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Abstract— We analyze the issue of optimizing a control
policy for a complex system in a simulated trial-and-error
learning process. The approach to this problem we consider
is Reinforcement Learning (RL). Stationary policies, applied
by most RL methods, may be improper in control applica-
tions, since for time discretization fine enough they do not
exhibit exploration capabilities and define policy gradient
estimators of very large variance. As a remedy to those
difficulties, we proposed earlier the use of piecewise non-
Markov policies. In the experimental study presented here
we apply our approach to a 6-degree-of-freedom walking
robot and obtain an efficient policy for this object.
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I. INTRODUCTION

Let us consider the issue of developing a control policy

for a complex system. Usually the more complex is the

system, the more difficult is the task of designing its

optimal controller. However, simulating dynamics of this

system may still be tractable. The idea is then to build

an appropriate simulator and develop a close to optimal

controller in a simulated trial-and-error learning process.

A particular approach to trial-and-error control opti-

mization is Reinforcement Learning (RL). In general,

this area considers the issue of an intelligent agent that

optimizes its behavior in an initially unknown environ-

ment. We would like to construct controllers that are

able to “learn” by trial and error to control plants whose

dynamics are unknown. The controller may be understood

as the agent, which is rewarded for reaching the control

objectives.

Most RL algorithms [1], [2], [3], [4], [5] optimize

stationary policies, i.e. ones that draw an action only

on the basis of a current state. The stationary policies

may be improper in learning control issues because of

two reasons. First, under some quite typical conditions

randomness in the overall agent-environment system di-

minishes as the time discretization is becoming finer.

Hence, the agent’s exploratory behavior does not give

any clues to policy improvement [6]. Second, keeping

variance of policy gradient estimators bounded when

the time discretization is becoming finer may require

increasing randomness in the optimized policy which may

make the policy unfeasible [7]. In order to overcome

those difficulties we propose the use of piecewise non-

Markov policies. It is shown in [7] that a given Markov

Decision Process (MDP) in tandem with a piecewise non-

Markov policy define a new MDP and a stationary policy.

By applying an ordinary RL algorithm to this new MDP

we can optimize the initial non-Markov policy. It is also

demonstrated that combination of the new MDP with

some existing RL methods may be understood as their

enhancement. These methods include all algorithms based

on likelihood ratio, i.e. Episodic REINFORCE [8] and

derivative algorithms such as OLPOMDP [9], the method

introduced in [10], and others.

In the experimental study we apply our approach to

optimize a control policy of a simulated robot. The action

space in our problem is 6-dimensional and the state space

is 31-dimensional. While problems of such complexity

has been solved with the use of RL algorithms [5], [11],

these algorithms were applied there only to optimize a

certain level of a hierarchical policy. In our study RL is

applied to optimize a flat policy of a complex system.

The paper is organized as follows. In Sec. II the

problem of our interest is presented along with difficulties

in learning a stationary policies in fine time discretization.

The next section presents the remedy to those problems in

the form of non-Markov policies. In Sec. IV an example

of such a policy is discussed. Section V our approach is

verified empirically with the use of 6-degree-of-freedom

walking robot. Sec. VI contains a discussion of the the

obtained results and another section concludes. This paper

continues the work [7] to which the reader is often

referred.

II. PROBLEM FORMULATION

We will consider the standard episodic RL setup [12]. A

Markov Decision Process is a tuple 〈S,A, Ps, r, P0,S∗〉
where S and A are the state and action spaces, respec-

tively; {Ps(·|s, a) : s ∈ S, a ∈ A} is a set of state

transition probabilities; we write st+1 ∼ Ps(·|st, at). In

this work we assume that both S and A are multidimen-

sional continuous and each Ps is a density. The immediate
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reward, rt, depends on the action and the next state,

rt = r(at, st+1). P0 is the distribution of first states of

each episode and S∗ is the set of terminal states. The

objective of a learning process is to find a control policy

that maximizes future rewards in each state.

We are interested in applications of the solution of the

above RL problem to learning control tasks. A painful

difficulty that emerges in control problems is the fine time

discretization. It makes a single action impact the overall

performance insignificantly. Furthermore, the impact of

the action emerges a large number (thousands) of steps

after the very action took place. We require the learning

algorithm to work properly no matter how fine the time

discretization is.

RL methods are usually designed to optimize a station-

ary policy, i.e. one that draws in each instant an action,

at, on the basis of the present state, st, and the policy

parameter, θ, namely

at ∼ π(· ; st, θ).

