θ∗)− Ĥt(θk)

) gt(θ∗)
gt(θk+1)

Ĥt(θ∗)−
(
Ĥt(θk+1)− Ĥt(θk)

)
≤ Ĥt(θ∗)−

(
Ĥt(θ∗)− Ĥt(θk)

) gt(θ∗)
gt(θk+1)

Ĥt(θ∗)− Ĥt(θk+1) ≤
(
Ĥt(θ∗)− Ĥt(θk)

) (
1− gt(θ∗)

gt(θk+1)

)

Ĥt(θ∗)− Ĥt(θk+1) ≤
(
Ĥt(θ∗)− Ĥt(θk)

)(
1− m

M

)
.

Consequently, the difference [maxθ Ĥt(θ) − Ĥt(θk)] decreases exponentially with
growing k.
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3.2.3 Limit properties of estimators

Even though we do not prove convergence of the LONG-MEM-MAX algorithm, we
provide some idea about its limit behavior. At each t-th moment estimators of
(Hf)(θ) for each θ are available to the algorithm. Because of usage of the ρ function
in their construction, these estimators are in general biased. However, the closer
is θ to vectors θi, i ∈ {1, . . . , t} available in the database, the smaller is the bias
of (Ĥf)(θ). At t-th moment the algorithm draws with the use of the parameter
θt that is “suspected” of being in the maximum of Hf . The drawing decreases
biases of (Ĥf)(θ) for all θ that are close to θt. Furthermore, when the algorithm
draws repeatedly in some “suspected” area, the bias of estimates of Hf in this area
decreases and these estimates converge to appropriate values.

The bias of estimators is a consequence of the usage of the ρ function in their
construction. In the sequel we shall assume that ρ is defined as (3.12). Suppose
the sample is available that has been drawn with the use of the parameter θ0. We
want to use this drawing to compute an estimation for a given θ. The following
proposition determines bounds for the probability (in the distribution ϕ(·; θ)) that
the ρ function would have reached its upper limit (which implies the bias). Actually
we know the drawn value and we may calculate the value of ρ to determine whether
it reaches its upper bound. However, we want to determine how frequent such an
event is.

Proposition 7. Let ϕ be a family of smoothly exploring distributions, ρ be defined
in (3.12). There exists M such that for each θ0, θ ∈ Θ the inequality

Pθ(ρ(ϕ(Y ; θ), ϕ(Y ; θ0)) = b) ≤M‖θ − θ0‖2 (3.22)

holds for b > 1.

Proof : We have

ρ(ϕ(Y ; θ), ϕ(Y ; θ0)) = b > 1

⇔ ϕ(Y ; θ) ≥ bϕ(Y ; θ0)

⇔ ϕ(Y ; θ)
ϕ(Y ; θ0)

≥ b

⇔ ln
ϕ(Y ; θ)
ϕ(Y ; θ0)

≥ ln b

⇔ (ln b)−1
(

lnϕ(Y ; θ)− ln(Y ; θ0)
) ≥ 1.
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Consequently

Pθ(ρ(ϕ(Y ; θ), ϕ(Y ; θ0)) = b)

= Pθ
(
(ln b)−1

(
lnϕ(Y ; θ)− ln(Y ; θ0)

) ≥ 1
)

=
∫ [

(ln b)−1
(

lnϕ(z; θ)− lnϕ(z; θ0)
) ≥ 1

]
ϕ(z; θ) dz

=
∫ [

(ln b)−2
(

lnϕ(z; θ)− lnϕ(z; θ0)
)2 ≥ 1

]
ϕ(z; θ) dz

≤
∫

(ln b)−2
(

lnϕ(z; θ)− lnϕ(z; θ0)
)2
ϕ(z; θ) dz

where [·] has the conventional meaning. Obviously [x ≥ 1] ≤ x. Because of Property
(D) of smoothly exploring distributions there exists M1 : (∀z, θ)‖∇2

θ ln(z; θ)‖ < M1

and we have

Pθ(ρ(ϕ(Y ; θ), ϕ(Y ; θ0)) = b)

≤ (ln b)−2
∫ (‖∇θ lnϕ(z; θ)‖‖θ0 − θ‖+M1‖θ0 − θ‖2

)2
ϕ(z; θ) dz

≤ ‖θ0 − θ‖2(ln b)−2
∫
‖∇θ lnϕ(z; θ)‖2ϕ(z; θ) dz (3.23)

+ ‖θ0 − θ‖32M1(ln b)−2
∫
‖∇θ lnϕ(z; θ)‖ϕ(z; θ) dz (3.24)

+ ‖θ0 − θ‖4M2
1 (ln b)−2

∫
ϕ(z; θ) dz. (3.25)

Thank to Property (C) of smoothly exploring distributions the integrals (3.23) and
(3.24) are bounded. The integral (3.25) is equal to 1. From inequality (3.23) we
may only conclude, that the required probability is no greater than M‖θ0 − θ‖2 for
‖θ0 − θ‖ small enough. However, this probability is obviously bounded also by 1
and this way bounded by M‖θ0 − θ‖2 for all θ0, θ, and a certain M .

Let denote

ĥ(θ, Y, θ0, c) = c+
(
f(Y )− c)ρ(ϕ(Y ; θ), ϕ(Y ; θ0)

)
(3.26)

where ρ is defined in (3.12). LONG-MEM-MAX averages ĥ-s to estimate (Hf)(θ) for
a given θ. The following property of ĥ is the key one. It states that when we draw
from ϕ(·; θ0), ĥ(θ, Y, θ0, c) becomes the estimator of (Hf)(θ) whose bias is bounded
by M‖θ − θ0‖2 for a certain constant M .

Proposition 8. Let assumptions of Proposition 7 hold, f , c, and ρ be bounded.
There exist M1 and M2 such that for each θ0, θ ∈ Θ the inequalities

a) Vθ0ĥ(θ, Y, θ0, c) ≤M1

b)
∣∣∣Eθ0ĥ(θ, Y, θ0, c)− (Hf)(θ)

∣∣∣ ≤M2‖θ0 − θ‖2

hold.
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Proof : Let M3 be the upper bound of |f | and |c| and b > 1 be the upper bound
of ρ. We have
a)

Vθ0ĥ(θ, Y, θ0, c)

≤ Eθ0
(
ĥ(θ, Y, θ0, c)

)2

= Eθ0
(
c+ (f(Y )− c)ρ(ϕ(Y ; θ), ϕ(Y ; θ0))

)2

≤ Eθ0
(|c|+ 2M3b

)2

≤ (M3)2(2b+ 1)2

We thus obtain M1 = (M3)2(2b+ 1)2.
b) We split Eθ0ĥ and Eθf into pairs of integrals. For the first element of each pair ρ
does not reach its upper bound and for the second one it does. The first elements
cancel each other out and we derive a bound for the second ones.

∣∣∣Eθ0ĥ(θ, Y, θ0, c)− Eθf(Y )
∣∣∣

= |Eθ0 (c+ (f(Y )− c)ρ(ϕ(Y ; θ), ϕ(Y ; θ0)))− Eθf(Y )|

=
∣∣∣∣

∫

z:ϕ(z;θ)/ϕ(z;θ0)<b

(
c+ (f(z)− c) ϕ(z; θ)

ϕ(z; θ0)

)
ϕ(z; θ0) dz

+
∫

z:ϕ(z;θ)/ϕ(z;θ0)≥b

(
c+ (f(z)− c)b)ϕ(z; θ0) dz

−
∫
f(z)ϕ(z; θ) dz

∣∣∣∣

=
∣∣∣∣

∫

z:ϕ(z;θ)/ϕ(z;θ0)≥b

((
c+ (f(z)− c)b)ϕ(z; θ0)− f(z)ϕ(z; θ)

)
dz

∣∣∣∣

≤
∣∣∣∣

∫

z:bϕ(z;θ0)ϕ(z;θ)−1≤1

((
c/b+ (f(z)− c))bϕ(z; θ0)

ϕ(z; θ)
− f(z)

)
ϕ(z; θ) dz

∣∣∣∣

≤
∣∣∣∣

∫

z:ϕ(z;θ)/ϕ(z;θ0)≥b

((
M3/b+ 2M3

)
+M3

)
ϕ(z; θ) dz

∣∣∣∣

≤ 4M3Pθ(ρ(ϕ(Y ; θ), ϕ(Y ; θ0)) = b)

According to Proposition (7), the probability above is bounded by M4‖θ − θ0‖2 for
certain M4. Consequently, we have M2 = 4M3M4 which completes the proof.

Another proposition determines what happens when we draw Y with the use of
θ0 and use ∇θĥ(θ, Y, θ0, c) as an estimator of ∇(Hf)(θ). It states that the variance
of this estimator is bounded and its bias is limited by M‖θ − θ0‖ for a certain M .
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Proposition 9. Let assumptions of Proposition 7 hold, f , c, and ρ be bounded.
There exist M1 and M2 such that for each θ0, θ ∈ Θ the inequalities

a) Vθ0∇θĥ(θ, Y, θ0, c) ≤M1

b)
∥∥∥Eθ0∇θĥ(θ, Y, θ0, c)−∇(Hf)(θ)

∥∥∥ ≤M2‖θ0 − θ‖

hold.

Proof : Let M3 be the upper bound of |f | and |c| and b > 1 be the upper bound
of ρ. (3.26) implies that

∇θĥ(θ, Y, θ0, c) = (f(Y )− c) dρ(ϕ(Y ; θ), ϕ(Y ; θ0))
dθ

.

a) We utilize the fact that for z such that makes ρ reach its upper bound,∇θĥ(θ, z, θ0, c) =
0. We have

Vθ0∇θĥ(θ, Y, θ0, c)

≤ Eθ0
∥∥∥∥∥

dĥ(θ, Y, θ0, c)
dθ

∥∥∥∥∥

2

= Eθ0
∥∥∥∥(f(Y )− c) dρ(ϕ(Y ; θ), ϕ(Y ; θ0))

dθ

∥∥∥∥
2

≤ (2M3)2
∫

z: ϕ(z;θ)
ϕ(z;θ0)<b

∥∥∥∥
dϕ(z; θ)

dθ
1

ϕ(z; θ0)

∥∥∥∥
2

ϕ(z; θ0) dz

= (2M3)2
∫

z: 1
ϕ(z;θ0)<

b
ϕ(z;θ)

∥∥∥∥
dϕ(z; θ)

dθ

∥∥∥∥
2 1
ϕ(z; θ0)

dz

≤ (2M3)2
∫

z: 1
ϕ(z;θ0)<

b
ϕ(z;θ)

∥∥∥∥
dϕ(z; θ)

dθ
1

ϕ(z; θ)

∥∥∥∥
2

bϕ(z; θ) dz

≤ (2M3)2b

∫
‖∇θ lnϕ(z; θ)‖2 ϕ(z; θ) dz.

The last integral is bounded by a certain M4 thank to Property (C) of smoothly
exploring distributions. We obtain M1 = (2M3)2bM4.

Notice that the above inequalities along with Hölder inequality imply also that
there exists M5 such that

Eθ0
∥∥∥∥∥

dĥ(θ, Y, θ0, c)
dθ

∥∥∥∥∥ ≤M5. (3.27)
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We will utilize the above property later on.
b) Let denote

x =
∥∥∥Eθ0∇θĥ(θ, Y, θ0, c)−∇(Hf)(θ)

∥∥∥

=
∥∥∥∥Eθ0

(
(f(Y )− c) dρ(ϕ(Y ; θ), ϕ(Y ; θ0))

dθ

)
− d(Hf)(θ)

dθ

∥∥∥∥ .

Thank to the definition of the ρ function and Proposition 3 we have

x =
∣∣∣∣

∫

z:ϕ(z;θ)/ϕ(z;θ0)<b

(
(f(z)− c) dϕ(z; θ)

dθ
1

ϕ(z; θ0)

)
ϕ(z; θ0) dz

−
∫ (

(f(z)− c) dϕ(z; θ)
dθ

1
ϕ(z; θ)

)
ϕ(z; θ) dz

∣∣∣∣
and consequently

x =

∣∣∣∣∣∣∣

∫

z:ϕ(z;θ)/ϕ(z;θ0)≥b

(
(f(z)− c) dϕ(z; θ)

dθ
1

ϕ(z; θ0)

)
ϕ(z; θ0) dz

∣∣∣∣∣∣∣

≤
∫

z:ϕ(z;θ)/ϕ(z;θ0)≥b

2M3

∥∥∥∥
dϕ(z; θ)

dθ

∥∥∥∥ dz

Because of Property (D) of smoothly exploring distributions there exists M5 such
that (∀z, θ)‖∇2

θ ln(z; θ)‖ < M5 and we have

ϕ(z; θ)/ϕ(z; θ0) ≥ b

⇔ lnϕ(z; θ)− lnϕ(z; θ0) ≥ ln b

⇒ ‖θ − θ0‖‖∇θ lnϕ(z; θ)‖+ ‖θ − θ0‖2M5 ≥ ln b

⇔ (ln b)−1
(‖θ − θ0‖‖∇θ lnϕ(z; θ)‖+ ‖θ − θ0‖2M5

) ≥ 1.

The last above equivalence is a result of the fact that b > 1 and thus ln b > 0. We
employ below the above implication and the fact that [x ≥ 1] ≤ x. We obtain

x ≤ 2M3

∫

z:ϕ(z;θ)/ϕ(z;θ0)≥b

∥∥∥∥
dϕ(z; θ)

dθ

∥∥∥∥ dz

= 2M3

∫ ∥∥∥∥
dϕ(z; θ)

dθ

∥∥∥∥ [ϕ(z; θ)/ϕ(z; θ0) ≥ b] dz

≤ 2M3

∫ ∥∥∥∥
dϕ(z; θ)

dθ

∥∥∥∥
[
(ln b)−1

(‖θ − θ0‖‖∇θ lnϕ(z; θ)‖+ ‖θ − θ0‖2M5
) ≥ 1

]
dz

≤ 2M3(ln b)−1‖θ − θ0‖
∫
‖∇θ lnϕ(z; θ)‖2ϕ(z; θ) dz (3.28)

+ 2M3(ln b)−1‖θ − θ0‖2M5

∫
‖∇θ lnϕ(z; θ)‖ϕ(z; θ) dz. (3.29)



38 CHAPTER 3. SMOOTHLY EXPLORING DISTRIBUTIONS

Thank to Property (C) of smoothly exploring distributions the integrals in (3.28)
and (3.29) are bounded. Because of uniform continuity of Hf (Proposition 1), ∇(Hf)
is bounded. However, (3.27) implies that Eθ0ĥ is also bounded. Consequently, the
required bias is uniformly bounded which completes the proof of condition (b).

The above propositions suggest the following behavior of LONG-MEM-MAX.
Whenever the algorithm draws with the use of a parameter θt, it improves esti-
mates of (Hf)(θ) and ∇(Hf)(θ) for all θ close to θt. As suggested by Proposition
9, the closer θ is to θt the larger the improvement is. According to Proposition 6,
at each step t the algorithm calculates θt+1 that maximizes Ĥt(·), an estimation of
(Hf)(·) calculated on the basis of the data gathered up to the moment t. Obvi-
ously ∇Ĥt(θ)|θ=θt+1 = 0. When Yt+1 is drawn with the use of θt+1, the gradient
∇Ĥt+1(θ)|θ=θt+1 is likely to reflect ∇(Hf)(θ)|θ=θt+1 better than ∇Ĥt(θ)|θ=θt+1 . This
way the algorithm follows a vector that approaches ∇(Hf) to make the sequence
{θt} approach a local maximum of Hf .

At this point we consider the convergence of LONG-MEM-MAX hypothetical.
However, it is based on the estimators whose properties are favorable. Namely,
their variances are bounded and their biases vanish when they are generated by
converging distributions. Furthermore, we shall see that a reinforcement learning
algorithm that is based on LONG-MEM-MAX works very well.

3.2.4 Behavior of LONG-MEM-MAX, distant exploration
tendency

In this section we consider several aspects of the behavior of LONG-MEM-MAX
when the algorithm is far from convergence. The discussion is based mainly on
Proposition 6. First of all, for t = 1 the algorithm maximizes

Ĥ1(θ) ≡ f(Y1).

It is not surprising that when we have as few as a single sample, we have no infor-
mation that enables to distinguish “good” θ from “bad” ones.

When there are more samples yet not very many, the algorithm may still behave
in a “strange” way. Let us analyze a simple example of this behavior. Let ϕ be a
family of scalar normal distributions N(θ;σ2) (3.31) parameterized by the expected
value θ. For t = 2 the algorithm calculates θ3 as the value that maximizes

Ĥ2(θ) =
f(Y1)ρ(ϕ(Y1; θ), ϕ1) + f(Y2)ρ(ϕ(Y2; θ), ϕ2)

ρ(ϕ(Y1; θ), ϕ1) + ρ(ϕ(Y2; θ), ϕ2)
.

Notice that (a) Ĥ2(θ) is a weighted average of f(Y1) and f(Y2), (b) both weights
belong to the interval (0, 1), (c) for |θ| large enough, the ratio of weighs of f(Y1)
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and f(Y2) is equal to the ratio of densities

ρ(ϕ(Y1; θ), ϕ1)
ρ(ϕ(Y2; θ), ϕ2)

=
ϕ(Y1; θ)ϕ2

ϕ(Y2; θ)ϕ1

=
exp(−0.5σ−2(Y1 − θ)2)ϕ2

exp(−0.5σ−2(Y2 − θ)2)ϕ1

= exp(−0.5σ−2((Y 2
1 − Y 2

2 )− (Y1 − Y2)θ))
ϕ2

ϕ1

= exp(0.5σ−2θ(Y1 − Y2)) exp(0.5σ−2(Y 2
2 − Y 2

1 ))
ϕ2

ϕ1
. (3.30)

For instance suppose Y1 > Y2 and f(Y1) > f(Y2). In this case (3.30) implies that
the larger θ is, the larger relative weight of f(Y1) is and thus the larger Ĥ2(θ) is.
Hence, Ĥ2(θ) is optimized for θ = +∞.

This illustration may be generalized as follows. Let us consider a set of param-
eters St = {θi, i = 1 . . . t} that have been employed to generate data up to the
moment t. The maximization of Ĥt(θ) is likely to lead to θ that gives relatively
large ϕ(Yi; θ) for i-s such that the values of f(Yi) are large. If the largest f(Yi) is
associated with θi that belongs to the convex hull of St, the optimization of Ĥt(θ)
may lead to θ that is relatively close to θi yet as far as possible from the entire set
St, and this could be infinite θ. In general, if Θ is not bounded, it may happen that
Ĥt is optimized for its infinite argument. Let us call this phenomenon the distant
exploration tendency. It forces us to bound Θ.

