
Efficient on-line learning with diagonal
approximation of loss function Hessian

Paweł Wawrzyński
Institute of Computer Science

Warsaw University of Technology
Warsaw, Poland

pawel.wawrzynski@pw.edu.pl

Abstract—The subject of this paper is stochastic optimization
as a tool for on-line learning. New ingredients are introduced to
Nesterov’s Accelerated Gradient that increase efficiency of this
algorithm and determine its parameters that are otherwise tuned
manually: step-size and momentum decay factor. In this order
a diagonal approximation of the Hessian of the loss function is
estimated. In the experimental study the approach is applied to
various types of neural networks, deep ones among others.

Index Terms—on-line learning, accelerated gradient, parame-
ter autotuning, deep learning.

I. INTRODUCTION

The general problem of stochastic optimization is consid-
ered here [1]: There exists a loss function, J : Rn 7→ R,
whose value and gradient are not given, and only estimates of
its gradient are available. Namely, a generator produces data
samples on the basis of which vectors are computed, whose
expected values are equal to the gradient of the loss function.
This problem is commonly encountered in machine learning.
A system e.g., a neural network, is to behave efficiently on
average, but a single instant of its operation only provides
a clue how the system could behave better in this instant,
which is an estimate of the average behavior improvement.

One of algorithms applicable in on-line learning is Ac-
celerated Gradient (AG) [2]. As most such algorithms, its
application to a given problem requires setting coefficients,
namely the step-size and the momentum decay factor, that are
problem dependent and fundamentally impact overall training
efficiency. Generally the speed of the learning process is
increasing with those parameters, hence they should be as large
as possible. However, when they are too large they make the
process unstable.

In this paper a bound for step-sizes in AG is derived above
which the learning process becomes unstable. This bound is
related to the largest eigenvalue of the loss function’s Hessian.
A method of estimation of a diagonal approximation of the
Hessian is introduced here. Those results lead to a family of
on-line learning algorithms. The first of them extends the Ac-
celerated Gradient such that it applies the approximation of the
Hessian to determine the largest step-size and the momentum

This work was supported in part by the FlexNet project: “Flexible IoT
Networks for Value Creators” and it was co-funded in part by the National
Centre for Research and Development in Poland under the EUREKA 2018
Programme. We gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Titan X Pascal GPU used for this research.

decay factor that are just below the stability bounds. Another
algorithm within this family introduces scaling of gradients.

The reminder of the paper is organized as follows. The next
section presents related work. In Sec. III formal definition of
the problem considered here is given. In Sec. IV a simplified
stochastic optimization problem is analyzed. Sec. VI discusses
the design of a stochastic optimization algorithm inspired by
Newton’s method. Sec. VII presents the family of algorithms.
The following section reports the experimental study with
multiple learning problems. The last section concludes the
paper.

II. RELATED WORK

Most popular methods of stochastic optimization and on-
line learning are stochastic gradient descent (SGD) [3], classic
momentum (CM) [4]–[7], and accelerated gradient (AG) [2].
All these methods require a coefficient called step-size. Also,
CM and AG require another coefficient, called momentum
decay factor. Those coefficients fundamentally impact the
optimization process, and their right values are generally
different for different problems. Providing those coefficients
is easier when the gradients are scaled. Scaling of gradients
for SGD is applied in AdaGrad [8] and AdaDelta [9], and
scaling them for CM is applied in ADAM [10].

Another approach to on-line learning is based on the Ex-
tended Kalman Filter (EKF) [11]. In principle, it is parameter-
less and efficient, but its computational complexity is overpro-
portional in number of optimized parameters. Therefore, EKF
is in fact not applicable in deep learning, and thus not popular
nowadays.

