
Fixed point method of step-size estimation
for on-line neural network training

Paweł Wawrzyński, Member, IEEE

Abstract— This paper considers on-line training of feadfor-
ward neural networks. Training examples are only available
sampled randomly from a given generator. What emerges in
this setting is the problem of step-sizes, or learning rates,
adaptation. A scheme of determining step-sizes is introduced
here that satisfies the following requirements: (i) it does not
need any auxiliary problem-dependent parameters, (ii) it does
not assume any particular loss function that the training process
is intended to minimize, (iii) it makes the learning process stable
and efficient. An experimental study with the 2D Gabor function
approximation is presented.
Keywords: neural networks, on-line learning, step-size adapta-
tion, reinforcement learning.

I. INTRODUCTION

A neural network with a given structure defines a class
of functions parameterized by the vector of the network’s
synaptic weights. Network training identifies the best, in a
given sense, function within this class. This property makes
feedforward neural network a powerful tool to function
modeling. Its primary application is nonlinear regression —
a way to identify statistical relations among variables. It
can also be applied by reinforcement learning techniques
to identify and represent optimal input-output relations in
controllers.

There are two basic settings in which neural networks
are used, called usually the batch mode and the pattern
mode. If all the training data can be collected in a database,
they can be applied to define a quality index that maps the
space of network weights to real numbers. Minimization of
that quality index defines the batch mode of the network
training. It can be performed by various techniques i.e.,
Levenberg–Marquardt algorithm [1] or the method based on
linear regression presented in [2].

In some applications the training examples can only be
sampled from a certain, possibly continuous distribution.
The pattern mode of training may be applied then: Each
sample is utilized to calculate a gradient estimator of the
quality index. The estimator is multiplied by a step-size
and applied to adjust the network weights. The problem
of step-sizes determination is inherent in the pattern mode
of training. It is solved by various methods, like delta-
delta [3], delta-bar-delta [4], Extended Kalman Filter [5],
stochastic meta-descent [6], or the method based on Lapunov
stability [7]. These methods require providing several initial

This work was supported in part by Grant N N514 237137 from the
Ministry of Science and Higher Education in Poland.

Paweł Wawrzyński is with the Institute of Control and Compu-
tation Engineering, Warsaw University of Technology, Poland; email:
p.wawrzynski@elka.pw.edu.pl.

parameters and are based on certain assumptions regarding
the momentary loss function being optimized.

Here, we are interested in the pattern mode of network
training. In particular, we seek for fully autonomous schema
of network training applicable by the algorithms of reinforce-
ment learning with experience replay [8]. The schema must
be applicable in the following setting:

1) The network is trained with the use of training samples
randomly drawn from an infinite set.

2) The network is relatively large: with at least tens of
inputs and outputs, and hundreds hidden neurons.

3) The objective of the network training is minimization
of a certain complex quality index (having little to do
with mean-quadratic error).

The first point excludes efficient batch techniques of network
training, like Levenberg–Marquardt algorithm. The second
point effectively excludes methods whose complexity is over
linear in number of neural weights, like Extended Kalman
Filter. The third one effectively excludes the method based
on Lapunov stability [7]. An efficient method of step-size
determination for reinforcement learning algorithms was
investigated in a number of studies, including [9], [10], [11].
However, all the presented method lack autonomy as they
require parameters, like a meta-step-size, that are problem
dependent.

In this paper we introduce a method of pattern model
neural network training that is suitable to the setting de-
scribed above. It is also fully autonomous: it does not require
any problem-dependent parameters nor it is based on any
assumptions regarding the nature of the momentary loss
function optimized by the network training.

The method presented here determines the step-size of
the learning network by a comparison of two vectors in
a network weights space: the sum of gradient estimators
that actually govern the weights adjustment and the sum of
gradient estimators measured in a fixed point in the weights
space. We show here, that in order to make the training
efficient, those vectors should be in a special relation.

The paper is organized as follows. In Sec. II the problem
considered here is formulated. In the following section the
proposed solution is outlined. Section IV analyzes a simpli-
fied model that serves to derive the solution to the discussed
problem. The following section treats the issue of robustness.
Section VI presents the algorithm and another one presents
an experimental study: application of the presented algorithm
to learn a noised 2D-Gabor function on the basis of a noised
data. The last section concludes.

