
Reinforcement Learning in Fine Time
Discretization

Pawe�l Wawrzyński

Institute of Control and Computation Engineering,
Warsaw University of Technology,

Nowowiejska 15/19, 00-665 Warsaw, Poland
p.wawrzynski@elka.pw.edu.pl

Abstract. Reinforcement Learning (RL) is analyzed here as a tool for
control system optimization. State and action spaces are assumed to be
continuous. Time is assumed to be discrete, yet the discretization may be
arbitrarily fine. It is shown here that stationary policies, applied by most
RL methods, are improper in control applications, since for fine time
discretization they can not assure bounded variance of policy gradient
estimators. As a remedy to that difficulty, we propose the use of piecewise
non-Markov policies. Policies of this type can be optimized by means of
most RL algorithms, namely those based on likelihood ratio.

1 Introduction

Reinforcement Learning (RL) algorithms provide solutions to the problem of an
intelligent agent that optimizes its behavior in an initially unknown environ-
ment. Adaptive control is a very important application of the intelligent agent
problem. We would like to construct controllers that are able to “learn” by trial
and error to control plants whose dynamics is unknown. The controller may be
understood as the agent, and it is rewarded for reaching the control objectives.
In present control applications, with fast digital controllers, control stimuli are
applied with high frequency. Therefore, each agent’s state results from thou-
sands of previous actions rather that tens like in board games often analyzed as
benchmark problems in RL.

Most RL algorithms [1,9,4,5,7] optimize stationary policies, i.e. ones that draw
an action only on the basis of a current state. Application of RL in control sys-
tems requires discretization of time. Good control requires fine time discretiza-
tion. However, a stationary stochastic policy applied to a deterministic system
leads to a deterministic behavior of the system for diminishing time discretization
[6]. Clearly, this phenomenon precludes exploration capabilities of such policies.
Here we analyze the influence of time discretization on variance of policy gradi-
ent estimators. In an example we show that stabilization of this variance quickly
becomes infeasible as the time discretization decreases.

Our remedy for the fine time discretization problem is based on defining a
policy in a special way. Namely, the policy divides agent–environment interaction

B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, LNCS 4431, pp. 470–479, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Reinforcement Learning in Fine Time Discretization 471

into periods such that it relates actions with each others within the same period.
Within each period a coherent experiment is carried out that gives a clue to
policy improvement. On the basis of a given Markov Decision Process (MDP)
and such the policy we define a new MDP and a stationary policy in the new
one. We show that each RL algorithm based on likelihood ratio can be applied
to optimize the stationary policy in the new MDP.

2 Problem Statement and Likelihood Ratio

We will consider the standard episodic RL setup [8]. A Markov Decision Process
is a tuple 〈S, A, Ps, r, P0, S∗〉 where S and A are the state and action spaces,
respectively; {Ps(·|s, a) : s ∈ S, a ∈ A} is a set of state transition probabilities;
we write st+1 ∼ Ps(·|st, at). In this work we assume that both S and A are
multidimensional continuous and each Ps is a density. The immediate reward, rt

depends on the action and the next state, rt = r(at, st+1). P0 is the distribution
of first states of each episode and S∗ is the set of terminal states. The objective
of a reinforcement learning is to find a control policy that maximizes future
rewards in each state.

We are interested in applications of the solution of the above RL problem to
learning control tasks. A painful difficulty that emerges in control problems is the
fine time discretization. It makes a single action impact the overall performance
insignificantly. Furthermore, the impact of the action emerges a large number
(thousands) of steps after the very action took place. We require the learning
algorithm work properly no matter how fine the time discretization is.

The problem of Reinforcement Learning is an issue of optimization of a certain
performance measure with respect to policy parameters. Because the probability
distributions that define the RL problem at hand are unknown, the optimization
can not be done directly. A possible approach is to adjust policy parameters
along gradient estimators of the performance measure. An important class of
such estimators is based on, so called, likelihood ratio. Let f(a; θ) be a density
of random variables a of values in A. f is parametrized by vector θ ∈ Rnθ .
A sample, a, yields a payment, r(a). We are interested in maximization of the
expected payment

J(θ) = Eθr(a) =
∫

A
r(a)f(a; θ) da.