In this section we analyze by means of a simple example,

how the time discretization influences policy gradient es-

timation when a policy is defined that way. An important

insight to this issue has been provided in [6] where it

has been shown that in a continuous environment, under

quite general conditions, the state trajectory converges

to a deterministic limit as the time discretization dimin-

ishes. The question arise how this phenomenon influences

quality of policy gradient estimators. A general answer

to this question is difficult to provide. However, the

simple example below suggests that this influence can be

damaging.

Let state represent one-dimensional velocity and action

represent one-dimensional acceleration. We have S =

A = R. An episode lasts for 1 sec. and it includes T

steps, δ = 1/T long each. Within each step an action is

drawn from the normal distribution N(θ, σ2
a) where θ is a

policy parameter. The action defines constant acceleration

within a step and velocity at the beginning of a trial is

null. The only nonzero reward is equal to noised velocity

in the last state. We have

st =

{
0 iff t = 0
st−1 + δat iff t > 0,

rt =

{
0 iff t < T − 1
sT + yT iff t = T − 1,

where y is a random variable drawn from the normal

distribution N(0, σ2
y).

The quality index, J(θ), of the policy defined by θ is

equal to the expected reward at the end of an episode.

Because the final reward is a sum of random variables,

we have

EθrT−1 = Eθ

(
T−1∑

t=0

δat + yT

)
= Tδθ = θ.

Therefore, J(θ) = θ and ∇J(θ) = 1. Our main concern

here is variance of the policy gradient estimator. We

will consider the policy gradient estimator applied in the

episodic REINFORCE algorithm [8] since prevailing pol-

icy gradient estimators can be considered modifications of

this early formula. The estimator applied to our problem

is of the form

ĝ = (rT−1 − c)
T−1∑

t=0

∂ lnπ(at; st, θ)

∂θT

where c is the baseline. Variance of this estimator is

defined by the following formula

V ĝ = 2 +
1

δσ2
a

(
(c − θ)2 + σ2

y

)
(1)

derived in [7]. We can see that the larger action variance,

the smaller gradient estimator variance. The exploration–

exploitation balance becomes conspicuous when we com-

pare V ĝ with variance of sT , namely VsT = δσ2
a. By

comparing this value with (1), we can see that VsT is

“almost” inversely proportional to V ĝ.

What happens when the time discretization parameter

δ decreases? In order to keep gradient estimator variance

small, variance of action has to be increased. In fact,

variance of gradient estimator remains constant if only

σ2
a ∝ 1/δ.

Notice that this way variance of sT is also stabilized.

It is seen in our example that in order to keep variance

of policy gradient estimator bounded while the time

discretization decreases, we have to increase variance

of action. However, “actions” in control systems are

always bounded; hence, they can not have too large

variance either. Therefore, while fine time discretization

is necessary for good control it contradicts with quality

of policy gradient estimation.

III. MDP DEFINED BY NON-MARKOV PERIODS

Let the policy applied by the agent be piecewise non-

Markov in the following sense. It divides an episode into

periods and generates actions within each period on the

basis of previous actions and states in this period. Let the

periods be indexed by k and k-th period starts at time tk
and lasts for lk instants. For i : 0 ≤ i < lk we have1

atk+i ∼ π(· ; stk
, atk

, . . . , stk+i, θ). (2)

1We apply “. . . ” also to denote a subsequence of the sequence
(s1, a1, s2, a2, . . . ).
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Let the periods defined by a piecewise non-Markov policy

be called non-Markov periods or, in short, nm-periods.

Given a Markov Decision Process M =

〈S,A, Ps, r, P0,S∗〉 we define a new one,

M̄ = 〈S̄, Ā, P̄s, r̄, P0,S∗〉 with the use of nm-periods

defined above. Let states and actions in M̄ be denoted

by s̄ and ā, respectively, and time be indexed by k.

Simultaneously, given a piecewise non-Markov policy π

in M , we define a stationary policy π̄ in M̄ generating

actions from Ā. States in M̄ correspond to first states in

nm-periods; we have

s̄k = stk
and S̄ = S.

Actions in M̄ correspond to joint trajectories of states and

actions within nm-periods, namely

āk = 〈atk
, stk+1, . . . , atk+lk−1〉 and Ā =

⋃

i≥0

A×(S×A)i.