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain IJCNN

978-1-4244-8126-2/10/$26.00 c©2010 Crown 2012

II. PROBLEM FORMULATION

We consider the general issue of stochastic optimization
defined as follows. There is a function, J : Rm 7→ R. Its
gradient, ∇J , is not available but a generator is available
that samples random vectors, ξ, that are used to compute
unbiased estimators of ∇J . Namely, a function g is given
such that Eg(θ, ξ) = ∇J(θ). The term E denotes here the
expected value of a function of the random vector ξ.

The above model describes the issue of feedforward net-
work learning as follows. The weights of the network are de-
noted by θ; ξ = [xT , yT]T , where x denotes the network input
and y is the network desired output, J is the global quality
index optimized through network learning, and g(θ, ξ) is the
vector computed by means of error backpropagation.

A generic technique to approximate the minimum of J
function is Robbins–Monroe procedure [12], called also the
method of stochastic descent. It defines the sequence

θt+1 = θt − βtg(θt, ξt), t = 0, 1, 2, . . . , (1)

where {βt, t = 0, 1, 2, . . . } is a vanishing sequence of
positive parameters called step-sizes. It is known [12], that
once certain regularity conditions are satisfied, the sequence
{θt} converges to a local minimum of J .

Unfortunately there is no problem independent sequence
of step-sizes that makes the convergence of Robbins–Monroe
procedure fast and stable. In fact, the convergence may be
arbitrarily slow for step-sizes that are too small for a given
problem and may be unstable for arbitrarily many initial steps
for relatively too large step-sizes.

We search for a way to determine the step-sizes on the
basis of consecutive samples that excludes instability of the
learning process and assures fast convergence. Also, we
require that the complexity of the method is linear in θt
dimension.

III. IDEA

Suppose, we apply Robbins–Monroe procedure to find the
minimum of a certain function. At a given instant, t, we
begin the following experiment: (i) The step-sizes are fixed
βt+n ≡ β for n = 0, 1, 2, (ii) Consecutive points θt+n
are computed according to (1). (iii) Two sums are computed,
namely

Gt,n =
n−1∑
i=0

g(θt+i, ξt+i), G∗t,n =
n−1∑
i=0

g(θt, ξt+i). (2)

Notice that vector Gt,n is proportional to the displacement
of the point θ between instant t and t+n. On the other hand,
vector G∗t,n is proportional to the displacement of the point
θ that would have been if all the gradients estimators, g, had
been calculated at θt.

To continue the experiment, let us fix n large enough to
make the statistics 1

nG
∗
t,n a good estimate of the gradient

∇J(θt). A comparison of Gt,n and G∗t,n may lead to one of
the following conclusions:

1) If Gt,n is only slightly different from G∗t,n, it suggests
that θt+i moves through flat slope of J ; curvature of J

plays no role in this movement. If the step-size was a
little larger, the speed of walking down the slope would
be larger too. The step-size may thus be increased. This
case is illustrated on the left part of Fig. 1.

2) The value ‖Gt,n − G∗t,n‖ is relatively large in com-
parison to ‖G∗t,n‖, which means that the impact of the
curvature of J on the movement of θt+i, 0 ≤ i < n
is comparable to the impact of the noise in gradient
estimates. βt may be close to its optimal value. This
case is illustrated in the middle of Fig. 1.

3) If Gt,n is radically different from G∗t,n, it may be
caused by the instability of the learning process. In
fact, the point θt+n is then likely to be further from
the minimum of J than θt. This situation is depicted
on the right part of Fig. 1.

The above discussion leads to the following schema of step-
size determination: (i) The process (1) is divided into parts.
(ii) Within each part the step-size is constant and the sums
Gt,n, and G∗t,n are computed with Eqs. (2), where the part
begins at time t and ends at time t+n. (iii) At the end of each
part ‖G∗t,n−Gt,n‖ is compared with ‖G∗t,n‖; if ‖G∗t,n−Gt,n‖
is ,,relatively too large”, the step-size is decreased, if the
difference is ,,relatively too small”, the step-size is increased.