Under certain, quite liberal regularity conditions, for each constant c,

∇J(θ)=∇(J(θ)−c)=
∫

A
(r(a)−c)∇θf(a; θ) da=

∫

A

(
(r(a) − c)

∇θf(a; θ)
f(a; θ)

)
f(a; θ) da

and thus
(r(a) − c)

∇θf(a; θ)
f(a; θ)

= (r(a) − c)∇θ ln f(a; θ)

is an unbiased estimator of the gradient ∇J(θ). Its variance might be minimized
by an appropriate choice of c. The term ∇θ ln f(a; θ) is the likelihood ratio.

472 P. Wawrzyński

Reference [2] contains an interesting discussion about the history of its use in
RL and other fields.

3 A Stationary Policy for a Continuous-Time System

In this section we analyze by means of a simple example, how the time discretiza-
tion influences policy gradient estimation. An important insight to this issue has
been provided in [6] where it has been shown that in a continuous environment,
under quite general conditions, the state trajectory converges to a deterministic
limit as the time discretization diminishes. The question arise how this phenom-
enon influences quality of policy gradient estimators. A general answer to this
question is difficult to provide. However, the simple example below suggests that
this influence can be demaging.

Let state represent one-dimensional velocity and action represent one-dimen-
sional acceleration. We have S = A = R. An episode lasts for 1 sec. and it
includes T steps, δ = 1/T long each. Within each step an action is drawn from the
normal distribution N(θ, σ2

a) where θ is a policy parameter. The action defines
constant acceleration within a step and velocity at the beginning of a trial is
null. The only nonzero reward is equal to noised velocity in the last state. We
have

st =
{

0 for t = 0
st−1 + δat for t > 0,

rt =
{

0 for t < T − 1
sT + yT for t = T − 1

where y is a random variable drawn from the normal distribution N(0, σ2
y).

The quality index, J(θ), of the policy defined by θ is equal to the expected
reward at the end of an episode. Because the final reward is a sum of random
variables, we have

EθrT−1 = Eθ

(
T−1∑
t=0

δat + yT

)
= Tδθ = θ.

Therefore, J(θ) = θ and ∇J(θ) = 1. Our main concern here is variance of the
policy gradient estimator. We will consider the policy gradient estimator applied
in the REINFORCE algorithm [10] since prevailing policy gradient estimators
can be considered modifications of this early formula. The estimator applied to
our problem is of the form

ĝ = (rT−1 − c)
T−1∑
t=0

∂ ln π(at; st, θ)
∂θT

where c is the baseline. Variance of this estimator is defined by the following
formula

V ĝ = 2 +
1

δσ2
a

(
(c − θ)2 + σ2

y

)
(1)

Reinforcement Learning in Fine Time Discretization 473

derived in the Appendix. We can see that the larger action variance, the smaller
gradient estimator variance. The exploration–exploitation balance becomes con-
spicuous when we compare V ĝ with variance of sT , namely VsT = δσ2

a (see the
Appendix). By comparing this value with (1), we can see that VsT is “almost”
inversely proportional to V ĝ.

What happens when the time discretization parameter δ decreases? In order
to keep gradient estimator variance small, variance of action has to be increased.
In fact, variance of gradient estimator remains constant if only

σ2
a ∝ 1/δ.

Interestingly enough, this way variance of sT is also stabilized.
It is seen in our example that in order to keep variance of policy gradient

estimator bounded, we have to increase variance of action. However, “actions” in
control systems are always bounded; hence, they can not have too large variance
either. Therefore, while fine time discretization is necessary for good control it
contradicts with quality of policy gradient estimation.

4 MDP Defined by Non-Markov Periods

Let the policy applied by the agent be piecewise non-Markov in the following
sense. It divides an episode into periods and generates actions within each period
on the basis of previous actions and states in this period. Let the periods be
indexed by k and k-th period starts at time tk and lasts for lk instants. For
i : 0 ≤ i < lk we have1

atk+i ∼ π(· ; stk
, atk

, . . . , stk+i, θ).