The transition distribution in M̄ , denoted by P̄s, is defined

by Ps, π, and the way lk emerges. In the simplest case

lk = l for a certain constant l unless k-th period is

the last one in the episode; then 1 ≤ lk ≤ l. We are

free to define the method of calculating rewards in M̄ .

For instance, a reward in M̄ can be the average value

of rewards gathered within the corresponding nm-period

in M . The distribution of first states P0 and the set of

terminal states S∗ remain unchanged.

An action in M̄ is generated by the policy π in tandem

with Ps. What is yet important is that we can calculate

the likelihood ratio ∇θ ln π̄(āk; s̄k, θ). Let us denote

Sk = [sT

tk
, . . . , sT

tk+lk−1]
T ,

Ak = [aT

tk
, . . . , aT

tk+lk−1]
T ,

(3)

πA(Ak; Sk, θ) =

lk−1∏

i=0

π(atk+i; stk
, atk

, . . . , stk+i, θ).

πA is a density of a sequence of actions within an nm-

period given a sequence of states. It is entirely defined

by the way the policy π generates actions. From the

decomposition

π̄(āk; s̄k, θ) =

lk−1∏

i=0

π(atk+i; stk
, atk

, . . . , stk+iθ)×

×
lk−2∏

i=0

Ps(st+i+1|stk+i, atk+i)

we see that

∇θ ln π̄(āk; s̄k, θ) = ∇θ lnπA(Ak; Sk, θ).

A special feature of M̄ is the fact that the agent is

not entirely free to choose an action from Ā. It is hence

impossible to apply Q-Learning [2] or SARSA to M̄ .

However, optimization of a stationary policy in M̄ can be

Fig. 1. A run of the piecewise independent autoregressive process, ξt,
for Σ = 1, α = 0.99, tk+1 − tk ≡ 10. Within an nm-period there
is a correlation between random elements while there is no correlation
between elements in different nm-periods.

in principle performed by all methods based on likelihood

ratio, including episodic REINFORCE [8], Actor-Critics

[3], [4], [5], OLPOMDP [9] and others.

IV. PIECEWISE NON-MARKOV POLICIES, AN

EXAMPLE

In the present section we define a simple class of non-

Markov policies. These policies exploit each k-th period

to carry out a coherent experiment that provides a clue

to an improvement of the policy. This coherence is a

consequence of the fact that while at each moment the

action has a random component, there is a stochastic

dependence among these components within the same

nm-period. In the next subsection we analyze a way of

generating such stochastically dependent components.

Piecewise independent autoregressive process: Let

{ǫt, t = 1, 2, . . .} be a sequence of independent random

vectors in R
n drawn from the normal distribution with

zero mean and covariance matrix Σ, i.e. N(0, Σ). Also,

let α ∈ (0, 1) and {ξt, t = 1, 2, . . . } be a sequence of

random vectors in R
n computed as

ξt =

{
ǫt if t= tk for any k

αξt−1 +
√

1 − α2ǫt otherwise.
(4)

The process defined above has the following features

derived in [7]:

• All ξt are of the normal distribution N(0, Σ).

• For t and t′ in different nm-periods,

cov(ξt, ξt′) = E(ξtξ
T

t′) = 0

• for t and t′ in the same nm-period,

cov(ξt, ξt′) = α|t′−t|Σ. (5)

Consequently, {ξt, t = tk, . . . , tk+1 − 1} happens to

be an autoregressive stochastic process. Notice that

cov(ξt, ξt) ≡ Σ ≡ cov(ǫt, ǫt).

The random process we defined above, the piecewise

independent autoregressive process, may be interpreted as

a simple method of transforming normal white noise, ǫt,

into sequences of random vectors that are stochastically
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dependent (see Fig. 1). Thank to that dependence, each of

these sequences may support a coherent experiment that

gives a clue to policy improvement. Below we present a

policy that makes use of such experiments.

Deterministic Transformation + Stochastic Process:

Let A = R
na and an action, at, be calculated as

at = ã(st; θ) + ξt (6)

where ã : S ×Θ 7→ A is a certain function, e.g. a neural

network with input s and weights θ. We will denote by

∇ã(s, θ) a matrix of derivatives of ã with respect to its

second argument, namely

∇ã(s, θ) =
∂ã(s, θ)

∂θT
=

[
∂ãj(s, θ)

∂θi

]

i,j

.