In recent years, tremendous progress has been made in
the field of online convex optimization [12] which considers
a simplified version of the problem analyzed here in which
J is convex. [13] introduced MetaGrad that runs several
instances of SGD with different step-sizes and aggregates their
results. That method achieves logarithmic regret bound on the
unregularized hinge loss. It is generally parameter-free but
requires a maximum Lipschitz constant of the losses. The
paper [14] introduced a method that does not need any initial
knowledge of the function being optimized, neither it requires
any parameters, but that function needs to be α-acutely convex.
In every step the method minimizes a certain approximation

IJCNN 2019 - International Joint Conference on Neural Networks, Budapest Hungary, 14-19 July 2019

978-1-7281-2009-6/$31.00 ©2019 IEEE paper N-19186.pdf

of the J function based on all gradient estimates registered so
far.

The Hessian of the loss function has been considered
in [15] and [16] where the loss meant the error of neural
function approximation. The diagonal of the loss function’s
Hessian was derived there from the structure of the neural
approximator.

There have been several attempts to design a method of
computing step-sizes during the run of SGD. These methods
include delta-delta [17] and delta-bar-delta [18]. A method
of [19] computes step-sizes for SGD with variance reduction
[20]. In some methods step-sizes are defined separately for
each training sample to assure Lyapunov stability of the
learning process [21], [22]. Methods of [23] and [24] vary
step-sizes on the basis of the concept of terminal attractors.

Many techniques of adaptive step-size estimation were
designed for specific applications. Those include approximate
dynamic programming [25], recursive least-squares approxi-
mation [26], stochastic variational inference [27], and online
linear optimization [28].

To the authors’ best knowledge the only methods that adjust
on-line the momentum decay factor in the classic momentum
have been introduced in [29] and [30].

III. PROBLEM FORMULATION

The general issue of stochastic optimization is considered
to be defined as follows. There is a loss function,

J : Rn 7→ R. (1)

Its gradient, ∇J , is not available but a generator is available
that produces independent, identically distributed random sam-
ples, ξ, that are applied to compute unbiased estimators of∇J .
Namely, a function g is given such that

E[g(θ, ξ)] = ∇J(θ). (2)

The random element in the above expectation is ξ. In the
context of neural networks θ denotes neural weights, ξ denotes
data samples, and g(θ, ξ) is computed by means of gradient
backpropagation.

In the below equations t denotes discrete time, θt denotes
points in the domain, mt is an auxiliary vector called mo-
mentum, βt > 0 is the step-size, µt ∈ (0, 1) denotes the
momentum decay factor.

The currently best known procedure to find minimum of J
is the classic momentum (CM) [4], [5], namely

mt = µtmt−1 − βtg(θt, ξt)

θt+1 = θt +mt, t = 0, 1, 2, . . .
(3)

A little less known procedure is the accelerated gradient (AG)
[2], namely

mt = µtmt−1 − βtg(θt + µtmt−1, ξt)

θt+1 = θt +mt, t = 0, 1, 2, . . .
(4)

CM and AG are similar. CM first computes the gradient, and
pushes θt along the momentum, and the gradient. AG uses

the gradient computed at the point to which θt is already
pushed by the momentum. In words, AG uses more up-to-
date gradient, therefore it is usually a little faster than CM.

In this paper we consider a procedure that is a generalization
of (4), namely

mt = µtmt−1 − bt ◦ g(θt + µtmt−1, ξt)

θt+1 = θt +mt, t = 0, 1, 2, . . .
(5)

where bt is a vector and “◦” denotes Haddamard (elementwise)
product. The problem considered here is to tune bt and µt on
the run of the procedure (66) to make it most efficient.

IV. QUADRATIC CASE

Let us consider application of AG (4) to a quadratic case
with H being a non-negative matrix and ξ being a random
vector, namely

J(θ) = (1/2)θTHθ (6)
g(θ, ξ) = Hθ + ξ (7)

Eξ = 0, EξξT = σ2I. (8)

Let W be a quadratic matrix whose columns are eigenvectors
of H , orthogonal to one another. Then

WTW = I, H = WΛWT , (9)

where Λ is a diagonal matrix that contains egienvalues of H .
Let us express the J function (6), and all the entities necessary
to find its minimum with AG (4) in the coordinate system
defined by W . The entities in the new coordinate system will
be denoted with prims. Namely, we have