IV. MODEL

Let us now assign a concrete meaning to the soft concepts
of the previous section. In this order, we analyze a simple
model. Namely, let J : R 7→ R be a scalar quadratic function

J(θ) =
1
2
aθ2, a > 0.

The gradient estimator of J is of the form

g(θt, ξt) = ∇J(θt) + ξt = aθt + ξt,

where ξt is a zero–mean random value with variance σ2. We
minimize J by means of Robbins–Monroe procedure (1) i.e.,

θt+1 = θt − βt(aθt + ξt). (3)

The question is: what is the right value of βt? Let us first
find the step-size that is optimal in the sense that it minimizes
the expected one–step improvement of J-value. Namely, it
minimizes

et(β) = E (J(θt+1)− J(θt)|θt) (4)

= Eθt

(
1
2
a(θt − β(aθt + ξt))2 − 1

2
aθ2t

)
=

1
2
Eθt

(−2β(aθt)(aθt + ξt) + aβ2(aθt + ξt)2
)

= −β(aθt)2 + β2 1
2
aEθt (aθt + ξ)2 .

The function et is quadratic with derivative

∂

∂β
et(β) = −(aθt)2 + βaEθt

(aθt + ξ)2

and has the minimum at the point

β∗t =
(aθt)2

aEθt(aθt + ξ)2
. (5)

2013

Fig. 1. The sketches depict contour lines of three different functions J . However, ∇J(θt), β, and g(θt, ξt+i) for i ≥ 0, are equal in all three cases. In
n steps since t, Robbins–Monroe procedure drives the point in the J domain from θt to θt+n = θt−βtGt,n. Left: Small curvature of J in relation to β,
causes small difference of −βtGt,n and −βtG∗t,n. Middle: Moderate curvature of J causes moderate difference between −βtGt,n and −βtG∗t,n. Right:
Very large curvature of J relatively to β causes instability of the optimization process which is manifested by divergence of −βtGt,n and −βtG∗t,n that
grows with n.

The derivative may be then rewritten as

∂

∂β
et(β) = (aθt)2(−1 + β/β∗t). (6)

The objective of this section is to compare

Eθt |G∗t,n|2 with Eθt |G∗t,n −Gt,n|2

for n that makes the statistics 1
nG
∗
t,n a reasonable estimate

of the gradient ∇J(θt). Let us choose

n =
⌈
Eθt
‖g(θt, ξ)‖2
‖∇J(θt)‖2

⌉
=
⌈
Eθt

(aθt + ξ)2

(aθt)2

⌉
. (7)

Notice that variance of G∗t,n is equal to

Vθt

1
n
G∗t,n =

1
n2
nVθt

(aθt + ξ) ≤ 1
n
Eθt

(aθt + ξ)2 ≤ (aθt)2

= |∇J(θt)|2.
Consequently, the standard deviation of 1

nG
∗
t,n is no greater

than the norm of estimated gradient. Notice the relation
between n, (7), and β∗t , (5), namely

a ∼= (nβ∗t)
−1. (8)

Let us fix βt = βt+1 = · · · = βt+n−1 ≡ β.
We are now ready to compare Eθt

|G∗t,n|2 with Eθt
|G∗t,n−

Gt,n|2. First,

Eθt
|G∗t,n|2 = Eθt

(
n−1∑
i=0

(aθt + ξt+i)

)2

= n2a2θ2t + nσ2

∼= (β∗t)
−2θ2t + nσ2. (9)

The last equality is not a precise one only because of the
rounding in (7). Then, because from (3) we have

θt+1 = θt(1− βa)− βξt,
a simple induction implies that

θt+n = θt(1− βa)n − β
n−1∑
i=0

(1− βa)iξt+n−1−i

Fig. 2. Functions fθ and fσ .