What we need is to define the distribution πA(Ak; Sk, θ)

and the likelihood ratio ∇θ lnπA(Ak; Sk, θ). for Sk and

Ak defined in (3). Given trajectory Sk, quantities at

result from adding random elements ξt to constant values

ã(st; θ). Consequently, the distribution πA(Ak; Sk, θ) is

the normal one with the expected value and the covariance

matrix equal to

EAk = mk(θ) =




ã(stk
, θ)

...

ã(stk+lk−1, θ)


,

covAk = Ck =




Σ αΣ · · · αlk−1Σ
αΣ Σ

...
. . .

...

αlk−1Σ · · · Σ


,

respectively. cov Ak results from the fact that

cov(at, at′) = cov(ξt, ξt′) and (5).

We thus deal with the normal distribution

N(EAk, cov Ak) whose mean depends on the parameter

θ and variance does not. The density of this distribution

is given by

πA(A;Sk, θ) =
(√

2π
lkna |Ck|

)−1

× (7)

× exp
(
−0.5(A − mk(θ))T (Ck)−1(A − mk(θ))

)
.

We also have

∇θ lnπA(A; Sk, θ) = (∇θmk(θ)) C−1

k (A − mk(θ))

= [∇ã(stk
; θ) · · · ∇ã(stk+lk−1; θ)]C

−1
k (A − mk(θ)).

In order to apply the above equation directly, one would

have to invert the matrix Ck which is an operation of

complexity O(n4) for n = dimAk = lkna. A cheaper

method is to compute vector (Ck)−1(A − mk(θ)) as y

satisfying the linear equation

Cky = A − mk(θ).

This operation is of complexity O(n3) which still can

be inconvenient for large n. Fortunately, the matrix C−1

k

has a known compact form. In order to express it, let us

denote for matrices X and Y , a term X⊗Y as the matrix

X ⊗ Y =




X1,1Y X1,2Y · · ·
X2,1Y X2,2

...
. . .


 .

One easily shows that

(X ⊗ Y )−1 = X−1 ⊗ Y −1.

Moving back to the problem of computing C−1
k , let us

denote by Λk an (lk × lk)-matrix of the form

Λk = [α|i−j|]i,j .

Obviously

Ck = Λk ⊗ Σ.

The matrix Λ−1

k has a compact form. For l = 1 it is an

identity matrix. However, for l > 1,

Λ−1

k =
1

1 − α2




1 −α 0
−α 1 + α2

−α
. . . −α

1 + α2 −α
0 −α 1




.

Therefore,

C−1

k (A − mk(θ)) = (Λ−1

k ⊗ Σ−1)(A − mk(θ)).

If, Σ is diagonal, which is an obvious choice, computation

of the above vector can be easily implemented as an

operation of complexity O(n).

Problems with deficit of computational power. Sam-

pling: The size of the matrix cov A and the vector

∇θ lnπA(A; S, θ) grows with the number of actions in

the non-Markov period. Therefore, in control applications

with very fine time discretization, the matrix and the

vector may be very large and their computation may be

very power consuming. A certain solution to this problem

may be the sampling—a technique applied successfully in

a number of areas, e.g. in sound processing. In order to

have a good idea of the content of a piece of sound, it is

enough to have samples that evenly covers the piece.

Let us denote by Â a vector comprised of every ∆-th

action

Â = [aT

1 aT

1+∆ aT

1+2∆ · · ·aT

L]T

where L = 1+ ⌊(l−1)/∆⌋∆ is the last sampling instant.

If a trajectory of actions, A, is regular, then Â is its ap-

proximate representation and by increasing/decreasing the

probability of Â we also increase/decrease the probability

of A. Therefore

∇θ lnπ
Â
(Â; S, θ)
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may be regarded as an approximation of

∇θ lnπA(A; S, θ).

Also, we have

∇θ lnπ
Â
(Â; S, θ) = [∇ã(s1, θ) · · · ∇ã(sL, θ)]×

× (cov Â)−1(Â − EÂ).

Notice that the dimensionality of Â is for ∆ > 1 smaller

than that of A. Therefore, operations on ∇θ lnπ
Â
(Â; S, θ)

may be much less time consuming than those on

∇θ lnπA(A; S, θ).

When choosing appropriate ∆, one has to balance

available computational power (the larger ∆ the less

exploited it is) and the quality of approximation offered

by ∇θ lnπ
Â
(Â; S, θ) (the larger ∆, the worse it is).