θ = Wθ′, θ′ = WT θ (10)

ξ = Wξ′, ξ′ = WT ξ (11)

J ′(θ′) = (1/2)θ′TΛθ′ = (1/2)
∑
i

λiθ
′2
i (12)

g′(θ′, ξ′) = WT g(θ, ξ) = Λθ′ + ξ′ (13)

Eξ′ = 0, Eξ′ξ′T = WTσ2IW = σ2I. (14)

We can see that minimization of J is equivalent to n indepen-
dent scalar minimization problems along eigenvectors of H .
Let us take a closer look at the scalar problem.

Scalar model

Let us consider application of AG (4) where θt,mt ∈ R to
a scalar quadratic function

J(θt) = (1/2)λθ2t (15)
gt = λ(θt + µmt−1) + ξt (16)
mt = µmt−1 − βgt (17)
θt+1 = θt +mt (18)

for λ > 0.
Corollary:
On the above assumptions, and for

βλ <
4µ2 + µ− 1 +

√
9µ2 + 6µ+ 1

2µ(2µ+ 1)
, (19)

it is true that

lim
t→∞

Eθ2t =
σ2(β/λ)(1 + µ− µβλ)

2− 2µ2 + βλ(4µ2 + µ− 1)− β2λ2µ(2µ+ 1)
.

(20)
Proof:
In order to derive (20) one analyzes Em2

t from (17), Eθ2t+1

from (18), and Emtθt from both these equations.
From (18) we have

Eθ2t+1 = Eθ2t + 2Eθtmt + Em2
t . (21)

One considers t → ∞ and limit distributions for θt, mt, and
θtmt. All the expected values till the end of this derivation
should be understood as if they had the prefix limt→∞.
Therefore Eθ2t = Eθ2t−1, and from (21) one has

Eθtmt = −(1/2)Em2
t . (22)

From (17) and (18) one obtains

mt+1 = µmt − βλ(θt+1 + µmt)− βξt+1 (23)
= µmt − βλ(θt +mt + µmt)− βξt+1 (24)
= (µ− βλ− µβλ)mt − βλθt − βξt+1. (25)

Since ξt+1 is zero-mean noise, the expected squares of the
sides of the above equation are equal to

Em2
t+1 =(µ− βλ− µβλ)2Em2

t + β2λ2Eθ2t (26)

− 2βλ(µ− βλ− µβλ)Emtθt + β2σ2. (27)

Next, from the above and (22) one obtains

Em2
t

(
1− (µ− βλ− µβλ)2 − βλ(µ− βλ− µβλ)

)
(28)

= β2λ2Eθ2t + β2σ2 (29)

Em2
t

(
1− (µ− βλ− µβλ)µ(1− βλ)

)
(30)

= β2λ2Eθ2t + β2σ2 (31)

By multiplying (18) and (25) one obtains

θt+1mt+1 (32)

= (θt +mt)
(
(µ− βλ− µβλ)mt − βλθt − βξt+1

)
(33)

= −βλθ2t + (µ− βλ− µβλ)m2
t (34)

+ (µ− 2βλ− µβλ)θtmt + ξt+1constt (35)

Simple transformations of the above equations and introducing
(22) lead to

[1− µ+2βλ+ µβλ]Eθtmt = (36)

= −βλEθ2t + (µ− βλ− µβλ)Em2
t (37)

[1− µ+2βλ+ µβλ]Em2
t = (38)

= 2βλEθ2t − 2(µ− βλ− µβλ)Em2
t (39)

[1 + µ−µβλ]Em2
t = 2βλEθ2t (40)

Combination of (31) and (40) leads to

2βλ[1− (µ−βλ−µβλ)µ(1−βλ)]

1 + µ− µβλ
Eθ2t = β2λ2Eθ2t + β2σ2

(41)
βλ[2− 2µ2 + βλ(4µ2+µ−1)− β2λ2µ(2µ+1)]