Because of the distant exploration tendency, LONG-MEM-MAX is likely to pick
the values of θ from borders of Θ in early stages of its work. At this time consecutive
θt are far from one another. Afterwards, for t large enough, the tendency vanishes
because the choice of θt+1 from outside the convex hull of the set {θi, i = 1 . . . t}
would be equivalent to pick it outside Θ which is impossible. From this moment
consecutive θt-s are picked from the narrowing area of hypothetical presence of a
local maximum of Hf . The more narrow the area is the better the estimates of Hf
and ∇(Hf) within this area are.

3.3 Examples of ϕ

In the two previous sections ϕ has been treated as an abstract family of probability
distributions. We will now discuss the issue of the selection of ϕ for a control
system. Throughout the remaining of the dissertation we will assume that in each
state x, a control action is drawn from the density ϕ(· ; θ), where the parameter θ
is determined by a certain approximator θ̃ on the basis of x.

Generally speaking, the choice of the family of densities ϕ that governs the control
selection should depend on what kind of randomization is acceptable, and what kind
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of exploration seems fruitful for a particular reinforcement learning problem. We
present a number of examples illustrating the possible choices.

3.3.1 Normal distribution

A control selection mechanism may be designed as follows. U = Θ = Rm and an
action in each state is a sum of a θ̃ approximator’s output and a zero-mean normal
noise. The noise is necessary for optimization of a control policy. In this case ϕ is a
family of normal distributions N(θ, C) of a constant covariance matrix equal to C,
parameterized by the expected value θ:

ϕ(u; θ) =
1√

(2π)m|C| exp
(
−1

2
(u− θ)TC−1(u− θ)

)
(3.31)

The C parameter determines an amount of randomization in control. If the ran-
domization is large, it results in a deterioration of quality of control. However, the
randomization is introduced in order to guarantee an exploration of a set of possible
actions. The larger is the randomization, the more efficient is the exploration.

3.3.2 Log-normal distribution

Suppose that the actions are real positive numbers. Suppose also, that varying the
actions within some relative distance from their optimal values does not affect the
performance in a crucial way. Let σ (equal to, say, 0.05) be the required relative
accuracy.

In this case we may use Θ = R and a family of log-normal distributions

ϕ(u; θ) =
1

σa
√

2π
exp

(
−(lnu− θ)2

2σ2

)
.

To sample according to this density, one may simply take u = expY where Y is
drawn from the normal distribution N(θ, σ2) with the density (3.31).

Extending the discussion above to the case of multidimensional actions and θ is
relatively easy.

3.3.3 Finite set of controls

So far the case of discrete actions has not been discussed in this work. The only
thing that changes is that ϕ should be understood as a probability rather than a
density.
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There is a finite set of actions U = {u1, u2, . . . , un}. We propose the following
parameterization. Let θ be a n-element vector and

ϕ(ui; θ) =
exp(θi)∑n
j=1 exp(θj)

, i = 1, . . . , n

θi ∈ (−M,M), i = 1, . . . , n

for some positive M . M is the parameter that determines “minimal exploration”.
The smaller it is, the larger is minimal probability of each action.

An obvious way to parameterize the distributions in discussed U is to proceed
as follows. Let θ be a n− 1-element vector and we have

ϕ(ui; θ) = θi, i = 1, . . . , n− 1

ϕ(un; θ) = 1−
n−1∑
j=1

θj

The drawback of this intuitive parameterization, is that it imposes an asymmetry
between un and the rest of actions.

3.3.4 Ordered set of controls

Sometimes the controls are discrete, but there is a natural order among them. The
following example reveals how to exploit this order.

Let U = {n, n + 1, . . . , N} for n < N . We define a family of distributions
parameterized by a single real value θ ∈ Θ = [n,N ] in such a way that it assigns
higher probabilities to integers closer to θ. Namely,

ϕ(u; θ) =
exp (−(u− θ)2/σ2)∑N
j=n exp (−(j − θ)2/σ2)

where σ is a parameter that determines the amount of exploration. Notice that even
if the difference N − n is large, for σ ∼= 1 the sum above has very few components
greater than the numeric error.

Usually when the action space is defined as above, we may expect that actions
that are close to each other bring similar (in a certain sense) consequences. It may
be true that a local search of U induced by the above definition of ϕ is a better option
than independent checking of each action which is induced by the formulation of ϕ
presented in the previous point.
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Chapter 4

Short-term-memory Actor-Critic
algorithm

In this chapter we discuss the short-term-memory Actor-Critic algorithm presented
in [16] in the language that we will use to introduce new methods. The idea of the
algorithm has been presented in [4], the main tools for its theoretical understanding
were provided in [57]. It obtained its modern form in [16]. Convergence of this type
of methods has been analyzed in [45, 17].

4.1 Actor

In Actor-Critic methods [45, 17] Actor is responsible for generation of control actions.
Its behavior is a subject of optimization. Usually, Actor is characterized by an action
density function g(· ;x,w) parameterized by a state and some vector w ∈ Rnw (e.g.,
the vector of weights of a neural network). For a known state, this density is
employed to generate the action, and the vector w is optimized.

In this dissertation we will use a different representation of the action density
we found more useful in derivations. Let ϕ(· ; θ) be the action density function
parametrized by the vector θ ∈ Θ ⊂ Rm. Values of θ are determined by a parametric
approximator θ̃(x;wθ) whose input is a state and parameters are equal to wθ. We
assume that ϕ satisfies the regularity conditions presented in the previous chapter.
The action density depends here on the state indirectly. However, every action
density g can be formally represented in this way, just by taking θ̃(x;w)T = [xTwT ]
and ϕ(· ; θ) = g(· ; θ1, θ2) where θT = [θT1 θ

T
2 ].

For example, ϕ(· ; θ) may be chosen as the normal density with mean θ and
constant variance, whereas θ̃(x;wθ) can be represented by a neural network whose
input is a state. The network’s output determines a center of the action distribution
for a given state.

43
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For a fixed ϕ and a given function θ̃, the discussed action selection mechanism
forms a policy that depends only on wθ. We denote this policy by π(wθ) and assume
that for each π(wθ), the sequence of states {xt} forms a Markov chain which has a
steady distribution ηπ(wθ). The objective of Actor’s adaptation is to find the policy
π(wθ) that maximizes the expected sum of future rewards in each state. Formally, we
want to maximize the value function (2.1) averaged by the steady state distribution,
namely

Φ(wθ) =
∫

x∈X

V π(wθ)(x) dηπ(wθ)(x).

The Φ function should be maximized with respect to Actor’s parameters wθ.

4.2 Critic

In general, Actor-Critic algorithms employ some estimators of ∇Φ(wθ) to maximize
Φ(wθ). In order to construct such estimators, an approximator Ṽ (x;wV ) of the value
function V π(wθ)(x) of the current policy π(wθ) is employed. The approximator (e.g.,
a neural network) is parameterized by the weight vector wV which in the policy
improvement process should minimize the mean-square error

Ψ(wV , wθ) =
∫

x∈X

(
V π(wθ)(x)− Ṽ (x;wV )

)2
dηπ(wθ)(x)

In order to explain how Ṽ is used to construct the estimator of ∇Φ, we need
to define two additional functions. The action-value function Qπ : X × U 7→ R,
mentioned already in (2.3), is typically defined as the expected value of future dis-
counted rewards of the controller starting from a state x, performing an action u,
and following a policy π afterwards [50], namely

Qπ(x, u) = E
(
rt+1 + γV π(xt+1)

∣∣∣xt = x, ut = u
)
. (4.1)

We are interested in parameters that govern an action selection rather than in par-
ticular actions. Let us define the pre-action-value function Uπ : X × Θ 7→ R as
the expected value of future discounted rewards the controller may expect starting
from a state x, performing an action drawn from the distribution characterized by
a parameter θ, and following a policy π afterwards [51], namely

Uπ(x, θ) = E
(
rt+1 + γV π(xt+1)

∣∣∣xt = x;ut ∼ ϕ(· ; θ)
)

= EθQπ(x, Y ) (4.2)

where by u ∼ ϕ we mean that u has the distribution ϕ, and Eθ denotes the expected
value calculated for a random vector Y drawn from the distribution ϕ(· ; θ). Sum-
ming up, the value function defines the expected return when the plant starts from
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Figure 4.1: Both components of the Actor-Critic framework.

a given state. The pre-action-value function defines the expected return when the
plant starts from a given state and the first control action is distributed with the use
of a given parameter. Finally, the action-value function defines the expected return
when the plant starts from a given state and the first control action to apply is also
given.

Note that, by definition

V π(wθ)(x) = Uπ(wθ)
(
x, θ̃(x;wθ)

)

because when the policy π(wθ) is in use, the distribution of the first action in the
state x is defined by the parameter θ equal to θ̃(x;wθ).

4.3 Actor-Critic interactions

Figure 4.1 depicts both elements of the Actor-Critic framework. Each algorithm
based on this framework can be represented as a pair of combined optimization
problems. The first one consists in searching for a vector wθ that maximizes the
function

Φ(wθ) =
∫

x∈X

Uπ(wθ)
(
x, θ̃(x;wθ)

)
dηπ(wθ)(x). (4.3)

The maximization is executed with the use of the approximation Ṽ of the value
function V π(wθ). This approximation is obtained from the solution of the second
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optimization problem which is the minimization of

Ψ(wV , wθ) =
∫

x∈X

(
Uπ(wθ)

(
x, θ̃(x;wθ)

)− Ṽ (x;wV )
)2

dηπ(wθ)(x) (4.4)

with respect to wV for a fixed wθ.
Algorithms based on the Actor-Critic framework try to find (usually approxi-

mate) solutions of the above problems. Although the objectives are similar, the
means are very diverse.

Since in the remaining of the dissertation we always consider the policy π(wθ),
we will simplify the notation by writing V wθ , Uwθ , Qwθ , and ηwθ in place of V π(wθ),
Uπ(wθ), Qπ(wθ), and ηπ(wθ).

4.4 The RAWC algorithm

The algorithm presented in this chapter does not have a widely spread name. Even
though there exist people better authorized to name this method, for conciseness
we shall call it Random Actor With Critic (RAWC), as it employs Actor and Critic
parts and the policy that the algorithm optimizes is randomized.

The algorithm consists of the following loop.

1. Draw the control ut
ut ∼ ϕ(· ; θ̃(xt;wθ))

2. Perform the action ut, observe the next state xt+1 and the reinforcement rt+1.

3. Actor adaptation. Adjust Actor’s parameter wθ along an estimator of a vector
that increases Φ. The estimator is calculated on the basis of xt, ut, rt+1, and
xt+1.

4. Critic adaptation. Adjust Critic’s parameter wV along an estimator of a vector
that decreases Ψ. The estimator is calculated on the basis of xt, ut, rt+1, and
xt+1.

5. Set t := t+ 1 and repeat from Step 1.

In the next two sections we shall derive the estimators mentioned in Points 3
and 4. The derivation will be bases on the properties presented in Section 3.1. To
establish the relations between the generic terms of Chapter 3 and our optimization
problems, we denote

qt = rt+1 + γṼ (xt+1;wV ) (4.5)

and use the following “dictionary”:



4.4. THE RAWC ALGORITHM 47

1. Y0 translates into ut, the drawing,

2. ϕ(· ; θ)↔ ϕ(· ; θ̃(xt;wθ)), the density used for the drawing,

3. f(Y0)↔ Qwθ(xt, ut), the expected return; Qwθ(xt, ut) is estimated by qt,

4. (Hf)(θ)↔ Uwθ(xt, θ̃(xt;wθ)), the value to be estimated and maximized,

5. c↔ Ṽ (xt;wV ), the reference point.

4.4.1 Actor adaptation

The idea of a control policy adaptation in RAWC is as follows. At each step t,
the control ut is drawn from ϕ(· ; θ̃(xt;wθ)). The return qt = rt+1 + γṼ (xt+1;wV ) is
compared with an approximation Ṽ (xt;wV ) of the expected return. If the applied
control ut turns out to be “good”, i.e. if qt > Ṽ (xt;wV ), then θ̃(xt;wθ) is modified
to make ut more likely in state xt. In the opposite case, θ̃(xt;wθ) is modified to
make it less likely.

This intuition translates to maximization of future rewards in the state xt in the
following way. The return expected in the state xt is equal to Uwθ(xt, θ̃(xt;wθ)). In
order to maximize the expected return θ̃(xt;wθ) is modified along an estimator of
∇θU

wθ(xt, θ)|θ=θ̃(xt;wθ).
Let us recall the idea of Policy Iteration. It states that optimization of a control

policy can be performed by a sequence modifications of the policy that improve the
first action along each trajectory. To implement this idea, let us fix π = π(wθ) and
consider a gradient that improves the expected return in a state. Let us define a
vector that averages such improvements over all states, namely

(TΦ)(wθ) =
∫

x∈X

d
dwθ

Uπ
(
x, θ̃(x;wθ)

)
dηπ(x). (4.6)

Properties of Policy Iteration along with (4.3) suggest that

(TΦ)(wθ)T∇Φ(wθ) > 0. (4.7)

Consequently, (4.7) enables us to maximize Φ with the use of estimators of (TΦ)(wθ).
An estimator of (4.6) is constructed as follows. The current state xt can be

understood as drawn from the stationary distribution ηwθ( · ). The problem of esti-
mation of (4.6) is thus reduced to the problem of estimation of

d
dwθ

Uπ
(
xt, θ̃(xt;wθ)

)
. (4.8)
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The above gradient is estimated with

dθ̃(xt;wθ)
dwθ

ĝt

where ĝt, in turn, is an estimator of

dUwθ(xt, θ)
dθ

∣∣∣∣
θ=θ̃(xt;wθ)

To construct ĝt, we utilize the properties discussed in Sec. 3.1. Namely, we treat qt
as an estimate of the return associated with the sample ut. Consider the expected
return as a function of the parameter that determines the sample distribution. The
gradient of this function may be estimated in a way similar to (3.4), namely

ĝt = (qt − Ṽ (xt;wV ))
d lnϕ(ut; θ)

dθ

∣∣∣∣
θ=θ̃(xt;wθ)

(4.9)

where Ṽ (xt;wV ) is a non-random assessment of qt, taken as a reference point.
Summing up, we estimate (TΦ)(wθ) with

(qt − Ṽ (xt;wV ))
dθ̃(xt;wθ)

dwθ

d lnϕ(ut; θ)
dθ

∣∣∣∣
θ=θ̃(xt;wθ)

(4.10)

which leads us to Actor’s adjustment scheme proposed in RAWC, namely

wθ := wθ + βθt (rt+1 + γṼ (xt+1;wV )− Ṽ (xt;wV ))×

× dθ̃(xt;wθ)
dwθ

d lnϕ(ut; θ)
dθ

∣∣∣∣
θ=θ̃(xt;wθ)

. (4.11)

For algorithm’s convergence the step parameters βθt should satisfy the standard
stochastic approximation requirements, namely

∑
t≥1 β

θ
t =∞ and

∑
t≥1(βθt )

2 <∞.

4.4.2 Critic adaptation

In order to derive Critic’s adaptation scheme we apply a similar argument as for
Actor. This time our objective is to minimize Ψ(wV , wθ) with respect to wV . We
define

(TΨ)(wV , wθ) =
∫

x∈X

d
dwV

(
Uwθ

(
xt, θ̃(xt;wθ)

)− Ṽ (xt;wV )
)2

dηwθ(x). (4.12)

Next, we treat the current state xt as drawn from the stationary distribution ηwθ

and estimate (TΨ) with an estimator of

d
dwV

(
Uwθ

(
xt, θ̃(xt;wθ)

)− Ṽ (xt;wV )
)2
. (4.13)
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We estimate the above gradient with

−2(qt − Ṽ (xt;w))
dṼ (xt;wV )

dwV

where qt is in turn an estimator of Uwθ
(
xt, θ̃(x;wθ)

)
, that is the expected return in

state xt.

This leads to the standard [44] Critic adjustment scheme

wV := wV + βVt (rt+1 + γṼ (xt+1;wV )− Ṽ (xt;w))×

× dṼ (xt;wV )
dwV

. (4.14)

The step parameters βVt must satisfy the same requirements as βθt .

0. Set t := 1. Initialize wθ and wV randomly.

1. Draw the action ut
ut ∼ ϕ(· ; θ̃(xt;wθ))

2. Perform the action ut, observe the next state xt+1 and the reinforcement rt+1.

3. Calculate the temporal difference as

dt = rt+1 + γṼ (xt+1;wV )− Ṽ (xt;wV )

4. Adjust Actor:

wθ := wθ + βθt dt
dθ̃(xt;wθ)

dwθ

d lnϕ(ut; θ)
dθ

∣∣∣∣
θ=θ̃(xt;wθ)

(4.15)

5. Adjust Critic:

wV := wV + βVt dt
dṼ (xt;wV )

dwV
(4.16)

6. Set t := t+ 1 and repeat from Step 1.

Table 4.1: The RAWC algorithm.
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4.5 Implementational issues

Table 4.1 shows the exact formulation of the RAWC algorithm. The question may
arise how to easily implement adjustments (4.15) and (4.16). In the case θ̃ is a
feedforward neural network, the vector

dt
dθ̃(xt;wθ)

dwθ

d lnϕ(ut; θ)
dθ

∣∣∣∣
θ=θ̃(xt;wθ)

(4.17)

may be computed such that the vector

dt
d lnϕ(ut; θ)

dθ

∣∣∣∣
θ=θ̃(xt;wθ)

(4.18)

is backpropagated through the network. In case ϕ is the normal density N(θ, C)
(3.31), the vector (4.18) is equal to

dtC
−1(ut − θ̃(xt;wθ)).

If Critic is implemented by a neural network, the gradient used in (4.16) may be
simply calculated by backpropagating dt through the Ṽ network.

4.6 RAWC with λ-estimators of future rewards

Kimura extends in [16] the algorithm discussed above by replacing qi with an esti-
mator of future rewards whose bias is smaller than that of qi. For purposes of this
dissertation, the algorithm he obtains is called RAWC(λ).

Let us denote

q
(n)
t = rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnṼ (xt+n;wV ).