Let the periods defined by a piecewise non-Markov policy be called non-Markov
periods or, in short, nm-periods.

Given a Markov Decision Process M = 〈S, A, Ps, r, P0, S∗〉 we define a new
one, M̄ = 〈S̄, Ā, P̄s, r̄, P0, S∗〉 with the use of nm-periods defined above. Let
states and actions in M̄ be denoted by s̄ and ā, respectively, and time be indexed
by k. Simultaneously, given a piecewise non-Markov policy π in M , we define a
stationary policy π̄ in M̄ generating actions from Ā. States in M̄ corresponds
to first states in nm-periods; we have

s̄k = stk
and S̄ = S.

Actions in M̄ corresponds to joint trajectories of states and actions within nm-
periods, namely

āk = 〈atk
, stk+1, . . . , atk+lk−1〉 and Ā =

⋃
i≥0

A × (S × A)i.

1 We apply “. . . ” also to denote a subsequence of the sequence (s1, a1, s2, a2, . . .).

474 P. Wawrzyński

The transition distribution in M̄ , P̄s is defined by Ps, π, and the way lk emerges.
In the simplest case lk = l for a certain constant l unless k-th period is the
last one in the episode; then 1 ≤ lk ≤ l. We are free to define the method of
calculating rewards in M̄ . For instance, a reward in M̄ can be an average value
of rewards gathered within the corresponding nm-period in M . The distribution
of first states P0 and the set of terminal states S∗ remain unchanged.

An action in M̄ is generated by the policy π in tandem with Ps. What is yet
important is that we can calculate the likelihood ratio ∇θ ln π̄(āk; s̄k, θ). Let us
denote

Sk = [sT

tk
, . . . , sT

tk+lk−1]
T , Ak = [aT

tk
, . . . , aT

tk+lk−1]
T , (2)

πA(Ak; Sk, θ) =
lk−1∏
i=0

π(atk+i; stk
, atk

, . . . , stk+i, θ). (3)

πA is a density of a sequence of actions within an nm-period given a sequence
of states. It is entirely defined by the way the policy π generates actions. From
the decomposition

π̄(āk; s̄k, θ) =
lk−1∏
i=0

π(atk+i; stk
, atk

, . . . , stk+iθ)
lk−2∏
i=0

Ps(st+i+1|stk+i, atk+i) (4)

we see that
∇θ ln π̄(āk; s̄k, θ) = ∇θ ln πA(Ak; Sk, θ).

A special feature of M̄ is the fact that the agent is not entirely free to choose
an action from Ā. It is hence impossible to apply Q-Learning [9] or SARSA to M̄ .
However, optimization of a stationary policy in M̄ can be in principle performed
by all methods based on likelihood ratio, including episodic REINFORCE [10],
Actor-Critics [4,5,7], OLPOMDP [3] and others.

5 Piecewise Non-Markov Policies – Examples

In the present section we define a simple class of non-Markov policies. The poli-
cies we suggest exploit each k-th period to carry out a coherent experiment that
provides a clue to an improvement of the policy. This coherence is a consequence
of the fact that while at each moment the action has a random component, there
is a stochastic dependence among these components within the same nm-period.
In the next subsection we analyze a way of generating such the stochastically
dependent components.

Piecewise independent autoregressive process. Let {εt, t = 1, 2, . . .} be a
sequence of independent random vectors in Rn drawn from the normal distrib-
ution with zero mean and covariance matrix Σ, i.e. N(0, Σ). Also, let α ∈ (0, 1)
and {ξt, t = 1, 2, . . .} be a sequence of random vectors in Rn computed as

ξt =
{

εt if t= tk for any k

αξt−1 +
√

1 − α2εt otherwise.
(5)

Reinforcement Learning in Fine Time Discretization 475

Fig. 1. A run of a piecewise independent autoregressive process for Σ = 1, α =
0.99, tk+1 − tk ≡ 10. Within an nm-period there is a correlation between random
elements while there is no correlation between elements in different nm-periods.