V. EXPERIMENTS WITH HALF-CHEETAH

We apply the presented approach to optimize a policy

for a planar model of a walking animal. At this point

we refer to a large body of research on walking robots.

Examples of these are studies on locomotion of dog-like

robot [13], [14], [15], hexapod [16], salamander-like robot

[17], or human-like biped [18], [11]. Control systems

for such robots are usually developed on the basis of a

large amount of preliminary knowledge that leave little

room for adaptation or learning. However, in [11], Natural

Actor-Critic is applied to find parameters for Central

Pattern Generator that controls a bipedal simulated robot.

In our experiment an RL algorithm is employed to directly

optimize a non-Markov policy.

A. Object Description

Fig. 2. Half-Cheetah.

Half-Cheetah, presented in Fig. 2, is a planar kinematic

string of 9 links and 10 joints; the “paws” of Half-Cheetah

will also be called joints. The angles of 4-th and 5-th joint

are fixed, all the the others are controllable. Consequently,

Half-Cheetah is a 6-degree-of-freedom walking robot. The

fact that it is designed as a kinematic string allows effi-

cient simulation of its dynamics, e.g. using the Newton-

Euler method [19]. Mass of the object is concentrated in

its joints which weigh

1, 1, 1, 4, 1, 2, 1, 1, 1, and 1

kilos. Consecutive links of Half-Cheetah are of lengths

0.2

cos π
12

,
0.15

cos π
3

,
0.25

cos π
6

, 1, 0.3, 0.3,
0.25

cos π
9

,
0.2

cos π
9

,
0.15

cos π
9

meters. The initial angle between the first link and the

perpendicular is −π/12. The initial angles of the joints,

ω0
i for i = 1, . . . , 8, are

− 5

12
π,

1

2
π, −2

3
π,

1

6
π, −π,

1

6
π,

5

18
π, and 0.

The movement of joints are limited to intervals. Their

lower bounds are

−5

6
π,

1

4
π, −5

6
π,

1

6
π, −π,

1

18
π, 0, −2

3
π,

and the upper ones are

−1

6
π,

3

4
π, −1

3
π,

1

6
π, −π,

1

2
π,

8

9
π,

1

9
π.

The object is controlled by applying torques at the joints.

The torch τi at i-th joint is computed in two phases: the

variable

τ0
i = 2π−1arctg

(
−2(ωi − ω0

i ) − 0.05ω̇i

)

expresses “spontaneous” torch at i-th joint implied by its

angle, ωi, and angular velocity, ω̇i. It is added to the signal

a0
i coming from the learning controller, projected on the

interval [−1, 1], and multiplied by the “strength”, Ti, of

i-th joint, namely

τi = Ti min
{
max{−1, τ0

i + a0
i }, 1

}
.

The “strength” are of values

60, 90, 120, −, −, 90, 60, 30.

The objective of control is to make Half-Cheetah run

forward as fast as possible. Notice that without the exter-

nal control (i.e. for a0
i ≡ 0), the torch Tiτ

0
i implements

a PD control2 with saturation. It stabilizes the joint angle

close to its initial value which makes Half-Cheetah stand

still.

B. State and reward

In order to apply reinforcement learning to Half-

Cheetah, one has to define state and reward the learning

algorithm has access to. In the below specification of these

entities the joints of the object have indexes from 0 to

9 whereas the links have indexes from 0 to 8. The 2-

dimensional position of i-th joint is denoted by (xi, yi)

and its speed by (ẋi, ẏi). The angle between i-th link and

the horizontal line is denoted by ωl
i and its angular speed

2A differentiator with proportional gain.
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TABLE I

VARIABLES OF HALF-CHEETAH STATE. j = 0, 1, 2, 3 (BEFORE THE

NECK) AND k = 0, 1, 2 (AFTER THE NECK)

st,1 = (y0 − 0.1)/0.1

st,2 = ẏ0/0.3

st,3 = ([y0 = 0] − 0.5)/0.5

st,4 = ((y3 + y4)/2 − 0.6)/0.2

st,5 = (ẋ3 + ẋ4)/2 − 1

st,6 = ẏ3/0.3

st,7 = ẏ4/0.3

st,8 = (y9 − 0.1)/0.1

st,9 = ẏ9/0.3

st,10 = ([y9 = 0] − 0.5)/0.5

st,11+3j = cos ωl
j/0.7

st,12+3j = sin ωl
j/0.7

st,13+3j = ω̇l
j/3

st,23+3k = cos ωl
6+k/0.7

st,24+3k = sin ωl
6+k/0.7

st,25+3k = ω̇l
6+k/3

by ω̇l
i. Each state variable is normalized to roughly cover

the interval [−1, 1]. We also apply the notation

[predicate] =

{
1 if predicate is true

0 otherwise

E.g. the term [y0 = 0] is equal to 1 if the hind paw stands

on the ground and 0 otherwise. All 31 variables describing

state of Half-Cheetah are defined in Table I.