RAWC employs qt = q
(1)
t as an estimator of Qπ(wθ)(xt, ut). Since Ṽ is an approxi-

mation of V π(wθ) of only limited precision, this estimator is biased. By definition

Qπ(wθ)(x, u) = E(q(∞)
t |xt = x, ut = u, π(wθ)),

and hence q(∞)
t is an unbiased estimator of Qπ(wθ)(xt, ut). Furthermore, the average

(over all states) bias of q(n)
t is smaller than the average bias of q(m)

t for n > m. To
see this, notice that for n > 1

q
(n)
t = rt+1 + γq

(n−1)
t+1 . (4.19)

Consequently, the bias of q(n)
t may be expressed as a product of γ and the expected,

at the moment t, bias of q(n−1)
t+1 . Because γ < 1, the average bias of q(n)

t decreases as
n grows.
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It is particularly convenient to use the following λ-estimator of future rewards
that a weighted average of q(n)

t for all n-s and λ ∈ [0, 1]:

qλt = (1− λ)
∞∑
n=1

λn−1q
(n)
t (4.20)

The larger λ, the larger the weight of q(n)
t for large n, the smaller bias but the larger

variance. By varying λ we balance the bias and the variance of qλt . Thank to (4.19)
we have

qλt = (1− λ)(rt+1 + γṼ (xt+1;wV )) + (1− λ)
∞∑
n=2

λn−1(rt+1 + γq
(n−1)
t+1 )

= (1− λ)(rt+1 + γṼ (xt+1;wV )) + λrt+1 + λγqλt+1

= rt+1 + γ
(
λqλt+1 + (1− λ)Ṽ (xt+1;wV )

)
. (4.21)

The derivation above leads to the following comparison between qλt and qt. Namely,
qt uses Ṽ (xt+1;wV ) as an assessment of the return gained after step t. Instead, qλt
uses a weighted average of Ṽ (xt+1;wV ) and qλt+1.

To construct an algorithm similar to RAWC based on qλt as an estimate of future
rewards, we must start from (4.21) and notice that

qλt − Ṽ (xt;wV ) = rt+1 + γṼ (xt+1;wV )− Ṽ (xt;wV ) + γλ(qλt+1 − Ṽ (xt+1;wV ))

which leads easily to the equation

qλt − Ṽ (xt;wV ) =
∞∑
i=0

(λγ)i
(
rt+1+i + γṼ (xt+1+i;wV )− Ṽ (xt+i;wV )

)
.

Next, we replace the adjustments (4.11) and (4.14) with

wθ := wθ + βθt (q
λ
t − Ṽ (xt;wV ))×

× dθ̃(xt;wθ)
dwθ

d lnϕ(ut; θ)
dθ

∣∣∣∣
θ=θ̃(xt;wθ)

(4.22)

and

wV := wV + βVt (qλt − Ṽ (xt;wV ))×

× dṼ (xt;wV )
dwV

. (4.23)

This can not be done directly because in order to calculate qλt one should know the
entire history of states and rewards that take place after moment t. This history
could be infinite. The relation

qλt − Ṽ (xt;wV ) =
∑
i≥0

(γλ)idt+i (4.24)
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enables to implement (4.22) and (4.23) incrementally. The infinite sequence of ad-
justments of the form (4.22) produces the following sum

∑
t≥1

βθt (q
λ
t − Ṽ (xt;wV ))

dθ̃(xt;wθ)
dwθ

d lnϕ(ut; θ)
dθ

∣∣∣∣
θ=θ̃(xt;wθ)

=
∑
t≥1

βθt

(∑
i≥0

(γλ)idt+i

)
dθ̃(xt;wθ)

dwθ

d lnϕ(ut; θ)
dθ

∣∣∣∣
θ=θ̃(xt;wθ)

∼=
∑
t≥1

βθt dt

t−1∑
i=0

(γλ)i
dθ̃(xt−i;wθ)

dwθ

d lnϕ(ut−i; θ)
dθ

∣∣∣∣
θ=θ̃(xt−i;wθ)

The last of the above equalities is a result of (4.24). It becomes strict for constant
βθt , yet because βθt changes very slowly, it is “almost” strict. Similarly, the infinite
sequence of adjustments of the form (4.23) produces

∑
t≥1

βVt (qλt − Ṽ (xt;wV ))
dṼ (xt;wV )

dwV
∼=

∑
t≥1

βVt dt

t−1∑
i=0

(γλ)i
dṼ (xt−i;wV )

dwV

The RAWC(λ) algorithm presented in Table 4.2 uses the above approximate equal-
ities to implement the sequence of adjustments of the form (4.22) and (4.23). The
algorithm uses auxiliary vectors mθ and mV . Their dimensions are equal to the
dimensions of wθ and wV respectively. Their values at moment t are

mθ =
t−1∑
i=0

(γλ)i
dθ̃(xt−i;wθ)

dwθ

d lnϕ(ut−i; θ)
dθ

∣∣∣∣
θ=θ̃(xt−i;wθ)

mV =
t−1∑
i=0

(γλ)i
dṼ (xt−i;wV )

dwV
.

Employing λ-estimators of future rewards is a classical technique of enhancing
algorithms in the field of Reinforcement Learning. We use it in the design of methods
proposed in Chapter 6. The experimental study presented in Chapter 7 confirms
usefulness of this technique.
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0. Set t := 1, mθ = 0, and mV = 0. Initialize wθ and wV randomly.

1. Draw the action ut
ut ∼ ϕ(· ; θ̃(xt;wθ))

2. Perform the action ut, observe the next state xt+1 and the reinforcement rt+1.

3. Calculate the temporal difference as

dt = rt+1 + γṼ (xt+1;wV )− Ṽ (xt;wV )

4. Adjust Actor:

mθ := (γλ)mθ +
dθ̃(xt;wθ)

dwθ

d lnϕ(ut; θ)
dθ

∣∣∣∣
θ=θ̃(xt;wθ)

wθ := wθ + βθt dtmθ (4.25)

5. Adjust Critic:

mV := (γλ)mV +
dṼ (xt;wV )

dwV
wV := wV + βVt dtmV (4.26)

6. Set t := t+ 1 and repeat from Step 1.

Table 4.2: The RAWC(λ) algorithm.
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Chapter 5

Long-term-memory Actor-Critic
algorithm

In this chapter we present a long-term-memory Actor-Critic algorithm, the main
achievement of the present dissertation. The algorithm was introduced in reference
[53]. It is ideologically based on LONG-MEM-MAX presented in Section 3.2. It
puts information on occurring control steps in a database and forms a policy in an
intensive computation process that goes simultaneously with the control process.

5.1 Structure

The algorithm presented here employs the same Actor and Critic parts as RAWC
and RAWC(λ). ϕ(· ; θ) is an action density function, where θ is determined by an
approximator θ̃(x;wθ) parametrized by wθ. ϕ and θ̃ together define a policy π(wθ).
Another function Ṽ (x;wV ) parametrized by wV approximates the value function
V wθ(x). The algorithm consists of two activities performed simultaneously:

1. The exploration of the plant’s dynamics by performing actions based on the
current policy π(wθ). Information on consecutive control steps is put into a
database.

2. The approximation of Policy Iteration, which implements both elements of
Actor-Critic schemes:

(a) Policy evaluation or Critic training. Adjustment of wV to minimize an
estimate Ψ̂t(wV , wθ) of Ψ(wV , wθ) based on all events up to the current
step t.

(b) Policy optimization or Actor training. Adjustment of wθ to maximize
an estimate Φ̂t(wθ, wV ) of Φ(wθ) based on all events up to the current
step t.

55
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The policy employed in Step 1. is the one modified in Step 2. which should be
understood as a computationally intensive process basing on an entire history of
plant-controller interactions. In order to define this process, suppose that the history
is given, namely the states visited {xi, i = 1, . . . , t}, the instantaneous rewards
received {ri+1, i = 1, . . . , t}, and the control actions that have been performed,
namely {ui, i = 1, . . . , t}. The actions were generated by previous incarnations of
the policy (which is constantly optimized). They were drawn from densities ϕ(· ; θi)
and the set {ϕi, i = 1, . . . , t} is given where ϕi = ϕ(ui; θi).

In order to derive Φ̂t(wθ, wV ), we treat all the previous states xi as drawn from
ηwθ(·) and estimate the integral (4.3) by the average value

Φ̂t(wθ, wV ) =
1
t

t∑
i=1

Ûi(wθ, wV ). (5.1)

Here Ûi(wθ, wV ) is an estimator of Uwθ(xi, θ̃(xi;wθ)). Ûi is constructed with the use
of Ṽ , and hence both Ûi and Φ̂t depend on wV .

The estimator Ψ̂t is built similarly, namely the integral (4.4) is replaced with the
average value

Ψ̂t(wV , wθ) =
1
t

t∑
i=1

ê2
i (wθ, wV ) (5.2)

where ê2
i (wθ, wV ) estimates the squared difference

(
Uwθ

(
xi, θ̃(xi;wθ)

)− Ṽ (xi;wV )
)2
.

In the next two sections we derive estimators Ûi(wθ, wV ) and ê2
i (wθ, wV ). We

heavily utilize the properties discussed in Section 3.2. In order to establish relations
between the generic terms of Chapter 3 and our optimization problem, we denote

qi(wV ) = ri+1 + γṼ (xi+1;wV ) (5.3)

and apply the “dictionary” (see the end of Section 4.4 for comparison):

1. Y0 translates into ui, the drawing,

2. ϕ0(·)↔ ϕ(· ; θ̃(xi;wθ)), the density used for the drawing,

3. f(Y0)↔ Qwθ(xi, ui), the expected return; Qwθ(xi, ui) is estimated by qi(wV ),

4. (Hf)(θ)↔ Uwθ(xi, θ̃(xi;wθ)), the value to be estimated and maximized,

5. c↔ Ṽ (xi;wV ), the reference point.

We will also respect the following notational convention. Whenever a certain value
is a function of data, it will be denoted by subscript i or t. Accordingly, qi(wV ) (5.3)
is a function of data as well as it is a function of wV which is mentioned explicitly.
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5.2 Policy evaluation

In order to construct Ψ̂i (5.2), we specify ê2
i in the form of the importance sampling

estimator discussed in Section 3.2. In terms of this section, for the drawing ui, the
density ϕi that generated the drawing, and the return qi(wV ) = ri+1 +γṼ (xi+1;wV )
are available. We also know the distribution that would currently generate drawings.
This distribution is defined by the parameter θ̃(xi;wθ). What we want is to estimate
the expected value of the squared difference between the return and the reference
point Ṽ (xi;wV ) for the current distribution. Implementing (3.15), we introduce

ê2
i (wθ, wV ) =

(
qi(wV )− Ṽ (xi;wV )

)2
ρ
(
ϕ(ui; θ̃(xi;wθ)), ϕi

)
(5.4)

and the estimator

Ψ̂t(wV , wθ) =
1
t

t∑
i=1

(
qi(wV )− Ṽ (xi;wV )

)2
ρ
(
ϕ(ui; θ̃(xi;wθ)), ϕi

)
. (5.5)

In the first approach we may say that we replace minimization of Ψ(wV , wθ), which
cannot be done directly, with minimization of Ψ̂t(wV , wθ) with respect to wV . This
is yet slightly more complicated. We want to manipulate wV to bring the approxi-
mation Ṽ (xi;wV ) closer to qi(wV ) for each i. Both these functions depend on wV but
the latter is here understood as a constant estimator of Qwθ(xi, ui). Modifications
of wV that adjust Ṽ (xi;wV ) induce also casual changes of qi(wV ). We assume that
the changes of qi are much smaller than the changes of Ṽ .1 We proceed as follows:
We assign

w′V := wV

and minimize

1
t

t∑
i=1

(
qi(w′V )− Ṽ (xi;wV )

)2
ρ
(
ϕ(ui; θ̃(xi;wθ)), ϕi

)
. (5.6)

with respect to wV . We obtain another value of wV that allows us to calculate
another values of qi(wV ), i.e. better estimators of Qwθ(xi, ui). We repeat this process
until convergence of wV . Finally, we obtain wV that satisfies

wV = arg min
w

1
t

t∑
i=1

(
qi(wV )− Ṽ (xi;w)

)2
ρ
(
ϕ(ui; θ̃(xi;wθ)), ϕi

)
. (5.7)

1Almost each RL algorithm (e.g. each one referred to in this dissertation) faces the problem of
adjusting an approximator of the value function by means of the same approximator. The problem
is difficult and probably that is why proofs concerning such procedures require that approximators
are linear in their parameters. See [47].
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Let us call (5.7) the quasi-minimum condition of Ψ̂t and the process of finding of
such wV the quasi-minimization of Ψ̂t. Notice that similar quasi-minimization is
executed by HDP discussed in Point 2.4.1. Usually we use a gradient to minimize
a function. Here the minimization of Ψ̂t is replaced by the quasi-minimization, and
the gradient ∇wV Ψ̂t(wV , wθ) can not be in use but rather the gradient of (5.6) on
wV . Let this vector be denoted by

(T Ψ̂t)(wV , wθ) =
1
t

t∑
i=1

(−2)
dṼ (xi;wV )

dwV

(
qi(wV )− Ṽ (xi;wV )

)
ρ
(
ϕ(ui; θ̃(xi;wθ)), ϕi

)
.

(5.8)

5.3 Policy optimization

To specify Φ̂t (5.1), we need to introduce Ûi, an estimator of Uwθ(xi, θ̃(xi;wθ)).
In terms of Section 3.2, considering the drawing ui we know the density ϕi that
generated ui, and the return qi(wV ) = ri+1 + γṼ (xi+1;wV ). We want to estimate
the expected return as a function of the parameter θ̃(xi;wθ) that defines the current
distribution of the drawings. To maximize the expected return we shall optimize
this parameter. We employ here the estimator based on (3.13), taking Ṽ (xi;wV ) as
the reference point, namely

Ûi(wθ, wV ) = Ṽ (xi;wV ) +
(
qi(wV )− Ṽ (xi;wV )

)
ρ
(
ϕ(ui; θ̃(xi;wθ)), ϕi

)
. (5.9)

We thus obtain

Φ̂t(wθ, wV ) =
1
t

t∑
i=1

Ṽ (xi;wV ) +
(
qi(wV )− Ṽ (xi;wV )

)
ρ
(
ϕ(ui; θ̃(xi;wθ)), ϕi

)
.

(5.10)

Let us recall the temporal difference

di(wV ) = ri+1 + γṼ (xi+1;wV )− Ṽ (xi;wV )

and rewrite (5.10) as

Φ̂t(wθ, wV ) =
1
t

t∑
i=1

di(wV )ρ
(
ϕ(ui; θ̃(xi;wθ)), ϕi

)
+

1
t

t∑
i=1

Ṽ (xi;wV ). (5.11)

Notice that the second sum of the above does not depend on wθ.
Therefore, instead of a maximization of Φ(wθ), which cannot be done directly,

its estimate Φ̂t(wθ, wV ) is maximized with respect to wθ and hence the policy π(wθ)
is approximately optimized. In maximization, θ̃(xi;wθ) should be kept in some
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The exploration loop:

0. Set t := 1. Initialize wθ and wV randomly.

1. Draw the control action ut

ut ∼ ϕ(· ; θ̃(xt;wθ))

where the parameter vector wθ is calculated in the internal loop.

2. Perform control ut, and observe the next state xt+1 and the reinforcement rt+1.

3. Add the five 〈xt, ut, rt+1, xt+1, ϕt〉 to a database where ϕt := ϕ(ut; θ̃(xt;wθ)).

4. Set t := t+ 1 and repeat from Step 1.

The internal loop:

1. Policy evaluation. Adjust wV for Ṽ (xi;wV ) to approximate V wθ(xi) for all
i ∈ {1, . . . , t}, i.e. to quasi-minimize Ψ̂t(wV , wθ) (5.5).

2. Policy improvement. Adjust wθ to maximize the estimator of Uπ(xi, θ̃(xi;wθ))
for all i ∈ {1, . . . , t} and the fixed π = π(wθ), i.e. to maximize Φ̂t(wθ, wV )
(5.11).

Table 5.1: The IRAWC algorithm.

bounded area, otherwise the solution might not have a physical sense. This is
consequence of the fact that the algorithm inherits the distant exploration tendency
(see Point 3.2.4) from LONG-MEM-MAX.

The maximization of (5.11) with respect to wθ optimizes the first step along
each trajectory. It changes the policy π(wθ) so its value function V wθ must be
approximated again. The minimization of (5.5) and the maximization of (5.11)
are mutually dependent optimization tasks. The optimization procedures are thus
related to those applied in classical Policy Iteration.

The discussion above leads to the algorithm of reinforcement learning based on
batch estimation. We call it Intensive Random Actor With Critic (IRAWC) to
stress that it is much more computationally intensive than the traditional Actor-
Critic algorithm which performs a single weights adjustment per each control step.
IRAWC uses two parametric approximators: θ̃ forms the randomized control policy
π(wθ) and Ṽ to approximate the value function V wθ . The algorithm is presented in
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Table 5.1. Note that it is not necessary to perform a full optimization in either of
two steps of the internal loop.

5.4 Limit behavior, comparison to RAWC

In this section we informally compare limit behavior of IRAWC to limit behavior
of RAWC. Suppose IRAWC makes sequences of its parameters {wtθ, t ∈ N} and
{wtV , t ∈ N} converge to certain limits w∗θ and w∗V . Suppose this is the consequence
of the fact that the functions Φ̂t and Ψ̂t that IRAWC optimizes converge uniformly
to their limits Φ∗ and Ψ∗, respectively. The convergence implies that

Φ∗(wθ, w∗V ) = lim
t→∞

1
t

t∑
i=1

Ṽ (xi;wV ) +
(
ri+1 + γṼ (xi+1;w∗V )− Ṽ (xi;w∗V )

)
×

× ρ(ϕ(ui; θ̃(xi;wθ)), ϕi)

Ψ∗(wV , w∗θ) = lim
t→∞

1
t

t∑
i=1

(
ri+1 + γṼ (xi+1;w∗V )− Ṽ (xi;wV )

)2
×

× ρ(ϕ(ui; θ̃(xi;w∗θ)), ϕi)

for any wθ and wV . Because the convergence is uniform and in the limit the appro-
priate functions are optimized, their gradients vanish and we have

∇wθΦ
∗(wθ, w∗V )|wθ=w∗θ = 0

∇wV Ψ∗(wV , w∗θ)|wV =w∗V = 0.

which is equivalent to the equations

0 = lim
t→∞

1
t

t∑
i=1

(
ri+1 + γṼ (xi+1;w∗V )− Ṽ (xi;w∗V )

)
∇θ lnϕ(ui; θ)|θ=θ̃(xi;w∗θ )× (5.12)

× ϕ(ui; θ̃(xi;w∗θ))

ϕ(ui; θ̃(xi;wiθ))

[
ϕ(ui; θ̃(xi;w∗θ))

ϕ(ui; θ̃(xi;wiθ))
< b

]

0 = lim
t→∞

1
t

t∑
i=1

dṼ (xi;w∗V )
dw∗V

(
ri+1 + γṼ (xi+1;w∗V )− Ṽ (xi;w∗V )

)
× (5.13)

×min

{
ϕ(ui; θ̃(xi;w∗θ))

ϕ(ui; θ̃(xi;wiθ))
, b

}
.