From the above definition it is easy to see, that Eξt = 0 for all t. Also, each ξt

only depends on ε-s that belong to the same nm-period. Therefore,

cov(ξt, ξt′) = E(ξtξ
T

t′) = 0

for t and t′ in different nm-periods. Let us find cov(ξt, ξt′) for t, t′ in the same,
k-th nm-period. We have

ξt = αξt−1 +
√

1 − α2εt = α2ξt−2 + α
√

1 − α2εt−1 +
√

1 − α2εt

= · · · = αt−tkεtk
+

√
1 − α2

t−tk−1∑
i=0

αiεt−i.

If t ≤ t′, then

cov(ξt, ξt′) = E(εεT)

(
αt+t′−2tk + (1 − α2)

t−tk−1∑
i=0

α2i+t′−t

)
= Σαt′−t.

The result for t′ ≤ t is symmetrical. Generally, for t, t′ in the same nm-period,

cov(ξt, ξt′) = α|t′−t|Σ (6)

and thus {ξt, t = tk, . . . , tk+1 − 1} happens to be an autoregressive stochastic
process. Notice that cov(ξt, ξt) ≡ Σ ≡ cov(εt, εt).

The random process we defined above, the piecewise independent autoregres-
sive process, may be interpreted as a simple method of transforming normal
white noise, εt, into sequences of random vectors that are stochastically de-
pendent (see Fig. 1). Thank to that dependence, each of these sequences may
support a coherent experiment that gives a clue to policy improvement. Below
we present two policy that make use of such experiments.

Deterministic Transformation + Stochastic Process. Let an action, at,
be calculated as

at = ã(st; θ) + ξt (7)

476 P. Wawrzyński

where ã : S × Θ �→ A is a certain deterministic function, e.g. a neural network
with input s and weights θ. We will denote by ∇ã(s, θ) a matrix of derivatives
of ã with respect to its second argument, namely

∇ã(s, θ) =
∂ã(s, θ)

∂θT
=

[
∂ãj(s, θ)

∂θi

]
i,j

.

What we need is to define the distribution πA(Ak; Sk, θ) and the likelihood ratio
∇θ ln πA(Ak; Sk, θ). for Sk and Ak defined in (2). Given trajectory Sk, quanti-
ties at result from adding random elements ξt to constant values ã(st; θ). Conse-
quently, the distribution πA(Ak; Sk, θ) is the normal one with the expected value
and the covariance matrix equal to

EAk = mk(θ) =

⎡
⎢⎣

ã(stk
, θ)

...
ã(stk+lk−1, θ)

⎤
⎥⎦, cov Ak = Ck =

⎡
⎢⎢⎢⎣

Σ αΣ · · · αlk−1Σ
αΣ Σ
...

. . .
...

αlk−1Σ · · · Σ

⎤
⎥⎥⎥⎦,

respectively. cov Ak results from the fact that cov(at, at′) = cov(ξt, ξt′) and (6).
We thus deal with the normal distribution N(EAk, cov Ak) whose mean de-

pends on the parameter θ and variance does not. The density of this distribution
is given by

πA(A;Sk, θ) =
(√

2π
lkn|Ck|

)−1
exp

(
−0.5(A − mk(θ))T (Ck)−1(A − mk(θ))

)
.

(8)

We also have

∇θ ln πA(A; Sk, θ) = (∇θmk(θ)) C−1
k (A − mk(θ)) (9)

= [∇ã(stk
; θ) · · · ∇ã(stk+lk−1; θ)]C−1

k (A − mk(θ)).

It seems the most convenient to compute vector (Ck)−1(A−mk(θ)) as y satisfying
the linear equation

Cky = A − mk(θ).

Deterministic Transformation Of Stochastic Process. Let an action, at,
be calculated as

at = ã(st; θ + ξt). (10)

Here, the function ã : S×Θ �→ A is defined as previously. However, what is noised
here is parameters of ã rather than its output. Therefore, the dimension of ξt

is different than in the previous section. Here dim ξt = dim Θ while previously
dim ξt = dim A.