In our definition of reward we apply a soft-step function

of the form

f(x) =






0 for x ≤ 0
2x2 for x ∈ (0, 0.5]
1 − 2(x − 1)2 for x ∈ (0.5, 1]
1 for x > 1.

It may by approximated to the ordinary step function by

multiplying its argument by a large positive number. The

reward is calculated as a sum of basic rewards that play

various roles in different stages of learning. Its definition

is as follows

r = 0.5(ẋ3 + ẋ4) (8)

− 0.05
∑

i∈Ij

max
{∣∣τ0

i + a0
i

∣∣− 1, 0
}

(9)

− 0.1
∑

i∈Ij

min{|τw
i |, 50} (10)

+
(
f(0.3 max{ẏ3 + [y0 > 0], ẏ4 + [y9 > 0]}

+ 0.1) − 1
)(

1 − f(1.5(ẋ3 + ẋ4))
) (11)

+ f(9y1) − 1 (12)

+ f(5y2) − 1 (13)

+ f(2y5) − 1 (14)

TABLE II

THE CLASSIC ACTOR-CRITIC ALGORITHM WITH TD(λ)-ERRORS

AND NON-MARKOV PERIODS.

1. At k-th nm-period, perform lk actions according to (2), (4), and
(6). Register the states Sk , the actions Ak and the aggregated
reward r̄k .

2. If the trial has been artificially stopped at k-th period, set k :=
k + 1 and repeat from Step 1.

3. Compute the temporal difference

dk = r̄k + γkṼ (stk+1
;υ) − Ṽ (stk

;υ).

4. Policy improvement

z := λγkz + ∇θ ln π
Â

(Âk ;Sk, θ),

θ := θ + βθ
kdkz.

5. Critic improvement

y := λγky +
∂

∂υT
Ṽ (stk

;υ),

υ := υ + βυ
k dky.

6. Set k := k + 1 and repeat from Step 1.

for Ij = {1, 2, 3, 6, 7, 8}. The meaning of the above

elements is the following:

(8) a reward for moving ahead with large as possible

speed,

(9) a penalty for an attempt to apply torch from

outside the permissible interval,

(10) a penalty for the internal force that keeps joint

angle in its interval, τw
i is a torch applied by

the “tendon” to keep i-th joint angle within its

bounds (if i-th joint angle is away from both the

bounds, then obviously τw
i = 0),

(11) a penalty for not moving the trunk up and

keeping paws on the ground when the animal

is not moving forward,

(12) (13) (14) penalties for touching the ground with

the heel, the knee, and the head, respectively.

C. The learning algorithm

In order to make Half-Cheetah run, we combine the

classic Actor-Critic in the form presented in [3] and

the idea of non-Markov periods discussed in this paper.

We chose this method because it is known to be very

fast although it usually provides suboptimal policies (in

contrary to other Actor-Critics like the one presented in

[4]). We intend to check to what extent the use of nm-

periods is able to introduce any improvement in its work.

The algorithm we apply is specified in Table II.

Actions are computed as in Eq. (6) of Sec. IV for ã

being an output of a feedforward neural network and ξ

being the piece-wise independent autoregressive process

with unity variance and α = 0.8. The elements of the
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6-dimensional action a are transformed into the control

stimuli a0 as

a0
i = 0.1aj

where the indexes i = 1, 2, 3, 6, 7, 8 correspond to j =

1, 2, 3, 4, 5, 6, respectively. The constant 0.1 results from

the fact that the control signals a0
i cover the interval

[−1, 1] while we would prefer the outputs of the network

to be of larger scale, e.g. roughly cover the interval

[−10, 10].