On the other hand the convergence of RAWC (see Table 4.1) takes place for wθ and
wθ such that the expected improvement of the these parameters does not take place.
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That is for w+
θ and w+

V such that the equalities

0 = E
((
rt+1 + γṼ (xt+1;w+

V )− Ṽ (xt;w+
V )

)∇θ lnϕ(ut; θ)|θ=θ̃(xt;w+
θ )

∣∣∣C+
)

(5.14)

0 = E
(

dṼ (xt;w+
V )

dw+
V

(
rt+1 + γṼ (xt+1;w+

V )− Ṽ (xt;w+
V )

) ∣∣∣C+

)
(5.15)

take place. xt, ut, rt+1, xt+1 are here random variables. Condition C+ states that
xt is drawn from the steady state distribution ηw

+
θ and the control ut is drawn from

ϕ(· ; θ̃(xt;w+
θ )). xt+1 and rt+1 constitute a response of the plant to the pair 〈xt, ut〉.

Notice the similarities between the formulae (5.12) and (5.14) and between (5.13)
and (5.15). Obviously the infinite averages are replaced with expected values. The
main differences lie in the fact that (5.12) and (5.13) contain quotients of densities
that do not appear in (5.14) and (5.15). They “compensate” the fact that consec-
utive controls ui have been drawn from distributions different than ϕ(· ; θ̃(xi;w∗θ)).
Propositions 8 and 9 of Chapter 3 state that such compensation mechanism gives
estimators whose biases vanish when the distribution that generated the sample
approaches the one analyzed.

Another difference between pairs (5.12), (5.13) and (5.14), (5.15) lies in the
fact that the states xi that appear in (5.12) and (5.13) have not been drawn from
the limit stationary distribution. However, it is proved [45, 17] that in the linear
case the convergence of the policy implies the convergence of the stationary state
distribution. Summing up, there are reasons to believe that IRAWC converges to
the same limit points that RAWC does.

5.5 The algorithm at work

Let us now analyze the behavior of the algorithm in early stages of its work, before
its limit properties are reached. We shall consider a special case, such that ϕ is a
family of normal distributions (3.31). This case seems to be the most interesting
from the practical point of view. We shall also generalize some of the conclusions.

Consider Φ̂t (5.11) as a function of wθ.

Φ̂t(wθ, wV ) =
1
t

t∑
i=1

di(wV )ρ
(
ϕ(ui; θ̃(xi;wθ)), ϕi

)
+

1
t

t∑
i=1

Ṽ (xi;wV ).

It consists of a certain constant element and a weighted sum of di(wV ) where wθ
determines weights. The maximization of this function in the algorithm’s internal
loop has a very simple interpretation. It maximizes ϕ(ui; θ̃(xi;wθ)) for di(wV ) > 0
and minimizes this value for di(wV ) < 0. In the case of the normal density, that
means that for di(wV ) > 0 the maximization brings the value of θ̃(xi;wθ) closer to
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ui. In opposite case θ̃(xi;wθ) is brought as far as possible from ui. Because it is
likely that di(wV ) < 0 for some i, the values of θ̃(xi;wθ) must be kept within a
bounded area. Otherwise the algorithm may find out that in order to minimize the
probability of action ui in state xi, the value θ̃(xi;wθ) should be infinite.

In fact, we may say that in very early stage of its work, when t is no larger than
the dimension of wV , the mechanism that the algorithm is based on is not valid.
Notice that Φ̂t(wθ, wV ) (5.11) is constructed on the basis of

Ṽ (xi;wV ) +
(
qi(wV )− Ṽ (xi;wV )

)
ρ
(
ϕ(ui; θ), ϕi

)
(5.16)

where Ṽ (xi;wV ) is the reference point. According to Point 3.2.1, the estimator of
this type has favorable properties when its reference point is independent from the
drawing (from ui that determines qi(wV ) in this case). However, the Critic training
consists in minimizing

(
qi(wV )− Ṽ (xi;wV )

)2
ρ
(
ϕ(ui; θ), ϕi

)

with respect to Ṽ (xi, wV ) for all i. This makes Ṽ (xi;wV ) dependent on ui. Fortu-
nately, Ṽ (xi;wV ) is determined on the basis of all the data, hence as t grows, its
dependence on ui for this particular i vanishes and the estimator (5.16) reaches its
favourable properties. Yet when t is no larger than the dimension of wV , the value
of Ṽ (xi, wV ) may be considered dependent on ui entirely.

The computational process conducted in the internal loop of IRAWC may be
understood as a mechanism that enables to distinguish good actions from bad ones
in all regions of the state space. However, the distinction is based on a comparison
of various actions. Before the action space is not covered with “tried” points for
different state regions, the algorithm is likely to generate the actions not similar to
any control stimuli tried so far. This yields a good exploration, yet in cases when
the action space is large and of many dimensions, its thorough exploration could be
less beneficial than a local steepest ascent search.

Let us now analyze the role of the ρ function (3.12) used in the construction of
estimators. Replacing a quotient of densities by ρ is a source of bias of the estimators
Ûi (5.9) and ê2

i (5.4). However, ρ has two favorable properties. First, the bias that
ρ produces vanishes when the distribution generating the appropriate action con-
verges to the action’s distribution implied by the current policy. Hence, if the policy
converges to the right limit, the bias converge to zero. Second, ρ is limited when the
distance between distribution that generated the action and the one implied by the
current policy increases. To see a usefulness of this property, suppose we want to
infer about a certain policy with the use of observations of a control process driven
by another, distant policy. Let us denote ρ with upper limit equal to b by ρb. If we
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use ρ∞, (3.13) and (3.15) return to their unbiased versions (3.11) and (3.14). How-
ever, for an action unlikely for the policy that generated the action (small ϕi) and
typical for the current policy (large ϕ(ui; θ̃(xi;wθ))), the value of ρ∞ (the quotient
of the two densities) is large. This value in turn becomes a weight of the associated
observation in Ψ̂t (5.5) and Φ̂t (5.11). This weight of such a particular observa-
tion is as large as the value of ρ∞ even if the current policy would have generated
new, more representative data. It seems wise to artificially decrease the weight of
such accidental data to increase comparatively weight of “fresh” data coming from
the current policy observation. The problem of an appropriate specification of ρ
certainly requires further investigation.

5.6 Implementation of the internal loop

Implementation of IRAWC may seem to be quite complicated. It must encompass
two mutually dependent optimization processes performed in real time of a working
plant. Furthermore, the complexity of these processes increases in time. Experi-
ments presented in Chapter 7 show that the use of common optimization techniques
yields a satisfying behavior of IRAWC. However, there are some approaches we may
particularly recommend.

Note that the optimized functions Ψ̂t and Φ̂t have the form of certain sums. This
enables to optimize them by processing their elements separately, i.e. to optimize
both functions by means of stochastic approximation. Furthermore, the number of
elements of the sums increases with the exploration time and may finally reach a
very large value.

One may choose between batch optimization techniques and methods that pro-
cess the sums element by element. Taking into consideration that the number of
elements is growing, the second possibility seems to be better. Our experiments
confirm this intuition: The first-order batch methods behave poorly, the second-
order batch methods perform substantially better, but both are outperformed by a
first-order incremental algorithm which is used in simulations shown in Chapter 7.

If Ṽ and θ̃ are implemented by neural networks, the problem of increasing set of
data is particularly difficult. Additionally, at the beginning of the learning process
when there is little data collected it is recommended to slow the optimization down.
Otherwise, the networks may get stuck in local minima.

According to our experience, we may recommend stochastic approximation for
optimizations of Ψ̂t and Φ̂t implemented in the following loop:

1. Draw a random i from the uniform discrete distribution on {1, . . . , t}.

2. Adjust wV along the i-th component of (T Ψ̂t).
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3. Adjust wθ along the gradient of the i-th component of Φ̂t on wθ.

The consecutive i-s may form random permutations of all numbers in {1, . . . , t}.
The algorithm we use in the experimental study (Chapter 7) optimizes Ψ̂t and Φ̂t

in the way described above. In its internal loop, steps 1, 2, 3 are repeated n times,
following every step of the exploration loop.



Chapter 6

Extensions

In the present chapter we propose several enhancements of the long-term-memory
algorithm, IRAWC, presented in the previous chapter. First, we replace an estima-
tor that the algorithm is based on with another one whose bias is smaller. This
modification is driven by the same argument we employed to extend RAWC to
RAWC(λ) in Chapter 4. Large memory requirements of IRAWC in some cases put
this algorithm at a disadvantage. We cope with this problem and propose an algo-
rithm that lies exactly between RAWC and IRAWC. This method rests on limited
memory capacity.

In the Reinforcement Learning problem we deal in this dissertation, state ob-
servations are taken and control stimuli are applied in discrete time. However, in
present control applications, with very fast computer controllers, control processes
can naturally be modeled in continuous time. The last section of this chapter is
devoted to speculations about extension of the concept of IRAWC to continuous
time problems.

The algorithms presented below employ the same Actor and Critic parts as
RAWC and IRAWC. ϕ(· ; θ) is an action density function, where θ is determined
by an approximator θ̃(x;wθ) parametrized by wθ. ϕ and θ̃ together define a policy
π(wθ). Another function Ṽ (x;wV ) parametrized by wV approximates the value
function V π(wθ)(x).

6.1 IRAWC with λ-estimators of future rewards

In the IRAWC algorithm we maximize an estimator Uπ(xi; θ̃(xi;wθ)) of the expected
value of a sum of future discounted rewards for each state xi visited so far. This
estimator is in general biased, because it is based on an approximation of the value
function V π instead of the value function itself. In Section 4.6 the RAWC algorithm
is extended to RAWC(λ) by replacing an estimator of Qπ(xt;ut) with one whose bias

65
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is smaller. In this section we extend IRAWC to IRAWC(λ) in a similar manner.
The resulting IRAWC(λ) algorithm performs exactly the same activities as IRAWC
does, except it calculates appropriate estimators differently.

We need to introduce two statistics that estimate Uwθ(xi, θ̃(xi;wθ)) as well as(
V wV (xi)− Ṽ (xi;wV )

)2 whose biases are smaller than the biases of Ûi(wθ, wV ) (5.9)

and ê2
i (wθ, wV ) (5.4) respectively. In the previous chapter we defined these esti-

mators with the use of the importance sampling technique presented in Chapter 3,
namely

Ûi(wθ, wV ) =Ṽ (xi;wV ) + ρ(ϕ(ui; θ̃(ui;wθ)), ϕi)×
×

(
qi − Ṽ (xi;wV )

)

ê2
i (wθ, wV ) =ρ(ϕ(ui; θ̃(ui;wθ)), ϕi)×

×
(
qi − Ṽ (xi;wV )

)2

where qi was a certain estimator of the return Qwθ(xi, ui) associated with the control
stimulus ui applied in the state xi. Because we could not use the unbiased estimator

q̂i = ri+1 + γV wθ(xi+1),

we used the biased one
qi = ri+1 + γṼ (xi+1;wV ).

The expected value of a sum of future discounted rewards in the following state, i.e.
V wθ(xi+1), is generally different than its approximation Ṽ (xi+1;wV ). The estimator
qi is thus biased. In (4.21) we saw how to cope with such a bias problem. Namely, we
calculated an estimator that combined the approximation Ṽ with the rewards that
actually had been received. We shall follow this idea, yet with certain modifications.
Let {λi, i ∈ N} be a sequence of numbers from the interval [0, λmax]. Let us define
the desired estimators as follows:

Û∗i (wθ, wV ) =Ṽ (xi;wV ) + ρ(ϕ(ui; θ̃(ui;wθ)), ϕi)× (6.1)

×
(
q∗i − Ṽ (xi;wV )

)

ê2
i
∗(wθ, wV ) =ρ(ϕ(ui; θ̃(ui;wθ)), ϕi)× (6.2)

×
(
q∗i − Ṽ (xi;wV )

)2

where

q∗i =ri+1 + γ
(
λiÛ

∗
i+1(wθ, wV ) + (1− λi)Ṽ (xi+1;wV )

)
. (6.3)

Here we do not rest entirely on the approximation Ṽ of the value function in the
state xi+1, but combine the approximation with the estimator Û∗i+1 of the value
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function calculated for the following state. The smaller λi, the more we rely on the
approximation. The larger λi, the more we rely on received rewards. In comparison
to what was done in Section 4.6, we simply resign from constancy of the parameter
λ. This resignation is driven by a need of bounding variances of certain estimators as
the following argument shows. Notice that according to the idea of IRAWC, we need
Û∗i (wθ, wV ) and ê2

i
∗(wθ, wV ), and we need maximize or minimize them with respect

to wθ and wV . What really interest us for optimization purposes are gradients:

gUi =
d

dwθ
Û∗i (wθ, wV ) (6.4)

=
dρ(ϕ(ui; θ̃(ui;wθ)), ϕi)

dwθ

(
q∗i − Ṽ (xi;wV )

)

gei =
d

dwV
ê2
i
∗(wθ, wV ) (6.5)

= −2
dṼ (xi;wV )

dwV
ρ(ϕ(ui; θ̃(ui;wθ)), ϕi)

(
q∗i − Ṽ (xi;wV )

)
.

gUi and gei are results of a certain sequence of drawings (of control stimuli). Variances
of these statistics should be bounded. Otherwise, gUi and gei would be useless for
optimization purposes. We will restrict their variances by defining appropriate values
of λi. In the remaining part of this section we analyze how to determine λi.

To analyze variances of gUi and gei , suppose both

dρ(ϕ(ui; θ̃(ui;wθ)), ϕi)
dwθ

and
dṼ (xi;wV )

dwV

are bounded. This assumption is satisfied when θ̃ and Ṽ are implemented with the
use of feedforward neural networks and the parameters wθ and wV are bounded. In
this case, bounded variance of

gi = ρ(ϕ(ui; θ̃(ui;wθ)), ϕi)
(
q∗i − Ṽ (xi;wV )

)
.

is obviously enough for variances of gUi and gei to be bounded. We will thus confine
variance of gi. Let denote

ρi = ρ(ϕ(ui; θ̃(ui;wθ)), ϕi)

di = ri+1 + γṼ (xi+1;wV )− Ṽ (xi;wV ).
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From (6.1) and (6.3) we have

gi = Û∗i (wθ, wV )− Ṽ (xi;wV )

= ρi ·
(
ri+1 + γṼ (xi+1;wV )− Ṽ (xi;wV ) + γλi

(
U∗i+1(wθ, wV )− Ṽ (xi+1;wV )

))

= ρidi + ρiγλi
(
U∗i+1(wθ, wV )− Ṽ (xi+1;wV )

)

=
∞∑

k=0

ρi

(
k−1∏
j=0

γλi+jρi+j+1

)
di+k

In the above formula γ is constant, λi-s are constant values that we are going to
define. Both ρi+j-s and di+k-s are random in the sense that their values are results of
drawing. Suppose for a while that ρi+j-s are constant, and di-s are random variables
whose variances are bounded by σ2. Obviously

Vgi ≤ Υ2
iσ

2

where

Υi =
∞∑

k=0

ρi

(
k−1∏
j=0

γλi+jρi+j+1

)
.

We are going to determine λi on the basis of ρi+j for j ≥ 0 so to keep Υi smaller
than a certain Υmax. In this case

Vgi ≤ Υ2
maxσ

2,

even if we allow ρi to be random.
Now it becomes clear why we gave up constancy of λ. Even if consecutive ρ-s are

artificially bounded, their infinite product may grow to infinity. If gi is calculated
as multiplications of random variables and such products, its variance may be large
and it must be confined by some auxiliary trick.

In order to derive λi, a recursion that combines Υi, λi, and Υi+1 is needed

Υi =
∞∑

k=0

ρi

(
k−1∏
j=0

γλi+jρi+j+1

)

=ρi +
∞∑

k=1

ρi

(
k−1∏
j=0

γλi+jρi+j+1

)

=ρi + ρi

∞∑

k=1

γλiρi+1

(
k−1∏
j=1

γλi+jρi+j+1

)

=ρi + ρiγλi

∞∑

k=1

ρi+1

(
k−2∏
j=0

γλi+1+jρi+1+j+1

)

=ρi(1 + γλiΥi+1) (6.6)
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We want Υi to be no greater than Υmax. We also want λi to be no greater than a
value λmax which may be identified with the constant λ parameterizing the RAWC(λ)
algorithm. Simple transformations of (6.6) give

λi = min{λmax, (Υmax/ρi − 1)/(γΥi+1)}. (6.7)

Finally, we obtain a recursive definition of the required estimators Û∗i (wθ, wV )
and ê2

i
∗(wθ, wV ). The recursion leads from larger i-s to smaller ones. It is applicable

to all i such that both xi and its successor xi+1 are known. However, the two step
ahead follower xi+2 may be unknown. This happens when a reinforcement learning
experiment has finished after step i+ 1.