For ã smooth with respect to its second argument it is true that

ã(st; θ + ξt) ∼= ã(st; θ) + ∇ã(st, θ)ξt. (11)

Reinforcement Learning in Fine Time Discretization 477

We will derive πA(Ak; Sk, θ) and ∇θπA(Ak; Sk, θ) assuming that the approximate
equation (11) is strict. This assumption is satisfied for ã linear in θ. Actions at

result from an affine transformation of the normal elements ξt. Given Sk, the
distribution of at is also normal with means and covariances equal to

Eat
∼= ã(st, θ) + ∇ã(st, θ)Eξt = ã(st, θ)

cov(at, at′) ∼= ∇ã(st, θ)Eξtξ
T

t′∇ã(st′ , θ)T = ∇ã(st, θ)α|t−t′|Σ∇ã(st′ ; θ)T

respectively, for t and t′ in the same nm-period. If, additionally, Σ = Iσ2,
covariance cov(at, at′) is equal to

cov(at, at′) = σ2α|t−t′|∇ã(st, θ)∇ã(st′ , θ)T .

The above equation is important because it allows us to avoid computations
with Σ which may be a large matrix.

Because Ak is a concatenation of at for a sequence of t, the distribution
πA(Ak; Sk, θ) is normal with mean and variance equal to

EAk = mk(θ) =

⎡
⎢⎣

ã(stk
, θ)

...
ã(st′

k
, θ)

⎤
⎥⎦, covAk =Ck =

⎡
⎢⎣

cov(atk
, atk

) · · · cov(at′
k
, atk

)
...

. . .
...

cov(atk
, at′

k
)· · · cov(at′

k
, at′

k
)

⎤
⎥⎦

respectively, where t′k = tk + lk − 1. With the above definition of mk(θ) and Ck,
the density πA(A; Sk, θ) and the gradient ∇θ ln πA(A; Sk, θ) are expressed in (8)
and (9), respectively.

6 Discussion

Within the idea presented in this paper a reinforcement learning problem at hand
is transformed into the other one and solved by one of the methods based on
likelihood ratio. The objective of this transformation is to make RL algorithms
better suited to adaptive control problems.

Piecewise non-Markov policies decrease the threat of deterministic behavior of
the overall agent-environment system for fine time discretization. For instance,
if nm-periods last for Δτ of real time regardless the discretization and there is
a strong stochastic dependence between actions within the periods, the thread
of deterministicity is headed off and quality of policy gradient estimators is
preserved.

The notion of nm-periods introduces a certain additional degree of freedom
into a RL process. Each such process includes a sequence of experiments that
give clues to policy improvements, usually in the form of policy gradients. Let
us consider the question: What should be the length of each such experiment?
The answer given by the basic form of Episodic REINFORCE is: the length of
an entire episode. Almost all the rest of RL algorithms give the answer that the
experiment should last exactly one time step. Within the proposed approach the

478 P. Wawrzyński

answer is between these two extreme possibilities: An experiment lasts for lk
instants where lk is a controllable parameter.

Third, dividing time into nm-periods enables more flexible treatment the con-
cepts of time and reward. Let us consider algorithms operating on discounted
rewards like OLPOMDP or Actor-Critics. The discount factor applied there de-
fines how long, in terms of time, the agent looks ahead optimizing its actions.
But it is often natural to look ahead in terms of space rather than time. At
present instant t it may be less important what will happen when state becomes
far from st while it may be quite soon in terms of time. In order to achieve the
effect of looking ahead in terms of space, we can define length of a nm-period as

lk = min{l : d(stk
, stk+l) > ε} (12)

where d is a certain metric in S and ε > 0 is a threshold. Then, time goes by
as fast as state changes. Furthermore, suppose we want to penalize the agent
for growing time of accomplishing a certain task. It is possible by assigning a
constant penalty to each moment the task is not completed. Apparently, the
overall penalty is then proportional to the time of accomplishing the task. But
what if we want this penalty to be in a different way related to this time? Within
the traditional approach it would be quite problematic. Within our approach,
we may define lk as (12) and introduce the penalty as any function of lk.

At present we carry out experiments with the proposed methodology. We
test it with the use of a simulated 6-degree-of-freedom robotic manipulator.
It appears that the performance of existing RL methods in optimization of a
stationary control policy for an object of this kind is disappointing. However,
when the concept of non-Markov periods is applied, the same methods become
surprisingly efficient. We are going to report this work in another paper.