Therefore,

Eθt

∣∣G∗t,n −Gt,n∣∣2 = Eθt
|G∗t,n − β−1(θt − θt+n)|2

= Eθt

(
naθt − β−1θt

(
1− (1− βa)n)

+
n−1∑
i=0

(
1− (1− βa)i)ξt+n−1−i

)2

= θ2t
(
β∗−1
t − β−1

(
1− (1− βa)n))2

+ σ2
n−1∑
i=0

(
1− (1− βa)i)2

= θ2t
(
β∗−1
t − β−1

(
1− (1− βa)n))2

+ σ2

(
n− 2

1− (1− βa)n
βa

+
1− (1− βa)2n
1− (1− βa)2

)
.

In the further analysis we notice that (8) implies

βa =
β

β∗t n

and it is a simple analytical fact that

lim
n→∞

(
1− β

β∗t n

)n
= exp(−β/β∗t).

2014

Consequently, for n� 1 and β � nβ∗t we have

Eθt

∣∣G∗t,n −Gt,n∣∣2
∼= θ2t

(
β∗−1
t − β−1

(
1− exp(−β/β∗t)

))2
+ σ2n

(
1− 2β∗t

β
(1− exp(−β/β∗t))

+
β∗t
2β

(1− exp(−2β/β∗t))
(

1− β

2nβ∗t

)−1)
∼= θ2t
β∗2t

(
1− 2β∗t

β

(
1− exp(−β/β∗t)

)
+
β∗2t
β2

(
1− exp(−β/β∗t)

)2)
+ σ2n

(
1− 2β∗t

β
(1− exp(−β/β∗t))

+
β∗t
2β

(1− exp(−2β/β∗t))
)

The above approximate equality may be rewritten as

Eθt

∣∣G∗t,n −Gt,n∣∣2 ∼= θ2t
β∗2t

fθ(β/β∗t) + σ2nfσ(β/β∗t). (10)

for accordingly defined functions fθ and fσ . Graphs of these
functions are presented in Fig. 2. They have the following
properties:
• fθ(0) = fσ(0) = 0,
• both functions are increasing,
• fθ(1) ∼= 0.13533,
• fσ(1) ∼= 0.16809.

Due to similarity of fθ and fσ , let us approximate them by
their average denoted by f , namely

f(β/β∗t) = 0.5fθ(β/β∗t) + 0.5fσ(β/β∗t).

Comparison of Eθt |G∗t,n|2, (9), and Eθt |G∗t,n−Gt,n|2, (10),
leads now to the equation

Eθt

∣∣G∗t,n −Gt,n∣∣2 ∼= (θ2t /β
∗2
t + σ2n)f(β/β∗t)

= Eθt

∣∣G∗t,n|2f(β/β∗t) (11)

which has the following implications
• For the step size β close to its optimal value β∗t , we have
β/β∗t ∼= 1, and Eθt |G∗t,n −Gt,n|2 ∼= 0.15Eθt |G∗t,n|2,

• If Eθt |G∗t,n −Gt,n|2 ≤ 0.13Eθt |G∗t,n|2, the step-size is
smaller than optimal,

• If Eθt
|G∗t,n −Gt,n|2 ≥ 0.17Eθt

|G∗t,n|2, the step-size is
greater than optimal.

1) Implications for optimization in one dimension: The
above discussion suggests the following pattern of step-size
adjustment: (i) θt is adjusted according to Eq. (1), (ii) the
process is divided into periods of length n approximately
satisfying Eq. (7), (iii) the step-size is constant within
each period, (iv) If at the end of a period the difference
0.15|G∗t,n|2 − |G∗t,n − Gt,n|2 happens to be larger than 0,
the step-size should be increased; otherwise, it should be
decreased.

To be more specific, we utilize each estimation period to
estimate the derivative of the et function (6). To this end, let
us analyze the statistics

dt,n = |G∗t,n −Gt,n|2 − 0.15|G∗t,n|2. (12)

From (11) we know that

Eθt
dt,n ∼= Eθt

|G∗t,n|2(f(β/β∗t)− f(1))
∼= (θ2t /β

∗2
t + σ2n)f(1)(−1 + f(1)−1f(β/β∗t)).

Applying the definitions of β∗t , (5), and n, (7), we easily
obtain

θ2t
β∗2t

= n2(aθt)2

nσ2 = n(n− 1)(aθt)2

which leads to

Eθtdt,n = 2n(n− 1)f(1)
(
aθt
)2(− 1 + f(1)−1f(β/β∗t)

)
.