ρi = ρ(ϕ(ui; θ̃(xi;wθ)), ϕi) (6.8)



if xi+1 is a terminal state:
Υi = 0
q∗i = ri+1

otherwise if the successor of xi+1 is unknown:
Υi = 0
q∗i = ri+1 + γṼ (xi+1;wV )
otherwise:

λi =

{
λmax if Υi+1 = 0
min{λmax, (Υmax/ρi − 1)/(γΥi+1)} if Υi+1 6= 0

Υi = ρi(1 + λiγΥi+1)
q∗i = ri+1 + γ

(
λiÛ

∗
i+1(wθ, wV ) + (1− λi)Ṽ (xi+1, wV )

)

(6.9)

Û∗i (wθ, wV ) = Ṽ (xi;wV ) + ρ(ϕ(ui; θ̃(xi;wθ)), ϕi)
(
q∗i − Ṽ (xi;wV )

)
(6.10)

ê2
i
∗(wθ, wV ) = ρ(ϕ(ui; θ̃(xi;wθ)), ϕi)

(
q∗i − Ṽ (xi;wV )

)2
(6.11)

The IRAWC(λ) algorithm may be formulated almost exactly as IRAWC (Table
5.1), yet instead of Ψ̂t and Φ̂t, it optimizes Ψ̂∗t and Φ̂∗t defined as

Ψ̂∗t (wV , wθ) =
1
t

t∑
i=1

(
q∗i − Ṽ (xt;wV )

)2
ρ(ϕ(ui; θ̃(xi;wθ)), ϕi) (6.12)

Φ̂∗t (wθ, wV ) =
1
t

t∑
i=1

Ṽ (xi;wV ) + (q∗i − Ṽ (xi;wV ))ρ(ϕ(ui; θ̃(xi;wθ)), ϕi) (6.13)

where q∗i is calculated by means of the recursion (6.8) – (6.11). One could optimize
the above functions in the batch mode. This would require a recalculation of the
recursion after each step of the optimization.
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6.2 Sequential implementation of IRAWC(λ)

Suppose, in order to optimize Ψ∗t and Φ∗t we want to use the pattern mode instead of
the batch one. We simply draw i from the set {1, . . . , t} and optimize these functions
along i-th components of (6.12) and (6.13). How to do this avoiding recalculation
of the entire database just to compute a single q∗i ? In fact, we will not compute q∗i
directly. Instead, we will calculate a random variable whose expected value is equal
to q∗i .

Let ξ be a random variable from the uniform distribution U(0, 1). Suppose it
is drawn independently whenever it appears in a formula. Let also ξ be the only
random variable in the below expected value and [·] have the conventional meaning.
We have

E
(
ri+1+γṼ (xi+1;wV ) + [ξ < λi]γ(Û∗i+1(wθ, wV )− Ṽ (xi+1;wV ))

)

= ri+1 + γṼ (xi+1;wV ) + λiγ(Û∗i+1(wθ, wV )− Ṽ (xi+1;wV ))

= q∗i .

We obtained q∗i (6.3). Let us compute q̂∗i with the use of the following recurrent
procedure:

q̂∗i :=





ri+1 if xi+1 is terminal,
ri+1 + γṼ (xi+1;wV ) if xi+2 is unknown or ξ ≥ λi,

ri+1 + γÛ∗i+1(wθ, wV ) otherwise,
(6.14)

where Û∗i+1(wθ, wV ) is recalculated by means of (6.10) and (6.14). Instead of using
q∗i which requires recalculating of the entire database, we may hence use q̂∗i whose
expected value is equal to q∗i . The calculation of q̂∗i requires several steps of the
above recursion. The number of steps is random yet its expected value is no larger
than 1 + 1/λmax if only λi ≤ λmax for each i.

We now see how the pattern mode of optimization of (6.12) and (6.13) can be
implemented. Within each step, an index i is drawn from {1, . . . , t}, q̂∗i is calculated
on the basis of (6.10) and (6.14), and i-th components of Ψ̂∗t and Φ̂∗t are optimized
along wV or wθ. What we need now is a method of computing values of λi. We will
set the values of consecutive λi-s to bound

ΥK
i = E

(
K+1∑

k=0

ρi

(
k−1∏
j=0

[ξi+j < λi+j]γρi+j+1

))

=
K+1∑

k=0

ρi

(
k−1∏
j=0

γλi+jρi+j+1

)



6.2. SEQUENTIAL IMPLEMENTATION OF IRAWC(λ) 71

for each K = 0, 1, . . . where every term is understood as constant, except ξi+j, which
now becomes an element of a sequence of independent random variables drawn from
U(0, 1). We will calculate consecutive λi+K so that they will not be greater than
λmax and ΥK

i will not be greater than Υmax. Let us express ΥK
i as

ΥK
i =

K∑

k=0

aki λi+k

In order to find consecutive aKi and λi+K , let us define:

cKi = ρi

K−1∏
j=0

γλi+jρi+j+1

bKi =
K∑

k=0

cki

We can see that

aKi = cKi γρi+K+1

ΥK
i =

K∑

k=0

aki λi+k = bKi + aKi λi+K

We want λi+K not to be greater than λmax nor ΥK
i to be greater than Υmax. We

thus obtain:
λi+K = min{λmax, (Υmax − bKi )/aKi } (6.15)

Notice that once we pick i to calculate q∗i , we compute λi+k for k ≥ 0. The
sequence {λj, j = i, i+1, . . . } we obtain is generally different than the one we would
obtain if we picked different i. Furthermore, this sequence depends on wθ, wV and
the history of plant-controller interaction that took place after step i. What we have
denoted here by λi+k should have been denoted rather by λi,k(wθ, wV ). However, it
would have made this, technical enough, discussion even more complicated.

If we calculate λi+k on the basis of the above procedure, we obtain ΥK
i ≤ ΥK+1

i

for K ≥ 0. Furthermore, if ΥK
i < Υmax for a certain K, then λi+k = λmax for all

k ≤ K. Conversely, if ΥK
i = Υmax, then λi+k = 0 for all k > K. The sequence

〈λi, λi+1, . . . 〉 is thus equal to 〈λmax, . . . , λmax, λi+K , 0, . . . 〉, where K is the smallest
number such that ΥK

i = Υmax.
What is the cost of an execution of the recursion defined by (6.10) and (6.14)?

Its first iteration always takes place. A consecutive iteration always takes place with
the probability λi. Since λi ≤ λmax for each i, the expected number of iterations
is no greater than 1 plus the expected value of the geometrical distribution with
parameter equal to λmax. Hence this number is no greater than 1/(1− λmax). That
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means that computational expense associated with this form of IRAWC(λ) is no
more than 1/(1− λmax) times larger than the cost of an equivalent implementation
of IRAWC.

In Chapter 7 we report application of the sequential version of the IRAWC(λ)
algorithm. The batch version of this method presented in the previous section
requires very large computational power and we do not recommend it.

6.3 Between RAWC and IRAWC. Semi-Intensive
algorithms

RAWC and RAWC(λ) algorithms discussed in Chapter 4 utilize each control step
to calculate gradients and use them to adjust the quality measures Φ and Ψ. Long-
term-memory versions of these algorithms discussed in the previous and present
chapters construct estimators of Φ and Ψ parameterized by Actor’s and Critic’s
parameters and execute a full optimization of these estimators. Objectives are thus
similar but means are different.

Usefulness of long-term-memory RL methods is based on the assumption that
the entire history of a plant-controller interactions is possible to keep in a computer
memory. If we want the control optimization process not to last more than several
hours, this assumption seems to be reasonable. However, it is unlikely that a trial
and error method of control optimization would be used more than several hours.
We either can guarantee that the control system learning will be completed in a
short time and then computer memory limitations do not matter or the method
would not be applied at all.

Let us consider control optimization problems that impose some strong limita-
tions on memory capacity and computational power. It seems that we still can take
an advantage of long-term-memory Actor-Critic approach. The idea is as follows:
instead of keeping the entire history of plant-controller interaction, let the algorithm
keep in memory only n most resent events. These n events are enough to calculate
estimators of Φ and Ψ. Because n is constant, variances of these estimators have
no opportunity to converge to zero and their full optimization would lead to poor
performance. However, gradients of these estimators reflect gradients of Φ and Ψ
much better than the gradients computed by RAWC and RAWC(λ).

The above idea leads us to Semi–Intensive Random Actor With Critic (SIRAWC,
Table 6.1). It is similar to the IRAWC algorithm presented in Table 5.1, except for
the following differences:
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0. Set t := 1. Initialize wθ and wV randomly.

1. Draw the control action ut

ut ∼ ϕ(· ; θ̃(xt;wθ))

where the parameter vector wθ is calculated in the internal loop.

2. Perform control ut, and observe the next state xt+1 and the reinforcement rt+1.

3. Add the five 〈xt, ut, rt+1, xt+1, ϕt〉 to the database where ϕt := ϕ(ut; θ̃(xt;wθ))
and remove from the database all events up to the step t− n.

4. (a) Policy evaluation. Adjust wV by performing limited number of steps of
quasi-minimization of Ψ̂n

t (wV , wθ).

(b) Policy improvement. Adjust wθ by performing limited number of steps
of maximization of Φ̂n

t (wθ, wV ).

5. Set t := t+ 1 and repeat from Step 1.

Table 6.1: The SIRAWC algorithm.

1. Instead of Ψ̂t and Φ̂t it optimizes

Φ̂n
t (wθ, wV ) =

1
n

t∑
i=t−n+1

Ûi(wθ, wV )

Ψ̂n
t (wV , wθ) =

1
n

t∑
i=t−n+1

ê2
i (wθ, wV )

2. A number of optimization steps performed between consecutive control steps
must be limited.

Note that the RAWC algorithm may be viewed as a special case of SIRAWC such
that n = 1 and it performs a single, gradient-driven weights’ adjustment at each
step. The similarity between these methods is deeper. Even though SIRAWC is
structurally like IRAWC, its hypothetical convergence is a result of a stochastic
ascent along a gradient estimator, like in RAWC rather than in IRAWC. Thank
to more economical utilization of acquired data, the estimator may have smaller
variance and SIRAWC may converge faster.
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In a similar manner the IRAWC(λ) algorithm can be modified to SIRAWC(λ).
It only requires defining of the estimators:

Φ̂n∗
t (wθ, wV ) =

1
n

t∑
i=t−n+1

Û∗i (wθ, wV )

Ψ̂n∗
t (wV , wθ) =

1
n

t∑
i=t−n+1

ê2
i
∗(wθ, wV )

6.4 Continuous time

Reinforcement learning in continuous time domain is a rarely discussed subject. In
[13] a continuous-time RL algorithm is described that builds a plant’s model on-line
and in the same time adjusts the policy by means of the mechanism very similar
to HDP (Paragraph 2.4.1). The optimized policy is deterministic and hence this
algorithm suffers from problems we discuss in Appendix A. In [33] the Simple Policy
Search algorithm (see Section 2.5) is discussed that does not really care whether the
optimized policy operates in a discrete or continuous time space.

If we want to apply randomized Actor-Critic algorithms to real-time control we
may choose from between two possibilities.

• We may assume that control is piecewise constant and apply consecutive ut di-
rectly as a control stimuli. Obviously whenever a digital controller is employed,
time must be discredited and consequently control is piecewise constant. How-
ever, very important difficulties emerge when discretization becomes very fine.
Namely, each consecutive control stimulus impacts the overall control quality
very mildly. Roughly speaking, a good control policy can not be spoilt by
mismatching a control signal for a very short time. If an action does not make
any difference, it is impossible to learn which is good and which is lousy. As a
result, this approach is limited to problems whose solution may be piecewise
constant control with pieces long enough.

• For many plants, elaborate, nonlinear controllers of many parameters are re-
quired. However, within a short period of control, when the state of the plant
does not change drastically, a linear controller of few parameters is enough.
Yet the parameters must be changed following long time state changes. We
thus introduce hierarchy into control policy. A reinforcement learning algo-
rithm operates on the higher level and its actions ut become parameters for
the lower level. On the lower level, a fixed function maps a state and the
parameter to a control stimulus.
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Note that when we replace the first design with the second one, the dimension-
ality of the action space U increases substantially. For instance, suppose that our
plant is controlled by 3 stimuli. Within the first approach, the dimensionality of U
is equal to 3. Within the second design it depends on how we design the low-level
controller, but probably each controller for such a problem we can think of would
require much more than 3 parameters. E.g. a combination of 3 independent PID
controllers would require 9 parameters. We devote the remaining of this section to
introduce a certain modification of the second above design.

Let us consider continuous time τ and a plant whose state x(τ) ∈ X = RnX
evolves according to the equation

d
dτ
x(τ) = f(x(τ), a(τ)) (6.16)

where f is a certain unknown function and a(τ) ∈ A = RnA is a control stimulus
applied by a controller. We introduce hierarchy into control policy. a(τ) becomes a
low-level stimulus computed on the basis of a state and a parameter determined on
the higher control level. The parameter is a piece-wise constant function of time. It
changes in discrete moments {τt, t = 1, 2, . . . } such that τt+1 − τt ≡ ∆ for a certain
∆ ∈ R+. We have

a(τ) = C(x(τ);ut) (6.17)

for τ ∈ [τt, τt+1) where C is a known function defined by a system designer and ut is
a value of the parameter. The task of a reinforcement learning algorithm is to learn
to determine ut on the basis of an observed state xt = x(τt). The plant generates a
stream of reinforcements

r(τ) = R(x(τ), a(τ))

where R : X × U 7→ R is a certain function. For each t, the average reinforcement
within the interval [τt, τt+1)

rt+1 = ∆−1

τt+1∫

τt

r(τ) dτ.

is available to the RL algorithm. Let us denote by Xt a trajectory of state within
the time interval [τt, τt+1)

Xt = {x(τ), τ ∈ [τt, τt+1)}

and by At a trajectory of low-level controls within this period, namely

At = {a(τ), τ ∈ [τt, τt+1)}.
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Suppose we apply to this problem the original version of IRAWC. The database
is filled with quintets

〈xi, ui, ri+1, xi+1, ϕi〉. (6.18)

The algorithm increases (or decreases) the density ϕ(ui; θ̃(xi;wθ)) depending on
the future reinforcements that ui leads to. Notice that from the point of view of
the algorithm, the fact that its actions ut becomes a parameter for the low-level
controller does not matter. It does make sense, because the future reinforcements
are indirectly determined by ui. However, they are directly determined by the pair
of trajectories 〈Xi, Ai〉. Hence, this is 〈Xi, Ai〉 that could be made more (or less)
likely following the state xi.

Does this distinction matter? The quintet (6.18) impacts the estimator Φ̂t(wθ, wV )
proportionally to the density ϕ(ui; θ̃(xi;wθ)) for the current value of wθ. Suppose
the dimensionality of U is much larger than the dimensionality of A. That is a
reasonable assumption. It may be the case that the action ui is hardly possible for
a current θ̃(xi;wθ), yet the pair 〈Xi, Ai〉 may actually be generated by a certain u

that is likely enough yet very distant from ui.
The idea of increasing or decreasing the likelihood of the pair 〈Xi, Ai〉 can not be

implemented directly because one can not define a density (or a probability) for an
infinite-dimensional entity like 〈Xi, Ai〉. However, we can introduce a certain finite-
dimensional representation of this entity. Suppose there exists a certain function L

that maps each trajectory A to a point in a certain space L whose dimensionality
is finite, namely

L : {[0,∆) 7→ A} 7→ L.
Suppose there exists also a mapping

L† : L 7→ {[0,∆) 7→ A}

such that an application of the low-level control Ai and L†(L(Ai)) after the state xi
produces almost the same ri+1 and Xi.

How can we define such L and L†? For instance, we may employ the sampling
technique used in many areas of engineering. Namely, we define

L(At)T = [a(τt + δ1)T , . . . , a(τt + δn)T ] (6.19)

where {δi, i = 1, . . . , n} is a set of real numbers spread evenly over the interval [0,∆).
Intuitively, if we sample a function a : [0,∆) 7→ Rm densely enough, the samples
enable to recreate the function. Nyquist theorem defines sufficient conditions for
this intuition to become true.

Let us call L(A) a label of the trajectory A. Suppose we fix a trajectory of states
X and a parameter θ. We know the density ϕ(· ; θ) that generates u and the function
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C that produces a trajectory A of actions on the basis of X and u. We may define
a distribution of labels that this mechanism may produce for this X and θ. Let
us denote this distribution by a density function ϕL(L;X, θ) parameterized by the
trajectory X of states and θ. In (6.16) we assumed that state dynamics depends on
control deterministically. We also assumed that the label L(A) is enough to recreate
the control trajectory A. Hence, changes of the density ϕL(L(A);X, θ) caused by
manipulating θ induce proportional changes of a likelihood of the pair of trajectories
〈A,X〉.

A label L(A) may be thought of as a compact representation of the actions A.
Let H(X) be a corresponding compact representation of the states X that is enough
to compute ϕL(L;X, θ). E.g. if L(A) is equal to selected elements along the control
trajectory A (6.19), then H(X) may be equal to corresponding selected elements of
the state trajectory X:

H(Xt)T = [x(τt + δ1)T , . . . , x(τt + δn)T ]. (6.20)

In order to calculate the probability that for a given state trajectory X our control
generation mechanism would generate a given label L (6.19), we need not the entire
X but only H(X) (6.20). We will thus write ϕL(L;X, θ) = ϕL(L;H(X), θ).

The algorithm we propose in this section is similar to IRAWC in the sense that
it stores in a memory an entire history of a plant-controller interactions. However,
instead of remembering a state xt, an action ut, and a density ϕt, it stores

Ht = H(Xt)

Lt = L(At)

ϕLt = ϕL(Lt;Ht, θ̃(xt;wθ))

respectively. In its internal loop, it increases the density ϕL(Li;Hi, θ̃(xi;wθ)) of
labels associated with control trajectories that lead to large values of the future
rewards

qi = ri+1 + γṼ (xi+1;wV )

and decreases a density of labels that lead to small values of qi. Instead of optimiza-
tion of Φ̂t and Ψ̂t as IRAWC does, the algorithm optimizes

Φ̂L
t (wθ, wV ) =

1
t

t∑
i=1

Ṽ (xi;wV ) + (qi − Ṽ (xi;wV ))×

× ρ(ϕL(Li;Hi, θ̃(xi;wθ)), ϕLi )

Ψ̂L
t (wV , wθ) =

1
t

t∑
i=1

(
qi − Ṽ (xi;wV )

)2×

× ρ(ϕL(Li;Hi, θ̃(xi;wθ)), ϕLi ).
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Figure 6.1: The idea of ILRAWC. L(Ai) is a certain approximate representation of
Ai. Let for a certain ut and a given H = H(Xi) Actor generates L = L(Ai). That
means that starting from xt = xi it would generate certain Xt and At similar to Xi

and Ai, respectively.

Let us call the resulting algorithm Intensive Labelled RAWC or ILRAWC. Figure
6.1 presents its idea. The algorithm increases (or decreases) the probability of L(Ai)
given H(Xi). Consequently, it increases (or decreases) the probability of a pair of
bunches of trajectories “similar” to Xi and Ai. The denser the labelling is, the
“thicker” the bunches are. The experiments presented in Chapter 7 suggest that, in
fact, the labelling does not have to be very dense.

ILRAWC can easily be combined with all the ideas presented earlier in this
chapter, namely

• Replacing qi with q∗i (6.9) yields Labelled Intensive RAWC(λ) or ILRAWC(λ).

• Confining the database to constant number of the most recent events gives
Semi-Intensive Labelled RAWC or SILRAWC.

• Combining ILRAWC with both above modifications yields Semi-Intensive La-
belled RAWC or SILRAWC(λ).