1 + µ− µβλ
Eθ2t = β2σ2

(42)

which, in turn, leads to (20).
Although the term (20) is hardly self-explanatory, it leads

to useful conclusions:
1) The steady-state loss i.e.,

lim
t→∞

EJ(θt) = (1/2)λ lim
t→∞

Eθ2t (43)

is growing with β.
2) For β above a certain threshold related to λ the process

(18) becomes unstable, and then Eθ2t grows to infinity.
3) For µ = 0 the aforementioned threshold is equal to

2λ−1; it decreases for larger µ, and for µ approaching
1 it is equal to (4/3)λ−1.

4) For β = λ−1 we have

lim
t→∞

EJ(θt) = (1/2)βσ2, (44)

regardless of µ.
5) For µ� 1− β/λ we have

lim
t→∞

EJ(θt) ∼=
βσ2

4(1− µ)
. (45)

6) For µ = 1 we have

lim
t→∞

EJ(θt) =
σ2(2− βλ)

2λ(4− 3βλ)
. (46)

Hence, the steady-state loss grows with µ, but only to
the above threshold.

The above analysis leads to the following conclusion about
the multidimensional case (6): AG is stable as long as the
steps-size, β, is smaller than (4/3)λ−1 where λ is the largest
eigenvalue of the Hessian of the loss function, J . Therefore,
we set the step-size equal to the inverse of the largest eigen-
value of the Hessian approximation, and devote another section
to estimation of this approximation.

V. HESSIAN

A. Hessian approximation

Let D : Rn 7→ Rn×n be a function that transforms a vector
to a diagonal matrix such that

Di,i(η) = exp(ηi). (47)

An approximation of a Hessian analyzed in this paper takes
the form

Ĥ = D(η) (48)

where η ∈ Rn is a parameter. It is obvious that the above
matrix is symmetrical and positively definite (also easily in-
vertible). Most importantly, it is easy to see that multiplication

of Ĥ by any vector requires O(n) operations even though Ĥ
has n2 elements.

Because Ĥ is diagonal and positively definite, it is easy to
indicate its largest eigenvalue. It is equal to

λ∗ = exp(max
i
ηi). (49)

The Hessian, ∇2J , has the following property for r ∈ Rn

∇J(θ + r) = ∇J(θ) +∇2J(θ)r + o(r). (50)

Basing on this property we require that the approximation of
the Hessian minimizes the following quality index

Q(η) =AverageQt(η) (51)

Qt(η) =‖g(θ + rt, ξt)− Ĥrt − g(θ, ξt)‖2, (52)

where (rt, ξt), t = 1, 2, . . . is a certain sequence. For a given
b = g(θ + rt, ξt) − g(θ, ξt) and Ĥ = D(η), Qt(η) has the
following derivative with respect to η:

∂Qt
∂ηT

= Ĥrt ◦ (Ĥrt − b) + rt ◦ Ĥ(Ĥrt − b) (53)

In order to approximate the Hessian, η is adjusted conversely
to the above derivative. Section V-B is devoted to derivation
of eq. (53).

We will apply the type of adjustment inspired by ADAM
[10]. Namely, average square derivatives (53) are registered in
a vector, ψη , and then the adjustments are scaled with inverse
root squares of the elements of ψη .

B. Derivation of ∂Qt/∂ηT

In order to derive (53) some elementary properties need to
be recalled.

Let q : Rn 7→ R be a function that transforms a vector to
a scalar. By

∂q(v)

∂vT
(54)

we understand a vector with the shape of v that contains partial
derivatives, namely [

∂q(v)

∂vT

]
i

=
∂q(v)

∂vi
. (55)

Let us consider D (47), vectors η, b, and c of the same shape.
We have

∂bTD(η)c

∂ηi
=
∂
∑
i bi exp(ηi)ci
∂ηi

= bi exp(ηi)ci. (56)

Therefore,

∂bTD(η)c

∂ηT
= b ◦D(η)c = D(η)b ◦ c. (57)

Now we are closer to derive (53). Namely,

Qt(η) =‖D(η)rt − b‖2 (58)

=rTt D(η)D(η)rt − 2bTD(η)rt + bT b. (59)

Derivation of the derivative of the above function with respect
to η requires several applications of (57).