(13)
Let us compare the above equation with the derivative
∂et/∂β, (6). Because for 0 ≤ β < 4β∗t ,

f(1)−1f(β/β∗) ∼= β/β∗t ,

the term
dt,n

1
2n(n− 1)f(1)

(14)

is an approximately unbiased estimator of (∂/∂β)et(β) for
small β. For larger β, the estimators is biased, but it still
indicates a proper sign of the derivative.

2) Optimization in many dimensions: All interesting neu-
ral networks have more than one weight. The above results
must be thus extended to a multidimensional parameter θ
representing neural weights.

In order to determine a single step-size approximately
optimal for each dimension of θ, we define the function that
the step-size is to minimize by

e+t (β) =
m∑
j=1

et,j(β) (15)

where et,j(β) is the quality index of β for j-th dimension
of θt, defined in (4).

The idea of step-size adjustment is the following: (i) θt
is adjusted according to Eq. (1), (ii) the process is divided
into periods of length n satisfying Eq. (7), (iii) the step-
size is constant within each period, (iv) within each period,
the derivative ∂e+/∂β is estimated, and (v) the step-size is
modified to decrease e+ i.e., incremented in the direction
opposite to the gradient estimator of e+.

The values θt, g(θ, ξ), G∗t,n, and Gt,n become now vectors
in Rm. In order to estimate the derivative of the sum (15),
we apply a sum of the estimators (14) of derivatives of the
elements of (15). The estimator has the form

Dt,n =

∑m
j=1 |G∗t,n,j −Gt,n,j |2 − 0.15|G∗t,n|2

2n(n− 1)f(1)

=
‖G∗t,n −Gt,n‖2 − 0.15‖G∗t,n‖2

2n(n− 1)f(1)
.

2015

After each estimation period, the step-size is modified in the
direction opposite to the above estimator.

V. ROBUSTNESS

Most methods of step-size determination induce incre-
mental modifications of this parameter. However, a step-
size that is optimal for a certain weight vector θt, after
some number of learning steps may become too large and
introduce instability into the learning process. The incremen-
tal modifications need some time to adjust the step-size to
new circumstances. This time may be too long to prevent
divergence. The lack of robustness to instability is observed
indeed in a number of studies, and that is probably the most
significant reason why step-size determination schemes are
still a subject of active research.

We propose here a simple way to assure stability of
the learning process: If the process becomes instable, it is
returned to the last point in which it was stable, with a
decreased step-size. The question remains, how to detect the
instability.

The process is divided into periods. Within each period,
two sums of gradients are computed: G∗t,n, (2), with the
use of fixed weights, θt, and Gt,n with the use of changing
weights. If those sums are close to each other, it means that
the average gradients measured in neighboring instants indi-
cate the same coherent improvement direction; the process is
stable. Instability means that there is no coherent improve-
ment direction. It is manifested by discrepancy of G∗t,n and
Gt,n. The algorithm presented below detects instability when
the following condition is satisfied:

‖Gt,n −G∗t,n‖2 > max
1≤i≤n

‖G∗t,i‖2.

VI. ALGORITHM

The algorithm resulting from the discussion above is
presented in Tab. I. It divides the learning process into
estimation periods, in which the step-size β remains fixed.
The meaning of variables t, n, and ξt+n is the same as in
the previous section. The variables θ∗, θ, G, G∗ denote θt,
θt+n, Gt,n, and G∗t,n, respectively. In order to compute n
according to (7) the term (L/M) estimates Eθt

‖g(θt, ξ)‖2
and the term (L′/M ′) estimates ‖∇J(θt)‖2 on the basis of
the following simple property. Let ξ and ξ′ be independent.
We thus have

Eθt
g(θt, ξ)Tg(θt, ξ′)=Eθt

g(θt, ξ)TEθt
g(θt, ξ′)=‖∇J(θt)‖2.