Chapter 7

Experimental study

In the present dissertation we propose a family of long-term-memory Reinforcement
Learning methods. The subject of this chapter is to verify their behavior empirically.
Are these methods feasible? Are they faster or slower than their short-term-memory
equivalents? Do they obtain better or worse policies? In this chapter we report
experiments that shad light on these questions. Obviously empirical results do not
suffice to identify all advantages and disadvantages of algorithms, however, they can
provide some clues.

We apply all the previously discussed algorithms to three non-trivial control
problems. Each of them could be solved by means of existing RL methods. How-
ever, the amount of time the existing methods would need, is so large that it is
questionable whether anyone could seriously consider their application for solving
these problems.

The experiments reported in this chapter are simulated. They imitate a situation
where control of an unknown plant is to be optimized with the use of trials and errors
in real time. We accept the fact that before control is optimized, it is inappropriate
— a controller has not yet learned to behave properly. However, the period of
inappropriate control is costly (the plant may be damaged) and we are interested in
its minimization.

7.1 Algorithms’ implementations

In this study we compare experimentally behavior of various algorithms. The objec-
tivity of a comparison is sometimes difficult to guarantee, since one could always set
parameters that improve performance of one algorithm and deteriorate performance
of the other one. We thus formulated several rules concerning our experiments.

• Whenever a neural network is employed by an algorithm, it is implemented as a
two layer perceptron with sigmoidal (arctan) activation functions in the hidden
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layer and the linear output layer. Each neuron of both layers has a constant
input (bias). The initial weights of the hidden layer are drawn randomly from
the normal distribution N(0, 1) (d is the network input dimension) and the
initial weights of the output layer are set to zero. Neural network’s inputs
were normalized by dividing them by their assumed (provided initially by an
experimenter) standard deviations.

• Whenever two algorithms use parameters that correspond to one another, they
have the same values in both algorithms applied to the same problem. It usu-
ally yields good behavior of both methods but there are several exceptions
and one of them is regular. Step parameters used in long-term-memory meth-
ods are always 3 times smaller than corresponding step parameters in their
short-term-memory equivalents.

• The optimal value of a parameter of an algorithm usually depends on the prob-
lem that the algorithm is applied to. However, experimental studies (including
our own) suggest that in the case of some parameters there are their values
that work well in almost each application. We do not optimize values of such
parameters but use ones suggested by the studies. We always apply λ = 0.5,
λmax = 0.5, Υmax = 5, and the upper bound of ρ equal to 5.

Usually results in the field of Reinforcement Learning are presented in the form
of learning curves (average reinforcement vs. control trial number). They are to
imply that an algorithm optimizes control of a plant as fast as the curve shows.
Usually however, the learning process depicted by the curve is a result of a number of
preceding experiments that aim at human-hand-made parameters’ selection. Even
though it is a common practice, it is a little dishonest to say that an algorithm
learns something in, say, thousand trials when its parameters have been optimized
in tens of thousands of trials. We follow this practice reluctantly leaving methods
of automatic optimization of such free parameters for future work.

In the below experiments three groups of parameters are optimized manually: (i)
the ones concerning structures of approximators, i.e. numbers of neurons in neural
networks, (ii) the ones concerning control randomization, and (iii) step parameters.
Values of all the others are standard or chosen as “reasonable” and not optimized.

7.1.1 RAWC and RAWC(λ)

Implementations of RAWC and RAWC(λ) follow exactly their original formulations
(Tables 4.1 and 4.2 respectively). The parameters of RAWC that need to be specified
are gathered in Table 7.1. M θ is to be specified only if Actor is implemented by a
neural network. One must also set the value of the discount parameter γ but this is
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ϕ smoothly-exploring distribution
M θ number of hidden neurons of θ̃
MV number of hidden neurons of Ṽ
βθt step parameter of θ̃
βVt step parameter of Ṽ

Table 7.1: Parameters of the RAWC algorithm’s implementation.

associated with a plant rather than with a learning control method. For each plant
we discuss in this study we set parameters for RAWC(λ) equal to corresponding
parameters of RAWC. Additionally, for RAWC(λ) one must specify the λ parameter
and we always set λ = 0.5.

7.1.2 IRAWC

An implementation of RAWC requires several design decisions. First, one has to
specify the ρ function (3.12). In all experiments we use the same

ρ(d, d0) = min
{
d

d0
, 5

}
.

More important, one has to define a process that optimizes Φ̂t and Ψ̂t and assure
keeping of θ̃(xi;wθ) within a bounded area (see remarks on page 59). Our imple-
mentations will be the simplest possible. Namely they will optimize Φ̂t and Ψ̂t with
the use of stochastic approximation and constant step parameters (see remarks on
page 64). Let gΦ

i be a gradient of i-th component of Φ̂t (5.11) on θ̃(xi;wθ). That is

gΦ
i =

dρ(ϕ(ui; θ), ϕi)
dθ

∣∣∣∣
θ=θ̃(xi;wθ)

.

Pure optimization of Φ̂t by means of stochastic approximation would imply modifi-
cation of θ̃(xi;wθ) along gΦ

i for randomly chosen i-s. However, we must employ an
additional trick in order to keep θ̃(xi;wθ) within a bounded area. We assume that
this bounded area is a cube [θm1 , θ

M
1 ] × · · · × [θmdim Θ, θ

M
dim Θ] and simply replace gΦ

i

with gi = G(gΦ
i , θ̃(xi;wθ)), where

Gj(g, θ) =





gj if θj ∈ [θmj , θ
M
j ]

max{gj, c} if θj < θmj
min{gj,−c} if θj > θMj

, (7.1)

subscript j denotes j-th element of an appropriate vector and c is some positive
constant. Table 7.2 describes a generic implementation of the IRAWC algorithm
used in this study.
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0. Set t := 1 and i := 1. Initialize wθ and wV randomly.

1. Draw the control action ut:

ut ∼ ϕ(·; θ̃(xt;wθ))

2. Perform the control action ut, and observe the next state xt+1 and the rein-
forcement rt+1.

3. Add the five 〈xt, ut, rt+1, xt+1, ϕt〉 to the database D where ϕt :=
ϕ(ut; θ̃(xt;wθ)).

4. (The internal loop) Repeat min{n1#D,n∞} times:

(a) Calculate di = rti+1 − Ṽ (xti ;wV ) if xti+1 was not acceptable and di =
rti+1 + γṼ (xti+1;wV )− Ṽ (xti ;wV ) otherwise.

(b) Adjust the approximation of the value function:

wV := wV + βVi diρ(ϕ(uti ; θ̃(xti ;wθ)), ϕti)×

× dṼ (xti ;wV )
dwV

(c) Adjust the policy:

gi = G

(
dρ(ϕ(uti ; θ̃(xti ;wθ)), ϕti)

dθ̃(xti ;wθ)
, θ̃(xti ;wθ)

)

wθ := wθ + βθi di
dθ̃(xti ;wθ)

dwθ
gi

(d) Set i := i+ 1.

5. Set t := t+ 1 and repeat from Step 1.

Table 7.2: The implementation of the IRAWC algorithm. #D denotes the number
of elements (fives) in the database D.
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ϕ smoothly-exploring distribution
M θ number of hidden neurons of θ̃
MV number of hidden neurons of Ṽ
βθi step parameter of θ̃
βVi step parameter of Ṽ
n∞ max. absolute intensity of the internal loop
n1 max. intensity of the internal loop relative to the

current cardinality #D of the dataset D.

Table 7.3: Parameters of IRAWC implementation.

The sequence {ti, i ∈ N} is a concatenation of random permutations of time
indexes available in the dataset D (this technique, called “reshuffling”, is a “better”
form of simple drawing a random sample from the data).

Table 7.3 gathers all the parameters of the implementation of IRAWC. We use
the largest n∞ value still enabling for our simulations (PC with AthlonTM1400 MHz)
to be carried in real time of a plant. While the plant is really simulated and n∞ of
any size may be set, we want to check IRAWC’s behavior when run on an ordinary
PC and confronted with a real plant.

7.1.3 IRAWC(λ), and SIRAWC, SIRAWC(λ)

Implementation of IRAWC(λ) requires a slight modification of the algorithm pre-
sented in Table 7.2. Namely, di must be calculated as

di = q̂∗ti − Ṽ (xti ;wV ).

where q̂∗ti is calculated with use of the recursion discussed in Section 6.2. Additional
parameters are needed and they are λmax (in our experiments always equal to 0.5)
and Υmax (always equal to 5).

The implementation of the SIRAWC algorithm almost exactly follows Table
7.2 except it keeps in memory only n2 most recent events. In the implementation
of SIRAWC(λ) there is nothing surprising, it is similar to the implementation of
IRAWC(λ) yet only n2 most recent events are kept in the database.

7.2 Cart-Pole Swing-Up

The Cart-Pole Swing-Up problem is an issue of optimal control of a robotic ma-
nipulator, which has two degrees of freedom. One of them is controlled and the
other is free. The manipulator consists of a cart moving along a track and a pole
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hanging freely from the cart. Control signal defines force applied to the cart. The
control objective is to avoid hitting the track bounds, swing the pole, turn it up,
and stabilize upwards. The problem is described in detail in Appendix B.

Figure 7.1: The Cart-Pole Swing-Up.

7.2.1 Controller and Critic

We design a controller for the Cart-Pole Swing-Up in the most straightforward way.
The function θ̃(x;wθ) is represented by a neural network. It produces a center of
the distribution that an action is drawn from. We employ the family of normal
distributions N(θ, 4) as ϕ. The action (limited to the interval [−10, 10]) is equal to
the force Ft applied to the cart every 0.1 sec.

Ft =





−10 if ut < −10
ut if ut ∈ [−10, 10]
10 otherwise

Both θ̃ and the Critic approximator Ṽ employed by IRAWC are implemented
by neural networks. The state vector xt feeding the approximators is normalized,
namely

xt =
[
z

2
,
ż

3
,
sinω
0.8

,
cosω
0.8

,
ω̇

4

]T

Note that the plant’s state evolves in real time, different than discrete time t.

7.2.2 Reinforcements and training

A typical reward used in the Cart-Pole Swing-Up problem is equal to the elevation
of the pole top. Initially, the waving pole hovers, and the rewards are close to −1.
When the goal of control is reached and the pole is stabilized upwards, the rewards
are close to 1. The state of the plant is acceptable if and only if z ∈ [−2.4, 2.4].
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Param. RAWC RAWC(λ) SIRAWC SIRAWC(λ) IRAWC IRAWC(λ)
M θ 20 20 20 20 20 20
MV 40 40 40 40 40 40
βθi 3.10−3 3.10−3 10−3 10−3 10−3 10−3

βVi 3.10−3 3.10−3 10−3 10−3 10−3 10−3

λ 0.5 0.5 0.5
n∞ 10 10 1000 1000
n1 0.25 0.25 0.25 0.25
n2 2000 2000

Table 7.4: Parameters of randomized Actor-Critic algorithms confronted with the
Cart-Pole Swing-Up.

The reinforcement is calculated as

rt+1 = −0.2
∣∣ut − Ft

∣∣ +





−30 if xt+1 is not acceptable,
otherwise:
cosω if |ω̇| < 2π
−1 if |ω̇| ≥ 2π

for ω and ω̇ measured at the moment t+ 1.
The learning process consists of a sequence of trials. The trial may end in two

ways. First, the plant’s state may become unacceptable. In this case an appropri-
ately low reinforcement is emitted. Otherwise, the trial lasts for a random amount
of time drawn from the exponential distribution with the expected value equal to
20 sec. At the beginning of each trial the state is reset by drawing z and ω from
the uniform distributions U(−2.4, 2.4) and U(0, 2π), respectively, and setting ż, ω̇
to zero.

The discount factor γ is equal to 0.95. The G function keeping θ̃(xt;wθ) within
a bounded area is as follows:

G(g, θ) =





g if θ ∈ [−10, 10]
max{g, 0.2} if θ < −10
min{g,−0.2} if θ > 10

7.2.3 Experiments and discussion

We identify parameters of a Cart-Pole Swing-Up controller with the use of two
classical algorithms (RAWC and RAWC(λ)) and four algorithms introduced here
(IRAWC, IRAWC(λ), SIRAWC, SIRAWC(λ)). Table 7.4 contains parameters of
the algorithms and Figure 7.2 shows appropriate learning curves. A control policy
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Figure 7.2: Randomized Actor-Critic algorithms applied to the Cart-Pole Swing-
Up; average reinforcement vs. trial number. Each point averages reinforcements in
a certain number (different for different algorithms) of consecutive trials and each
curve averages 10 runs.
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for the Cart-Pole Swing-Up may be considered satisfying when it allows a controller
to receive average reinforcement 0.75. The traditional algorithm, RAWC obtains
such a policy after 2000 trials (about 8 hours of real time of the plant). The basic
algorithm we propose, IRAWC, needs only 120 trials (about 30 minutes). It is hence
17 times faster.

The behavior of SIRAWC is a little disappointing. The algorithm obtains a good
control policy after about 750 control trials (3 hours). It could seem that the esti-
mator of the gradient of Φ(wθ) calculated on the basis of 2000 most recent examples
was quite good. By manipulating the value of the n1 parameter we control the
speed of movement along this gradient. Obviously, because of the limited accuracy
of the estimator, n1 can not be very large. As it turns out, the value greater than
10 deteriorates the final policy performance. For the largest n1 value that does
not deteriorate the final performance, SIRAWC is only about 2.5 times faster than
RAWC.

Let us analyze the role of the λ parameter. In the experiments all algorithms ap-
plying λ = 0.5 converge about 1.5 times faster than their original versions. Further-
more, their convergence was more stable. RAWC(λ), SIRAWC(λ), and IRAWC(λ)
obtain good control policies after 1500 trials (7 hours), 650 trials (2.5 hours), and
80 trials (20 minutes), respectively. However, the final performance seems not to
depend on λ. We use λ > 0 in order to reduce bias of the estimator of the gradient
∇Φ of the quality index. Apparently this bias reduction is more beneficial in early
stages of learning than in the end.

Experiments with the Cart-Pole Swing-Up are reported e.g. in [13]. The author
of this paper applies a randomized Actor-Critic method similar to RAWC to the
plant and obtains almost the same result as reported here. However, the subject
of that paper is not the algorithm similar to RAWC. It introduces a model-based
algorithm similar to HDP (see Section 2.4.1) which controls the plant well after
about 750 trials. Let us compare the methods we propose against model-based
algorithms more traditional than the one introduced in [13].

7.2.4 Comparison to Adaptive Critic Designs

There are a few studies checking Adaptive Critic Designs as Reinforcement Learning
methods [37, 20], i.e. as methods that learn to control an initially unknown plant.
The experiments we describe below concern two methods. The first one is model-
free AD-HDP (Table 7.5). The second one is a version of short-memory HDP that
learns the model of plant’s dynamics on-line (Table 7.6). The algorithm maintains
parametric approximators of the model functions R (2.4) and S (2.5). The first one,
R̃ is parameterized by the vector wR and the second one, S̃ is parametrized by wS.
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Set t := 1. Initialize wA and wQ randomly.
Repeat until convergence of wA:

1. Draw ut ∼ N(Ã(xt;wA), σ2)

2. Apply the control stimulus ut, observe the next state xt+1 and the reinforce-
ment rt+1

3. Policy improvement. Adjust Ã(xt;wA) along d
dÃ(xt;wA)

Q̃(xt, Ã(xt;wA);wQ):

wA := wA + βAt
d

dwA
Ã(xt;wA) G

(
dQ̃(xt, Ã(xt;wA);wQ)

dÃ(xt;wA)
, Ã(xt;wA)

)

4. Policy evaluation. Adjust Q̃(xt, ut;wQ) towards rt+1+γQ̃(xt, ut+1;wQ):

qt := rt+1 + γQ̃(xt+1, Ã(xt+1;wA);wQ)

wQ := wQ + βQt
dQ̃(xt, ut;wQ)

dwQ

(
qt − Q̃(xt, ut;wQ)

)

5. Set t := t+ 1 and repeat from Step 1.

Table 7.5: The implementation of Action-Dependent HDP.

In both designs the problem occurs that in early stages of learning, when Critics’
networks are not trained yet, they drive Actors’ networks training in a casual direc-
tion. To avoid divergence, Ã(x;wA) must be artificially kept in a bounded area. A
simple way to assure this is to employ the G function (7.1) which we use for Actor
training in IRAWC.

We identify parameters of a Cart-Pole Swing-Up controller with the use of AD-
HDP and On-Line Modeling HDP. The parameters of the algorithms are gathered
in Table 7.7 and their values used in the experiments are gathered in Table 7.8.
Figure 7.3 shows learning curves obtained by the algorithms when randomized con-
trol (σ2 = 4 in Tables 7.6 and 7.5) is applied. The algorithms are convergent.
Regretfully, we do not present learning curves for the algorithms when they apply
deterministic control because they usually do not converge.

In Appendix A we analyze what happens when Adaptive Critic Designs try to
identify plant’s model and optimize the policy in the same time. We indicate there
reasons why ACDs may not converge when deterministic control is in use. The
argument is that deterministic control does not allow to gather information about
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Set t := 1. Initialize wA, wV , wR, and wS randomly.
Repeat until convergence of wA:

1. Draw ut ∼ N(Ã(xt;wA), σ2)

2. Apply the control stimulus ut, observe the next state xt+1 and the reinforce-
ment rt+1

3. Model improvement.

wR := wR + βRt
d

dwR
R̃(xt, ut;wR)

(
rt+1 − R̃(xt, ut;wR)

)

wS := wS + βSt
d

dwS
S̃(xt, ut;wS)

(
st+1 − S̃(xt, ut;wR)

)

4. Policy improvement. For

Q(x, u;wV , wR, wS) = R̃(x, u;wR) + γṼ (S(x, u;wS);wV )

adjust Ã(xt;wA) along d
dÃ(xt;wA)

Q(xt, Ã(xt;wA);wV , wR, wS):

wA := wA + βAt
dÃ(xt;wA)

dwA
G

(
dQ(xt, Ã(xt;wA);wV , wR, wS)

dÃ(xt;wA)
, Ã(xt;wA)

)

5. Policy evaluation. Adjust Ṽ (xt;wV ) towards Q(xt, Ã(xt;wA), wV , wR, wS):

wV := wV + βVt
dṼ (xt;wV )

dwV

(
Q(xt, Ã(xt;wA);wV , wR, wS)− Ṽ (xt;wV )

)

6. Set t := t+ 1 and repeat from Step 1.

Table 7.6: The implementation of On-Line Modeling HDP.
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MA number of hidden neurons of Ã
MQ number of hidden neurons of Q̃
MV number of hidden neurons of Ṽ
MR number of hidden neurons of R̃
MS number of hidden neurons of S̃
βAi step parameter of Ã
βQi step parameter of Q̃
βVi step parameter of Ṽ
βRi step parameter of R̃
βSi step parameter of S̃
σ2 variance of the distribution that blur control.