7 Conclusions

We have shown that in RL issues with fine time discretization, keeping variance
of policy gradient estimator small may require unfeasibly large action variance.
Significance of this difficulty comes from the fact that fine time discretization
is typical in control problems. We have proposed a remedy, namely piecewise
non-Markov policies. We have shown that combination of existing RL methods
with the piecewise non-Markov policies introduces a new degree of freedom into
a learning process, namely a length of a sequence of actions that give a clue
to policy improvement. Therefore, the piecewise non-Markov policies may be
treated on their own right as an enhancement of the existing RL methods.

References

1. A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike Adaptive Elements
That Can Learn Difficult Learning Control Problems. IEEE Transactions on Sys-
tem Man, and Cybernetics, vol. SMC-13:834-846, 1983.

Reinforcement Learning in Fine Time Discretization 479

2. J. Baxter and P. L. Bartlett. Infinite-Horizon Policy-Gradient Estimation, Journal
of Artificial Intelligence Research, vol. 15:319-350, 2001.

3. J. Baxter, P. L. Bartlett, & L. Weaver. Experiments with Infinite-Horizon, Policy-
Gradient Estimation, Journal of Artificial Intelligence Research, vol. 15:351-381,
2001.

4. H. Kimura and S. Kobayashi. An Analysis of Actor/Critic Algorithm Using Eli-
gibility Traces: reinforcement learning with imperfect value functions, Proceedings
of the ICML-98, 1998.

5. V. R. Konda an d J. N. Tsitsiklis. Actor-Critic Algorithms. SIAM Journal on
Control and Optimization, Vol. 42, No. 4:1143-1166, 2003.

6. R. Munos. Policy Gradient in Continuous Time. Journal of Machine Learning
Research 7, pp. 771-791, 2006.

7. J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement learning for humanoid
robotics. Humanoids2003, 3rd IEEE-RAS International Conference on Humanoid
Robots. Karlsruhe, Germany, Sept.29-30, 2003.

8. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction, MIT
Press, Cambridge, MA, 1998.

9. C. Watkins and P. Dayan. Q-Learning. Machine Learning, vol. 8:279–292, 1992.
10. R. Williams. Simple Statistical Gradient Following Algorithms for Connectionist

Reinforcement Learning. Machine Learning, vol. 8:299–256, 1992.

Derivation of Equation 1

π has been defined as the normal distribution N(θ, σ2
a). Therefore

π(at; st, θ) =
1√

2πσa

exp
(

− 1
2σ2

a

(at − θ)2
)

and
∂ ln π(at; st, θ)

∂θT
=

1
σ2

a

(at −θ).

Consequently

ĝ =

(
T−1∑
t=0

δat + y − c

) (
T−1∑
t=0

1
σ2

a

(at − θ)

)
.

Let us define

ξ =
T−1∑
t=0

δ(at − θ) = sT − θ.

Obviously

ĝ = (ξ + y + (θ − c))
(

1
δσ2

a

ξ

)
.

ξ is a sum of independent random variables. Its distribution is easy to derive as
N(0, δσ2

a). Note that ξ and sT have the same variance. Since for each normal
random variable X , the equality E(X − EX)4 = 3(VX)2 holds, we obtain

V ĝ = E
((

ξ + y + (θ − c)
)
ξ/δσ2

a − 1
)2

= E
(

ξ4 + 2ξ3y + 2ξ3(θ − c) + y2ξ2 + 2y(θ − c)ξ2 + (θ − c)2ξ2

δ2σ4
a

− 2
ξ2 + yξ + (θ − c)ξ

δσ2
a

+ 1

)

=
3δ2σ4

a + δσ2
aσ2

y + (θ − c)2δσ2
a

δ2σ4
a

− 2
δσ2

a

δσ2
a

+ 1 = 2 +
1

δσ2
a

(σ2
y + (δ − c)2).

	Introduction
	Problem Statement and Likelihood Ratio
	A Stationary Policy for a Continuous-Time System
	MDP Defined by Non-Markov Periods
	Piecewise Non-Markov Policies -- Examples
	Discussion
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