The variable h denotes max1≤i≤n ‖G∗t,i‖2.
In its Line 14. the algorithm check whether the learning

process is stable. Its instability is manifested by large value
of ‖Gt,n − G∗t,n‖2 in comparison to max1≤i≤n ‖G∗t,i‖2. If
instability is detected, the θt parameter comes back to its
value recorded when there was no instability detected.

In Line 16. the algorithm checks if the present estimation
period has come to its end. In this case a new value of the
step-size is assigned (Line 19) and a new exploration period
is begun.

TABLE I
FIXED POINT METHOD OF STEP-SIZE ESTIMATION FOR NEURAL

NETWORK TRAINING. THE COEFFICIENTS SUGGESTED: α1 = 0.9,
α2 = 10−2 , tmin = 100, INITIAL β = 1.

1: Assign t := 1, n := 0, L = L′ = M = M ′ := 0,
2: Initialize θ = θ∗, and β. Assign G = G∗ := 0, h = h̄ := 0.
3: Get new ξt+n.
4: L := L+ ‖g(θ∗, ξt+n)‖2,
5: M := M + 1,
6: If n > 0
7: L′ := max{L′ + g(θ∗, ξt+n−1)T g(θ∗, ξt+n), 0},
8: M ′ := M ′ + 1.
9: G := G+ g(θ, ξt+n),

10: θ := θ − βg(θ, ξt+n),
11: G∗ := G∗ + g(θ∗, ξt+n),
12: h := max{h, ‖G∗‖2}.
13: n := n+ 1, newperiod := false,
14: If ‖G−G∗‖2 > h,
15: θ := θ∗, β := β/2, newperiod := true.
16: If ¬newperiod ∧ t+ n ≥ tmin ∧ n ≥ (L/M)/(L′/M ′),
17: θ∗ := θ,
18: h̄ := max{α1h̄, h/(1− α1)},
19: β := β exp

((
0.15‖G∗‖2 − ‖G−G∗‖2) /h̄),

20: M̄ = max{α1M,α2t},
21: L := L M̄

M
, M := M̄ ,

22: L′ := L′ M̄
M′ , M ′ := M̄ ,

23: t := t+ n, newperiod := true.
24: If newperiod
25: G = G∗ := 0, h := 0, n := 0,
26: Goto Line 3.

In Line 18. the scaling factor for step-size adjustment is
determined and in Line 20. the memory of Eθt

‖g(θ∗, ξ)‖2
and ‖∇J(θt)‖2 estimators is shortened.

In Lines 18 and 20 coefficients α1 and α2 are applied
to define ,,memory capacity” of estimators. The larger these
values are, the larger capacity. In Line 16 coefficient tmin

prevents from adjusting the step-size when the estimators
are based on too little data. Also, the algorithm starts with
a certain initial value of the step-size. In Tab. I values
of all those four coefficients are suggested, but it seems
that in practice the algorithm is highly insensitive to these
parameters. It also does not appear that their optimal values
are application dependent. What is application-dependent
indeed is the length of an estimation period, n, that satisfies
the last condition in Line 16. However, this value is estimated
on the basis of the learning process observation.

VII. EXPERIMENTAL STUDY

We test the proposed step-size adaptation scheme on the
problem of 2D Gabor function approximation. The function
is given by formula

g(x1, x2) =
1

2π(0.5)2
exp

(−x2
1 − x2

2

2(0.5)2

)
cos
(
2π(x1 + x2)

)
.

For this problem, training data are generated where input
variables are sampled randomly with uniform distribution in
the range [0.5, 0.5]. The desired output fed to a network is
given by

y = g(x1, x2) + η,

2016

Fig. 3. 2D Gabor function approximation. Mean square error vs. step
number the step-size adjusted with the use of the fixed point method and
the method based on Lapunov stability [7] for various values of its parameter
µ. Each curve averages 50 runs.

Fig. 4. 2D Gabor function approximation. Mean square error vs. step
number the step-size adjusted with the use of the fixed point method and
various values of constant step-size. Each curve averages 50 runs.

where η is a normal noise with unit variance. We approximate
the same function as in [7], but train the network with noised
data to make the problem resemble more the circumstances in
which neural networks are applied in reinforcement learning.
The network trained is a two-layer perceptron with 20
sigmoidal (arctan) hidden neurons and a linear output neuron.
Initial weights of the hidden neurons are drawn randomly
from the normal distribution N(0, 1) and initial weights of
the output neurons are equal to zero.