Table 7.7: Parameters of Adaptive Critic Designs.

Param. AD-HDP OLM-HDP
MA 20 20
MQ 60
MV 40
MR 40
MS 40
βAi 10−3 3.10−3

βQi 0.01
βVi 0.01
βRi 0.01
βSi 0.01

Table 7.8: Parameters of ACDs applied to the Cart-Pole Swing-Up.
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Figure 7.3: Randomized Adaptive Critic Designs applied to the Cart-Pole Swing-
Up; average reinforcement vs. trial number. Each point averages reinforcements in
100 consecutive trials and each curve averages 10 runs.

consequences of an application of a policy different that the one in use. The reser-
vations presented in Appendix A check out in our experiments. On the other hand,
in [13] it is shown that our reservations do not apply in every case. The algorithm
presented in this reference successfully identifies a model of the plant and a control
policy in the same time. The experiments we present seem to justify the following
conclusion: It may happen that replacing deterministic control with randomized one
in Adaptive Critic Design improves their behavior. However, randomized control,
once applied, enables one to resign from identification of a plant’s model (or ap-
proximation of the Q function). Hence, in some cases, ACDs may be successfully
replaced with randomized Actor-Critics.

7.3 Robot Weightlifting

The issue we now discuss is learning to control the lift presented at Figure 7.4.
From the point of view of robotics, the lift is a manipulator that has three degrees
of freedom and each of them is controlled. The plant is described in detail in
Appendix B. The control objective is to elevate the load from its lowest position
ωT = [π, π, π] to its highest position ωT = [0, 0, 0] and stabilize it there.

7.3.1 Controller and Critic

In the design of the controller for the lift we follow [33]. The controller is hierarchical;
at the lowest level, the plant is controlled by the PD regulator

τ ∗ = kc −Kpω −Kvω̇ (7.2)

where kc is a 3-dimensional vector and Kp and Kv are 3x3 matrices calculated every
0.1 sec. by a higher control level. Torques τ applied to the joints are calculated
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Figure 7.4: The lift used in the Robot Weightlifting problem.

by restricting τ ∗ to the cube [−50, 50]3. The idea presented in [33] is that in order
to control the lift properly, it is enough to combine two PD regulators: the “bend-
ing” one 〈kBc , KB

p , K
B
v 〉, which operates when the load is below the first joint and

“straightening” one 〈kSc , KS
p , K

S
v 〉, which operates when the load is above. Obviously

kSc ≡ [0, 0, 0]T . We will gradually switch between these two regulators depending on
the elevation y3(ω) of the load:

kc ∼= kBc w(ω) (7.3)

Kp
∼= KB

p w(ω) +KS
p (1− w(ω)) (7.4)

Kv
∼= KB

v w(ω) +KS
v (1− w(ω)) (7.5)

where

w(ω) = 0.5(1− sin(πy3(ω)/3))

y3(ω) = cosω1 + cosω2 + cosω3

The approximate equalities “∼=” in (7.3) – (7.5) come from the fact that Actor does
not impose kc, Kp, and Kv directly, but generates them from normal distributions
with the centers given by the right hand sides of the approximate equations.

Actor’s policy π(wθ) manifests itself in generating kc, Kp, and Kv every 0.1
second. θ̃ is described by right hand sides of equations (7.3) – (7.5). The equations
produce 3 + 9 + 9 = 21-element θ vector. Vector kBc and matrices KB

p , KB
v , KS

p , and
KS
v , form a 39-element vector wθ of Actor’s parameters. Actions are drawn from

N(θ, σ2I), where I is the 21-dimensional unit matrix.
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We have some preliminary knowledge of Actor’s parameters. We know that
(7.2) should produce values in the cube [−50, 50]3, hence each Actor’s parameter
should be roughly kept within the interval [−100, 100]. Furthermore, the logic of
PD regulator implies that matrices KB

v and KS
v are positively defined. We set their

initial values to 50 I. All the other parameters we initialize with zero values.
The Ṽ approximator employed by the algorithm is a neural network. A state

vector xt feeding the Ṽ approximator is normalized, namely

xt =
[
ω1

3
,
ω̇1

4
,
ω2

3
,
ω̇2

4
,
ω3

3
,
ω̇3

4

]

7.3.2 Reinforcements and training

Reinforcement in this problem involves a penalty for difference between the final
position and the actual one. We may consider Euclidean distance

rt+1,1 = −d1(ω)− d2(ω)− d3(ω)

where di is a cartesian distance between i-th joint and its final position. We may
also consider the angular one

rt+1,2 = −|ω1| − |ω1| − |ω1|.

The main part of reinforcement is calculated as a penalty for hitting the platform
and an average penalty for distance from the desired position, namely

rt+1,3 =

{
−100 if xt+1 is not acceptable, otherwise:
10− 5

12rt+1,1 − 5
3πrt+1,2

Additionally, the controller is penalized when Actor’s parameters exceed their bounds

rt+1,4 = −0.03‖θ̃(xt+1;wθ)− (throw of θ̃(xt+1;wθ) on [−100, 100]21)‖1.

It is also penalized when ω2 < ω1 or ω3 < ω2 for the load below the first link

rt+1,5 =

{
0 if y3(ωt+1) >= 0, otherwise:
−max{0, ω1 − ω2, ω2 − ω3}

Without this last penalty, the policy is occasionally getting stuck in a local minimum.
Finally

rt+1 = rt+1,3 + rt+1,4 + rt+1,5

The learning process consists of a sequence of trials. The trial begins with
ω = [π, π, π]T , ω̇ = [0, 0, 0]T , and m is drawn from the uniform binary distribution
{1.5, 3.5} (see Fig. 7.4). The trial may end in one of two possible situations. First,
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Param. RAWC RAWC(λ) SIRAWC SIRAWC(λ) IRAWC IRAWC(λ)
MV 100 100 100 100 100 100
βθi 10−1 10−1 3.10−2 3.10−2 3.10−2 3.10−2

βVi 10−3 10−3 3.10−4 3.10−4 3.10−4 3.10−4

λ 0.5 0.5 0.5
n∞ 10 10 500 500
n1 0.25 0.25 0.25 0.25
n2 2000 2000

SILRAWC SILRAWC(λ) ILRAWC ILRAWC(λ)
MV 100 100 100 100
βθi 2.10−2 2.10−2 2.10−2 2.10−2

βVi 2.10−4 2.10−4 2.10−4 2.10−4

λ 0.5 0.5
n∞ 10 10 500 500
n1 0.25 0.25 0.25 0.25
n2 2000 2000

Table 7.9: Parameters of algorithms applied to the Robot Weightlifting.

the arm’s state becomes unacceptable — it simply hits the platform or itself. This
is associated with an appropriately low reinforcement. Second, the trial lasts for a
random real time drawn from the exponential distribution with the expected value
equal to 10 sec.

The discount factor γ is set to 0.95. The G function keeping θ̃(xt;wθ) within a
bounded area is as follows:

Gj(g, θ) =





gj if θj ∈ [−100, 100]
max{gj, 0.025} if θj < −100
min{gj,−0.025} if θj > 100

In the case of the ILRAWC algorithm we employed the labelling defined in (6.19)
and (6.20), where n = 2, δ1 = 0, and δ2 = ∆/2.

7.3.3 Experiments and discussion

We identify parameters of a Robot Weightlifting controller with the use of two
classical algorithms (RAWC and RAWC(λ)) and eight algorithms introduced here
(IRAWC, IRAWC(λ), SIRAWC, SIRAWC(λ), ILRAWC, ILRAWC(λ), SILRAWC,
and SILRAWC(λ)). Table 7.10 contains parameters of all algorithms applied to the
Robot Weightlifting problem and Figure 7.5 shows appropriate learning curves. A
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Figure 7.5: Randomized Actor-Critic algorithms applied to the Robot Weightlifting;
average reinforcement vs. trial number. Each point averages reinforcements in a
certain number (different for different algorithms) of consecutive trials and each
curve averages 10 runs.
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control policy for the plant may be considered satisfying when it allows a controller
to receive average reinforcement 7.5. The traditional algorithm, RAWC obtains
such a policy after 2300 trials (about 4.5 hours of real time of the plant). Intensive
RAWC (IRAWC) needs 700 trials (about 1.5 hours, 3 times faster). Semi–Intensive
RAWC (SIRAWC) needs 1200 trials (about 2 hours), and Intensive Labelled RAWC
(ILRAWC) needs only 230 trials (27 minutes, 10 times less than RAWC).

In this experiments the RAWC, SIRAWC, and IRAWC algorithms search for
21-elements sets of parameters for two PD controllers. What RAWC and SIRAWC
try to do is a local steepest descent in both spaces of parameters. What IRAWC
does may be rather understood as a thorough search of both spaces. Because the
spaces are large, their thorough search must be slow. ILRAWC tries to do something
else, it searches thoroughly the 3-dimensional space of first low-level controls in each
state. Because the dimensionality of the space to search is much smaller, there is
nothing surprising that the algorithm works much faster. The idea of labels that
the algorithm is based on seems to work very well.

Algorithms with λ-estimators of future rewards converge at least as fast as their
basic equivalents. E.g. ILRAWC(λ) obtains a good control policy after 170 trials
which translates into 20 minutes of real time of the plant.

Our results can also be compared with those presented in [33], where a little
different training was applied. The training based on the Simple Random Search
method started when a control policy was able to lift 0.5 kg. The weights were
increased gradually from trial to trial to train the system to lift the largest possible
load. A single run ended after 5000 trials when the plant was ready to lift as much
as 7 kg. Obviously this is a more difficult task, also because it is not stationary.
In this type of problems remembering previous events does not help very much and
IRAWC nor ILRAWC in their pure forms are not applicable.

7.4 Narendra’s MIMO

Narendra’s MIMO (multiple-input-multiple-output) problem is an issue of control
of a certain artificial discrete time plant. The plant is known as a testbed for many
algorithm discussed in the literature on Approximate Dynamic Programming (see
Section 2.4). The control objective is for the plant’s output to follow a certain path.
The objective is difficult to achieve because of the highly nonlinear dynamics of the
plant. The MIMO problem is described in detail in Appendix B.
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7.4.1 Controller and Critic

We design a controller for Narendra’s MIMO in the most straightforward way.
θ̃(x;wθ) function is implemented by a neural network. It produces a center of the
(normal) distribution that an action is drawn from.

Approximators θ̃ and Ṽ employed by IRAWC are implemented as neural net-
works. Action ut, which is normalized to cube [−1, 1]2, is scaled to control stimuli:

at,1 = 0.8ut,1

at,2 = 0.3ut,2

The state vector xt feeding the approximators is normalized, namely

xt =
1
2

[
zt,1, zt,2, zt,3, z

d
t+1,1, z

d
t+1,2

]T

7.4.2 Reinforcements and training

We employ reinforcement equal to a negative sum of penalties:

rt+1 = − (
zt+1,1 − zdt+1,1

)2
//zt+1,1 differs from its desired value

− (
zt+1,2 − zdt+1,2

)2
//zt+1,2 differs from its desired value

−0.1 max{|ut,1| − 1, 0} //ut,1 exceeds [-1,1] interval
−0.1 max{|ut,2| − 1, 0} //ut,2 exceeds [-1,1] interval

The learning process consists of a sequence of trials. Each trial is 200 steps long and
begin with all the state variables equal to zero.

Evolution of desired values xd1,t and xd2,t is driven by the following equations:

kt,1 = kt−1,1 + ξt,1

zdt,1 = 0.75 sin(πkt,1/25) + 0.75 sin(πkt,1/5)

kt,2 = kt−1,2 + ξt,2

zdt,2 = 0.75 sin(πkt,2/15) + 0.75 sin(πkt,2/10)

where ξt,1 and ξt,2 are random variables drawn independently from the uniform
distribution U(0, 2).

The discount factor γ is set to 0.8. The G function keeping θ̃(xt;wθ) within a
bounded area is as follows:

Gj(g, θ) =





gj if θj ∈ [−1, 1]
max{gj, 0.1} if θj < −1
min{gj,−0.1} if θj > 1
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Param. RAWC RAWC(λ) SIRAWC SIRAWC(λ) IRAWC IRAWC(λ)
M θ 40 40 40 40 40 40
MV 80 80 80 80 80 80
βθi 3.10−6 3.10−6 10−6 10−6 10−6 10−6

βVi 3.10−2 3.10−2 10−2 10−2 10−2 10−2

λ 0.5 0.5 0.5
n∞ 10 10 500 500
n1 0.25 0.25 0.25 0.25
n2 2000 2000

Table 7.10: Parameters of algorithms applied to the MIMO.
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Figure 7.6: Randomized Actor-Critic algorithms applied to the MIMO control prob-
lem; average reinforcement vs. trial number. Each point averages reinforcements in
a certain number (different for different algorithms) of consecutive trials and each
curve averages 10 runs.
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7.4.3 Experiments and discussion

We identify parameters of a controller of Narendra’s MIMO with the use of two
classical algorithms (RAWC and RAWC(λ)) and four algorithms introduced here
(IRAWC, IRAWC(λ), SIRAWC, and SIRAWC(λ)). Table 7.10 contains parameters
of algorithms and Figure 7.6 shows appropriate learning curves. The curves are
almost perfectly regular. They converge asymptotically to certain limits. That
corresponds very well to the idea of learning understood as a process of permanent
improvement that is never completed.

After about 200 trials IRAWC reaches average reinforcement equal to −0.115.
The subsequent improvement proceeds still yet it is insignificant. The traditional
algorithm, RAWC does not reach average reinforcement −0.115 even after 10000
trials when we stop experiments. At this moment the controller optimized by the
algorithm receives average reinforcement equal to −0.129 which IRAWC reaches
after 150 trials. These numbers imply that IRAWC is 67 times faster than RAWC.

The SIRAWC algorithm, the semi-intensive version of IRAWC, reaches aver-
age reinforcement equal to −0.115 after 4000 trials (20 times slower than IRAWC)
and average reinforcement equal to −0.129 after 2000 trials (13 times slower than
IRAWC). Efficiency of SIRAWC is hence comparable to efficiency of RAWC rather
than IRAWC.

λ-estimators of future rewards influence behavior of RL algorithms applied to
this problem insignificantly. It seems that they do not have an impact on efficiency
of RAWC. They improve a little the speed of SIRAWC and even worsen a little the
speed of IRAWC.

Our results may be compared with those reported in reference [32]. Authors
train there Recurrent Neural Networks (RNNs) and Feedforward Neural Networks
(FNNs) to control the MIMO. They proceed accordingly to the following 3-steps
procedure:

1. The plant is subjected to random control stimuli. Its responses are registered
and the neural model of the plant’s dynamics is built on the basis of the
gathered observations.

2. A control policy is determined with the use of simulations based on the plant’s
model. Within the simulations the specialized skyline reference model (the
model of dynamics of zdt ) is in use.

3. The performance of the policy is verified with the use of a plant whose param-
eters are randomly modified (±20%) from the parameters of the plant that
served for the model identification. The reference model used in the test is
different than the skyline.
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The concussion presented in [32] is that RNNs are more robust to changes of plant’s
parameters than FNNs trained by means of Adaptive Critic Designs. We have
conducted similar experiments. The conclusions may be summarized as follows.

1. The robustness of the methods presented here to mismatching of plant’s pa-
rameters is smaller than the robustness of RNNs and their specialized training
method. It is comparable to the robustness of FNNs trained by means of
Adaptive Critic Designs.

2. All Actor-Critic algorithms we analyze here require much less real time of the
plant to determine a policy than Step 1. of the above procedure required to
identify a satisfying model of the plant.

7.5 Summary

We applied short-term-memory and long-term-memory randomized Actor-Critic al-
gorithms to three non-trivial learning control problems. The experiments imitated
a situation where control of an unknown plant is to be optimized with the use of
trials and errors in real time. We accepted the fact that before control is optimized,
it is inappropriate — a controller had not yet learned to behave properly. However,
we were interested in minimization of this time.

In all experiments the algorithms introduced here turned out to be at least 10
times faster than their existing equivalents. The basic introduced algorithm, IRAWC
needed 120 trials (30 minutes of plant’s real time) to learn to control the Cart-Pole
Swing-Up. This was 17 times less than the traditional algorithm, RAWC. In a certain
comparison IRAWC turned out to learn to control Narendra’s MIMO as many as
67 times faster than RAWC. The version of IRAWC designed for continuous time
problems, LIRAWC, needed 230 trials (27 minutes) to learn to control the Robot
Weightlifting, which was 10 times less than RAWC needed.

It is important to note, that not always switching from Random Actor With
Critic (RAWC) to Intensive Random Actor With Critic (IRAWC) shortened the
time of learning at least 10 times. In the case of hierarchical control, when a Rein-
forcement Learning algorithm determines a multi-dimensional parameter for a lower
control level, IRAWC might be as few as 2 times faster. In such cases, the idea of
labels presented in Section 6.4 worked very well. In the case of the Robot Weightlift-
ing, the ILRAWC algorithm that implemented this idea was 10 times faster than
RAWC.

In all cases algorithms based on λ-estimators of future rewards converged faster
than their basic equivalents. However, the improvement was not very significant. In
the case where the difference was the largest (the Cart-Pole Swing-Up), IRAWC(λ)
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converged 1.5 times faster than IRAWC. Furthermore, policies ultimately given by
the algorithms based on the λ-estimators were not better than policies obtained
by the basic equivalents. λ-estimators were applied in order to reduce bias of the
estimator of the gradient ∇Φ of the quality index. Apparently this bias reduction
was more beneficial in early stages of learning than in the end.

Semi-intensive algorithms discussed in Section 6.3 converged about two times
faster than their short-term-memory equivalents. This improvement is rather disap-
pointing. In the course of these experiments, we imitated the situation where a com-
puter’s RAM memory could store only 2000 control events. This number of events
translated into several control trials. The result we obtained is very significant.
We had to decrease intensity of an internal loop in each semi-intensive algorithm.
Otherwise, we saw a deterioration of an ultimate policy. The small intensity of the
internal loop translated into the slow convergence of the algorithm. The choice of
the assumed capacity of the RAM memory (2000 control steps) was obviously arbi-
trary. Probably if the capacity had been larger, the larger intensity of the internal
loop could have been in use. However, conversely to long-term-memory algorithms,
the semi-intensive ones are still based on stochastic approximation. Because the es-
timators they use are good, they may converge faster than the short-term-memory
methods, yet the improvement is insignificant.
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Chapter 8

Conclusions

This chapter closes the dissertation. By looking backwards at the previous chapters,
we summarize what has been contributed by this research and decide whether its
goals have been achieved. We also discuss possible directions of future work.