VI. MOMENTUM, STABILITY, AND NORMALIZATION

A. Momentum decay factor

In order to control the momentum decay factor, i.e., the
term µt in (3) and (4), we notice that this parameter does
not influence stability of AG, which is entirely determined
by the step-size. We introduce the following principle for
setting that parameter. Eq. (20) clearly indicates that θ wanders
longer along those eigenvectors of the Hessian with small
eigenvalues. We want to delimit such wandering, and set the
following principle: Each element of θ, denoted by θi, should
traverse at most δi when it is pushed only by its inertia, where
δi is the radius of the interval in which the optimal value of
θi is expected to be. If i-th element of m is denoted by mi,
then under such circumstances θi will traverse in the future
the distance

mi + µmi + µ2mi + · · · = (1− µ)−1mi. (60)

This distance is to be at most as long as δi. Therefore

δi ≥ (1− µ)−1 max
i
|mi| (61)

and
µ = 1−max

i
|mi/δi|. (62)

The term δi defined above results from the same reasoning
as the radius of the interval from which the initial value of
θi is sampled. Here we focus on neural network training, and
therefore we set

δi = 1/2 (63)

when θi being a bias in a neuron, and

δi = 1/
√
di (64)

for di being the dimension of the input of the neuron to which
θi belongs.

B. Instability detection

In the previous sections the principle was established to
set the step-size equal to the inverse of the largest eigenvalue
of the Hessian (approximation). However, these eigenvalues
are estimated during the learning process. Before they are
estimated with sufficient accuracy, the step-size may be large
enough to cause instability of the process.

Obvious symptoms of instability are excessive values of
mi. Therefore, we propose to detect instability by checking
whether mi is large in comparison to δi. Namely, instability
is detected when

max
i
|mi/δi| > c (65)

where c ∈ (0, 1) is a certain threshold parameter. In the
experimental study we apply c = 1/2. When instability is
detected, the estimates of the eigenvalues are increased, and
consequently the step-size is decreased.

C. Normalization

As long as AG (4) is convergent, a generalized procedure,

mt = µtmt−1 − βtMg(θt + µtmt−1, ξt)

θt+1 = θt +mt, t = 0, 1, 2, . . .
(66)

is also convergent, where M is a positively definite matrix.
Procedure (66) may by understood as (4) in a linearly trans-
formed domain. In ADAM [10] elements of g are scaled by
root squares of their average squares. A corresponding version
of AG could have the following form

ψθ = Averagei<t(gi ◦ gi)
mt = µtmt−1 − βtg(θt + µtmt−1, ξt)�

√
ψθ + ε

θt+1 = θt +mt, t = 0, 1, 2, . . .

(67)

where “◦” denotes elementwise product and “�” denotes
elementwise division, ε is small positive constant that prevents
division by zero, and

√
v + ε denotes a vector of root squares

of the elements of v increased by ε.
Technically, the way to calculate average squares on-line

follows. Let xt, t = 1, 2, 3, ... be a sequence. Let x̄t be the
exponentially moving average of (xt), namely

x̄t =

∑t−1
i=0 γ

ixt−i∑t−1
i=0 γ

i
. (68)

Elementary transformation reveal that

x̄t = γ
1− γt−1

1− γt
st−1 +

1− γ
1− γt

xt. (69)

Hence, the way to keep ψθ in (67) updated is as follows

ψθ ← γ
1− γt−1

1− γt
ψθ +

1− γ
1− γt

gt ◦ gt. (70)

VII. ALGORITHM

Algorithms 1 (S2AG) and 2 (S2AGS) result from the
discussion in previous sections. Alg. 1 applies the Hessian
approximation (48) to determine the steps-size and the concept
presented in Sec. VI-A to compute the momentum decay
factor. Alg. 2 also encompasses gradient scaling similar to
that applied by ADAM [10].