The second approximator used by the learning al-

gorithm is Critic, i.e. the approximation of the value-

function. Critic is also implemented by a feedforward

neural network. Both the networks have the form of two

layer perceptron with linear output layer. Their hidden

layers consist of MA (Actor) and MC (Critic) sigmoidal

(arctan) elements. Each neuron has a constant input

(bias). The initial weights of the hidden layers are drawn

randomly from the normal distribution N(0, 1) and the

initial weights of the output layers are set to zero.

Actions are applied every 0.02sec. The training consists

of a sequence of trials. After each step the current trial is

artificially stopped with probability 1/250. Consequently,

a trial lasts for a random number of steps with a geometric

distribution and, on the average, lasts for 5sec. At the

beginning of each trial, the state is reset by putting Half-

Cheetah in its initial position 0.1m. above the ground.

The parameters of the algorithm are MA = 100,

MC = 200, and βθ
k ≡ 2.10−6, βυ

k ≡ 10−5. The

distribution of ξ is based on the pattern presented in Sec.

IV with Σ = I and α = 0.8. The parameter λ is equal

to 0.5. The aggregated reward is defined as a discounted

sum of the basic rewards, namely for γ = 0.995

r̄k =

lk−1∑

i=0

γirtk+i.

The discount factor γk applied at k-th nm-period is equal

to γlk . Discounting of the original rewards rt is thus the

same regardless of nm-period lengths. In order to shorten

time of simulations, we apply sampling with ∆ = 4.

D. Experiments

Figure 3 presents average reward after 105 trials of

learning for chosen values of l. This parameter defines

how long non-Markov periods are. Specifically, lk = l

unless within k-th period the trial is artificially stopped,

in which case the period does not take part in learning.

Because the objective of learning here is a certain periodic

activity, the trials never finish in a terminal state. However,

the learning is artificially divided into trials to increase its

speed.

Fig. 3. Average reward vs. length of non-Markov periods.

Notice that for l = 1, the algorithm is in fact reduced to

the classic Actor-Critic. It seems that the best value of the

parameter l is in this case close to 10. It is seen in Fig. 3

that the average performance increases 40% (from 3.28 to

4.59) as l changes from 1 to 10. The question is, whether

the policy obtained with l = 10 is close to optimal. We

can only provide some intuitive assessment in this matter.

Namely, for the usual policy obtained for l = 10, the

behavior of Half-Cheetah resambles quite well the run of

a quadrupedal mammal (see Fig. 4). However, for l = 1,

the behavior is somehow awkward, e.g. the object takes

very fine strides or runs on its wrist and heel. For l = 30,

the learning is unstable or, for smaller step-sizes, very

slow; after 105 trials it is far from being completed.

VI. DISCUSSION

Our main concern in this work was whether it was

possible to optimize a control policy for a complex robotic

system using only limited knowledge of its dynamics.

Specifically, the knowledge that allowed to build a sim-

ulator of these dynamics. Although we did not provide

a decisive answer to this question, we succeeded in

developing an efficient control policy basing on just a little

additional knowledge. Namely, our model of a walking

animal learned to run while initially it was only able to

stand still. However, this result still seems to be quite

optimistic: While it is often relatively easy to design a

controller that keeps a system, even a very complex one,

close to a certain basic position, design of a controller that

governs a nontrivial activity of this system is significantly

more demanding.

We also tested here a specific approach to problems that

emerge in reinforcement learning of a stationary policy

in presence of very fine time discretization. There are

reasons to believe that these problems may make learning

more difficult or even impossible. The approach we tested

is based on dividing the learning process into non-Markov

periods. Within this idea, the original problem is trans-

formed to the other one in which the time discretization

is reasonably thick. Our experiments confirms that this

approach can be successful: while the classic Actor-Critic
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Fig. 4. A typical trajectory of movement of Half-Cheetah for an
efficient policy in use.

applied to our test object was obtaining inefficient and

awkward control policies, the algorithm based on non-

Markov periods developed policies more efficient and

conspicuously more deft.

VII. CONCLUSIONS

We developed an efficient control policy for a 6-

degree-of-freedom walking robot by means of simulated

trial and error learning process. The only preliminary

knowledge employed to optimize the policy concerned

building a simulator of the dynamics of this object and

its stabilization in its basic position. The controller of the

robot learned to make it run.

We successfully verified our approach to problems that

emerge in reinforcement learning of a stationary policy in

presence of very fine time discretization. This approach,

based on non-Markov periods, significantly outperformed

the traditional one that did not remedy the time discretiza-

tion problems.
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