8.1 Contributions

The key contribution of this dissertation was the combination of two ideas. The first
one concerned algorithmic issues associated with Reinforcement Learning. All but
few RL algorithms are so constructed that they process information on consecutive
control steps sequentially, piece by piece. This sequentiality constraint seemed to
prevent the algorithms from efficiently exploiting all the information that the control
steps carry. The idea was to construct an algorithm that stored all the history of
plant-controller interactions in a database and exploited it in a certain computation
process that went simultaneously with the control process.

The second idea concerned the nature of the computation process. Its objective
was to optimize an estimator of a global performance index parameterized by the
policy parameters. This estimator was based on data on plant-controller interactions
gathered in the database.

Implementation of the two above ideas yielded the Intensive Random Actor With
Critic algorithm (IRAWC) presented in Chapter 5. In Chapter 6 this algorithm
was enhanced in several ways. First, the basic estimators of future rewards was
replaced with λ-estimators to give the IRAWC(λ) algorithm. Second, the semi-
intensive algorithms were presented that combined the introduced methodology with
the existing approach. This way SIRAWC and SIRAWC(λ) algorithms arose. Third,
the idea of IRAWC was extended to continuous time problems to give ILRAWC and
ILRAWC(λ).

103



104 CHAPTER 8. CONCLUSIONS

The proposed algorithms had the form of certain optimization issues. In Sec-
tion 5.6 the numerical methods were proposed to tackle these particular issues.
The methods were simple yet still giving satisfying behavior. In Section 6.2 it was
shown how to handle additional difficulties associated with implementation of the
algorithms that used λ-estimators of future rewards.

In Chapter 7 the proposed methods were experimentally compared against popu-
lar existing methods (which were called in this dissertation RAWC and RAWC(λ)).
In all experiments the introduced methods turned out to be at least 10 times faster
than the existing ones. The basic introduced algorithm, IRAWC needed 120 tri-
als (30 minutes of plant’s real time) to learn to control the Cart-Pole Swing-Up.
This was 17 times less than the traditional algorithm, RAWC, needed. In a certain
comparison IRAWC turned out to learn to control Narendra’s MIMO as many as
67 times faster than RAWC. The version of IRAWC designed for continuous time
problems, LIRAWC needed 230 trials (27 minutes) to learn to control the Robot
Weightlifting which was 10 times less than RAWC needed. We claim that this quan-
titative improvement translates into a qualitative one. Namely, if the process lasts
for half-an-hour, control improvement is observable to supervising humans. If the
improvement does not take place, the supervisors may adjust the settings of the
optimization process until the improvement does take place. However, if the process
takes several hours, the improvement is difficult to observe by humans and they are
not in control of the process. From the point of somebody who is interested in com-
mercial application of these methods, this difference seems to be crucial. Suppose
a factory management wants to get control of a new plant optimized. They may
choose between a trial-and-error method and other ones. It is much more likely that
they choose the trial-and-error method if they suspect that the optimization process
will be finished in half-an-hour and will be fully controlled by a qualified personnel.
However, if the situation above can not be guaranteed, the management is likely to
consider the trial-and-error optimization method too risky.

The basic fact that the introduced algorithms indeed “remember” all the his-
torical events rises an issue of feasibility. Obviously, there exist such reinforcement
learning problems where it is impossible to keep the entire history of plant-controller
interactions because it gets too long before the problem is solved. On the other hand,
this issue is less serious than it seems to be at first. For example, the original version
of IRAWC applied to the Robot Weightlifting usually kept in the memory about
80000 historical events at the moment the policy became satisfying. The data struc-
tures took about 25MB of RAM memory. Only if the learning process needed more
than 1 day, it would fill 512 MB of RAM memory and in this way would exceed
the memory capacity of a typical (at year 2004) PC. However, it is unlikely that a
trial-and-error method of control optimization would be used if it took days instead
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of hours. In other words, we can either guarantee that the control system learning
will be completed in a short time and then computer memory limitations do not
matter or the method would not be applied at all.

We are now in a position that allows us to discuss theses of this dissertation
stated in Chapter 1.

1. It is possible design an RL algorithm based on batch estimation. It is possible
to construct an estimator of a global performance index parameterized by the
policy parameters. Optimization of this estimator with respect to the param-
eters leads to the optimization of the performance. An example of algorithm
constructed in this way is IRAWC.

2. It is possible to design a fast RL algorithm that does not process data se-
quentially as they are generated by the control process. Such algorithms may
optimize the estimator of the performance index with respect to the policy
parameters. They may have properties very similar to those of the methods
based on stochastic approximation, yet they exploit available data much more
efficiently.

3. We have introduced a family of RL algorithms. They are based on batch esti-
mation and do not process data sequentially. They are feasible: when applied
to problems of moderate complexity, they are able to optimize the control
policy far before the stored data fill in the memory capacity of a typical com-
puter. The introduced algorithms have the form of certain optimization issues.
We have proposed numerical methods to tackle these particular issues. The
reported experiments show that the methods are efficient enough to determine
control policies in real time of plants.

8.2 Future work

The work on long-term-memory Actor-Critic algorithms is far from being complete
and a number of open questions still remain. At the moment, we can see the fol-
lowing paths of future work on long-term-memory randomized Actor-Critics before
these algorithms are ready to solve real-life problems. These paths concern (i) hypo-
thetical yet not proved properties of these algorithms, (ii) automatic optimization of
their open parameters, and (iii) adaptation of these algorithms to continuous time
problems.

In is known that methods similar to RAWC are convergent [45, 17] if Critic
remains in a special relation with Actor and is a linear function of its parameters.
IRAWC, as a long-term-memory version of RAWC, is designed to reach the same
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goals, just in a different way. However, a proof of convergence of IRAWC or its
modifications is an open problem.

Usually results in the field of Reinforcement Learning are presented in the form
of learning curves. They are to imply that an algorithm learns to control a plant
as fast as the curve shows. Usually however, such a curve is a result of hundreds
of experiments aiming at human-hand-made parameters selection. Even though
it is a common practice, it is a little dishonest to suggest that an algorithm learns
something in n trials when its parameters were determined in, say, 20n trials. Unfor-
tunately we did not avoid following this practice. Long-term-memory Actor-Critics
require providing parameters: associated with Actor/Critic training and with con-
trol randomization.

We defined long-term-memory Actor-Critics as requiring of solving certain op-
timization problems. In fact, the generic definition of the algorithms provided in
Chapter 5 did not suggest any particular methods for solving these problems. In fact,
there are very well developed, fully autonomous optimization techniques that do not
require providing any parameters. If Actor and/or Critic are implemented as neural
network, one may choose from among a number of methods of fully autonomous
network training. However, some of them are better suited for our purposes and
some worse. This subject certainly requires further investigation.

The methods introduced in this dissertation require randomization of control
selection. Unfortunately it is unknown in advance what should be the amount of
randomization that would be big enough for exploration yet little enough not to spoil
control. This issue of exploration-exploitation balance is known to be extremely dif-
ficult. The methods we introduced here gather all the history of plant-controller
interactions in a database. Hypothetically, it is possible to infer from the collected
data what should be the amount of randomization of a control selection in each state
that would be the most beneficial for the information collected in the data. Tradi-
tional, incremental RL methods do not collect such data and keep no information
that could be enriched. Hopefully future work on this intuition will shed light on
the issue of exploration-exploitation balance.

We presented a certain idea concerning reinforcement learning in continuous
time. An implementation of this idea requires introducing hierarchy into the control
policy. Within this idea control is not continuous but piecewise continuous. How-
ever, it is not always possible nor it is always convenient for a control system to be
hierarchical. In many applications it is not feasible for control to be discontinuous.
Even though the solution we propose works very well in our experiments, it seems
to require a lot of work aiming at its adaptation to the practice of control systems
design.
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Is reinforcement learning without
exploration possible?

The basic form of HDP is not an algorithm of reinforcement learning. It is rather a
method of Approximate Dynamic Programming designed to be in use for determin-
ing control policy in simulations. There are, however, suggestions [60, 31] that one
can replace a constant model of a plant with the one built on-line on the basis of
controller-plant interactions. In fact, very few reports on successful implementations
of model-learning HDP and model-free ADHDP have been presented. Why their
performance may be worse than expected?

Suppose, that instead of functions R and S modeling the plant’s dynamics, we
approximate those functions basing on observations made in the course of control.
We employ approximators S̃ and R̃ parametrized by wS and wR, respectively, namely

S̃(x, u;wS) ∼= E(xt+1|xt = x, ut = u)

R̃(x, u;wR) ∼= E(rt+1|xt = x, ut = u).

Suppose HDP makes the parameters wA of the approximator Ã converge to some
limit vector w∗. Suppose the approximators S̃ and R̃ are good enough to be able to
fit the training set very precisely. However, in the limit, their training sets consist
of tuples 〈〈x, u〉, x′〉 (and 〈〈x, u〉, r〉 respectively) such that u = Ã(x;w∗). There is
no reason to expect that the equations

S̃(x, u;wS) ∼= E(xt+1|xt = x, ut = u)

R̃(x, u;wR) ∼= E(rt+1|xt = x, ut = u)
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Figure A.1: The domain of functions approximated by R̃, S̃, and Q̃ is the entire
state-control space. The set Z of points used to approximate functions R̃, S̃, and Q̃
for HDP algorithms is typically a hyperplane in this space. Since Z is singular (in
a the sense of lower dimension than that of the state-control space), the gradients
of approximations may not reflect gradients of original functions.

Figure A.2: Suppose the set Z ′ of points employed to approximate R̃, S̃, and Q̃

makes a “blurred hyperplane” in the state-control space. Since Z ′ is not singular
(has the same dimension as the state-control space), the gradients of approximations
may achieve the required accuracies.
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take place for u 6= Ã(x;w∗). Consequently, there is no reason to expect that even
approximate equations

d
du
S̃(x, u;wS) ∼= d

du
E(xt+1|xt = x, ut = u) (A.1)

d
du
R̃(x, u;wR) ∼= d

du
E(rt+1|xt = x, ut = u) (A.2)

hold for u = Ã(x;w∗). As a result, the gradient d
duQHDP

(x, u) calculated in Step 2.2.
of HDP (Table 2.3) to enable the optimization may not approximate d

duQ
π(wA)(x, u)

with the required accuracy.
A similar reasoning explains disadvantages of ADHDP.
A simple way to overcome the above difficulties is to apply non-deterministic

control. Suppose the controls are drawn from some nonsingular distribution, for
example the normal one:

ut ∼ N(Ã(xt;wA), C)

This gives the approximators an opportunity to learn the appropriate functions on a
nonsingular training set. Consequently, the approximate equations (A.1) and (A.2)
may be expected to hold. Figures A.1 and A.2 illustrate both the problem and the
remedy.

Our experiments show that the above modification makes HDP and ADHDP
converge faster and more stable. Randomization however, once applied, enables
much more, namely avoiding a necessity of building the plant’s model.
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Appendix B

Plants

B.1 Cart-Pole Swing-Up

The Cart-Pole Swing-Up consists of a cart moving along a track and a pole hanging
freely from the cart. Control signal defines force applied to the cart. At the begin-
ning of each trial, the pole hangs freely from the cart. The control objective is to
avoid hitting the track bounds, swing the pole, turn it up, and stabilize upwards.
The problem has been presented in [12]. A similar task involving only keeping the
pole up is known as the pole balancing problem [4].

Figure B.1: The Cart-Pole Swing-Up.

There are four state variables: position of the cart z, pole’s angle ω, and their
derivatives ż, ω̇. A single control variable confined to the interval [−10, 10] becomes
a force applied to the cart F is. The state of the plant is acceptable if and only if
z ∈ [−2.4, 2.4]. Motion of the cart and the pole is driven by the following equations:

ω̈ =

([−F −mplω̇
2 sinω + µc sgn ż

mc +mp

]
cosω + g sinω +

µpω̇

mpl

)
l−1

[
4
3
− mp cos2 ω

mc +mp

]−1

z̈ =
F +mpl[ω̇2 sinω − ω̈ cosω]− µcsgnż

mc +mp
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Parameters of the above equations have the following values and meaning:
z — position of the cart,

zmax = 2.4 — max. acceptable position of the cart,
ω — arc of the pole,
F — force applied to cart’s center of mass,

g = 9.81 — acceleration due to gravity,
mc = 1 — mass of the cart,

mp = 0.1 — mass of the pole,
l = 0.5 — half-length of the pole,

µc = 0.0005 — friction coefficient of the cart on track,
µp = 0.000002 — friction coefficient of the pole on cart.

B.2 Robot Weightlifting

Figure B.2: The lift used in the Robot Weightlifting problem. m denotes the joint
mass of the manipulator and the elevated load.

Let us consider a lift like the one above. The lift is a three degrees of freedom
robot arm. Each its link is 1 meter long, weighs 1kg, and its mass is concentrated
in its ends. At each joint the range of motion is confined to [−150, 150] degrees. A
manipulator that is at the end of the last link is attached to a load. We analyze a
problem of finding a policy that enables the lift to elevate a load that weighs 1kg or
3kg. Mass of the load is chosen randomly with equal probability at the beginning
of each control trial. m is hence drawn from the set {1.5, 3.5}.

A controller operates by imposing torque limited to [−50, 50] Nm at each joint.
The objective of the plant is to move the load from the lowest position to the highest
position, i.e. from ω = [−π/2, 0, 0]T to ω = [π/2, 0, 0]T . The arm is motionless at
the beginning of the trial, as it should be at the end.



B.2. ROBOT WEIGHTLIFTING 113

Motion of the lift can be modeled by the following equations. τi denotes torch
applied to the i-th joint.

B(ω)ω̈ + c(ω, ω̇) + h(ω) = τ

B1,1 = 3 + 2 cosω2 +m(3 + 2 cosω2 + 2 cos(ω2 + ω3) + 2 cosω3)

B1,2 = B2,1 = 1 + cosω2 +m(2 + cosω2 + cos(ω2 + ω3) + 2 cosω3)

B1,3 = B3,1 = m(1 + cos(ω2 + ω3) + cosω3)

B2,2 = 1 +m2(1 + cosω3)

B2,3 = B3,2 = m(1 + cosω3)

B3,3 = m

c1 =− ω̇1ω̇22(sinω2 +m(sinω2 + sin(ω2 + ω3)))

− ω̇1ω̇3m2(sin(ω2 + ω3) + sinω3)

− ω̇2
2(sinω2 +m(sinω2 + sin(ω2 + ω3)))

− ω̇2ω̇3m2(sin(ω2 + ω3) + sinω3)

− ω̇2
3m(sin(ω2 + ω3) + sinω3)

c2 =ω̇2
1(sinω2 +m(sinω2 + sin(ω2 + ω3)))

− ω̇1ω̇3m2 sinω3

− ω̇2ω̇3m2 sinω3

− ω̇2
3m sinω3

c3 =ω̇2
1m(sin(ω2 + ω3) + sinω3)

+ ω̇1ω̇2m2 sinω3

+ ω̇2
2m sinω3

h1 =g((2 +m) cosω1 + (1 +m) cos(ω1 + ω2) +m cos(ω1 + ω2 + ω3))

h2 =g((1 +m) cos(ω1 + ω2) +m cos(ω1 + ω2 + ω3))

h3 =gm cos(ω1 + ω2 + ω3)

In the reference [33], where the Robot Weightlifting task was introduced, the
control issue was defined a little differently. Namely, the problem was to control the
lift to elevate as heavy load as possible. It was hence a nonstationary task. We are
interested in speed of learning to solve a stationary problem rather than in finding
the best possible control policy. We thus somewhat modified the control objective.
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B.3 Narendra’s MIMO

Narendra’s MIMO (multiple-input-multiple-output) problem is an issue of control of
a certain artificial discrete time plant. The control objective is for the plant’s output
to follow a certain path. The problem has been presented in [27] and is widely used
in the Adaptive Critic Designs literature (e.g. [32]) as a benchmark.

There are 3 state variables zt,1, zt,2, zt,3 and 2 control variables at,1, at,2. The
motion equations of the plant are as follows:

zt,1 = α1zt−1,1 sin(α2zt−1,2)

+
(
α3 +

α4zt−1,1at,1
1 + z2

t−1,1a
2
t,1

)
at,1

+
(
α5zt−1,1 +

α6zt−1,1

1 + z2
t−1,1

)
at,2

zt,2 = zt−1,3(α7 + α8 sin(α9zt−1,3))

+
α10zt−1,3

1 + z2
t−1,3

zt,3 = (α11 + α12 sin(α13zt−1,1))at,2

Parameters of the above equations have the following values:

Param. Value Param. Value Param. Value
α1 0.9 α5 1.0 α9 4.0
α2 1.0 α6 2.0 α10 1.0
α3 2.0 α7 1.0 α11 3.0
α4 1.5 α8 1.0 α12 1.0

α13 2.0

The control objective is to minimize squared distance between state variables zt,1
and zt,2 and their desired values zdt,1 and zdt,2. Both zdt,1 and zdt,2 evolve accordingly to
a certain stochastic model and only their immediate future values are available, that
is zdt+i,j are unknown at step t for i > 1. The model of zdt,j dynamics is as follows:

kt,1 = kt−1,1 + ξt,1

zdt,1 = 0.75 sin(πkt,1/25) + 0.75 sin(πkt,1/5)

kt,2 = kt−1,2 + ξt,2

zdt,2 = 0.75 sin(πkt,2/15) + 0.75 sin(πkt,2/10)

where ξ1,t and ξ2,t are random variables drawn independently from the uniform
distribution U(0, 2).
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In the literature on Adaptive Critic Designs (e.g. [32]), a control policy for the
MIMO plant is identified with the use of zdt,1 and zdt,2 that are piecewise constant
in time. When the identification is complete, the policy is verified with the use
of zdt,1 and zdt,2 generated differently. Namely, their dynamics is similar to the one
we describe above, yet ξ1,t and ξ2,t are not random but uniformly equal to 1. In
reinforcement learning it is a rare practice to verify the identified control policy
with the use of a problem different than the one that one solved during training.
Hence our modification.
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