We compare time series of mean-square error for learning
with the step-size adjusted by the method presented here
and the method based on Lapunov stability [7], for various
value of its parameter µ. The resulting learning curves are
presented in Fig. 3. The fixed point method works better
than the alternative for any value of its parameter µ: for µ
smaller than 0.01, convergence of this method is slow, while
for µ larger than 0.05, the ultimate approximation is weak.
We also compare the fixed point method against constant
step-sizes. Fig. 4 presents the results: For step-sizes smaller
than 0.002 convergence is slow, while for step-sizes larger
than 0.005, oscillations of the learning process prevent good
approximation. Any constant step-size works worse than the
one adapted by the fixed point method.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper a schema of step-size adaptation has been
introduced that has several advantages:

• It is fully autonomous in the sense that it does not
rely on any problem–dependent coefficients, such as the
meta-step-size.

• The schema is not based on assumptions concerning the
momentary loss function optimized through learning, as
the algorithm presented in [7].

• The complexity of the computation leading to a step-
size adjustment is linear in number of neural weights,
unlike Extended Kalman Filter [5].

• The schema makes the learning stable and efficient.
Effectiveness of the proposed method is confirmed experi-
mentally.

The empirical results encourage further development of
the presented approach. Another step-size adaptation schema
is left to be developed namely, the method that assigns a
separate step-size to each weight of the network. Also, limit
properties of the presented approach must be investigated
as well its effectiveness should be compared experimentally
with a wider range of alternative methods.

REFERENCES

[1] M. T. Hagan and M. Menhaj, “Training feedforward networks with
the marquardt algorithm,” IEEE Trans. on Neural Networks, vol. 5,
no. 6, pp. 989–993, 1994.

[2] E. Castillo, B. Guijarro-Berdinas, O. Fontenla-Romero, and A. Alonso-
Betanzos, “A very fast learning method for neural networks based on
sensitivity analysis,” Journal of Machine Learning Research, vol. 7,
pp. 1159–1182, 2006.

[3] L. B. Almeida, T. Langlois, and J. D. Amaral, “On-line step size
adaptation,” INESC/IST, Tech. Rep., 1997.

[4] R. A. Jacobs, “Increased rates of convergence through learning rate
adaptation,” Neural Networks, vol. 1, no. 4, pp. 295–308, 1988.

[5] Y. Iiguni, H. Sakai, and H. Tokumaru, “A real time learning lagorithm
for a multilayered neural network based on extended kalman filter,”
IEEE Trans. on Signal Processing, vol. 45, no. 6, pp. 959–966, 1992.

[6] N. N. Schraudolph and X. Giannakopoulos, “Online independent
component analysis with local learning rate adaptation,” in Advances
in NIPS, vol. 12, 2000, pp. 789–795.

[7] L. Behera, S. Kumar, and A. Patnaik, “On adaptive learning rate that
guarantees convergence in feedforward networks,” IEEE Trans. on
Neural Networks, vol. 17, no. 5, pp. 1116–1125, 2006.

[8] P. Wawrzyński, “Real-time reinforcement learning by sequential actor-
critics and experience replay,” Neural Networks, vol. 22, pp. 1484–
1497, 2009.

[9] R. S. Sutton, “Adapting bias by gradient descent: An incremental
version of delta-bar-delta,” in Proc. of the 10th NCAI, 1992, pp. 171–
176.

[10] N. N. Schraudolph, J. Yu, and D. Aberdeen, “Fast online policy
gradient learning with SMD gain vector adaptation,” in Advances in
NIPS, vol. 18, 2006, pp. 1185–1192.

[11] I. Noda, “Recursive adaptation of stepsize parameter for non-stationary
environments,” in Principles of Practice in Multi-Agent Systems, 2009,
pp. 525–533.

[12] H. J. Kushner and G. Yin, Stochastic Approximation Algorithms and
Applications. Springer-Verlag, 1997.

2017