Initially, both algorithms operate exactly like Nesterov’s
Accelerated Gradient (AG) with step-size β0 and momentum
decay factor µ0, where β0 and µ0 are given as coefficients.
S2AG eventually operates as AG with step-size equal to β1/λ
and momentum decay factor equal to µ. The term λ is an
estimate of the largest eigenvalue of the Hessian of the cost
function. The term β1 ∈ (0, 1] is a coefficient. The term µ is
computed within the algorithm according to the discussion in
Sec. VI-A. In most cases when the algorithm uses a certain
estimate e.g. λ, it is a result exponential smoothing, with the
decay factor γ, of the the raw estimate.

The algorithm computes gradient estimates at two points,
namely θt and θt + 2µtm. The difference between these
estimates is applied to estimate the Hessian. Their average
estimates the gradient at the point θt+µtm as required by the
AG algorithm.

Algorithm 1 S2AG: Self-Stabilizing Accelerated Gradient
1: Initialize θ
2: λ← β1/β0, µ← µ0, γ ← γ0, t← 0
3: Fill η with ln(β1/β0)
4: Fill m with 0-s and ψη with 1-s
5: t← t+ 1
6: Get ξt
7: g′ ← g(θ, ξt)
8: g′′ ← g(θ + 2µm, ξt)
9: r ← 2µm

10: g ← 0.5(g′ + g′′)
11: m← µm− (β1/λ)g
12: If maxi |mi/δi| > 1/2:
13: η ← η + ln 2
14: λ← 2λ
15: Fill m with 0-s
16: Go to Line 5
17: θ ← θ +m
18: λ← exp(maxi ηi)
19: µ← γµ+ (1− γ)(1−maxi |mi/δi|)
20: γ ← max{µ, γ0}
21: b← g′′ − g′
22: ∂Qt

∂ηT
← Ĥr ◦ (Ĥr − b) + r ◦ Ĥ(Ĥr − b)

23: ψη ← γ 1−γt−1

1−γt ψη + 1−γ
1−γt

∂Qt

∂ηT
◦ ∂Qt

∂ηT

24: η ← η − β2 ∂Qt

∂ηT
�
√
ψη + ε0

25: If the stop criterion is not met, go to Line 5

Algorithm 2 S2AGS: Self-Stabilizing Accelerated Gradient
with gradient Scaling.

. . . Like in Alg. 1
4: Fill m with 0-s and ψη , ψθ with 1-s

. . . Like in Alg. 1
11a: ψθ ← γ 1−γt−1

1−γt ψθ + 1−γ
1−γt gt ◦ gt.

11b: m← µm− (β1/λ)g �
√
ψθ + ε1

. . . Like in Alg. 1
22: b← (g′′ − g′)�

√
ψθ + ε0

. . . Like in Alg. 1

In Lines 1–4 the algorithm initializes its data structures to
operate at first as discussed above. In Lines 6–8 it retrieves
data and computes gradient estimates at two points. In Lines
11 and 17 the algorithm performs basic operations of AG. In
Lines 12–16 it verifies stability and react accordingly in case of
instability as discussed in Sec. VI-B. In Line 18 it updates the
maximum eigenvalue of the Hessian as discussed in Sec. V-A.
In Line 19 it updates the momentum decay factor according
to Sec. VI-A. In the remaining part the algorithm updates the
Hessian approximation according to Sec. V-A. In Lines 22 and
24 the term “◦” denotes Haddamard (elementwise) product,
and “�” denotes elementwise division. Also, the square root
that appears in Lines 11b and 24 is elementwise.

The algorithms require the following coefficients:
β0 — the initial learning rate; default β0 = 1,

µ0 — the initial momentum decay factor; default µ0 = 1/2,
β1 — eventually gradients are applied multiplied by β1/λ;

default β1 = 1 but it may be smaller if for some reasons
the learning should be more averaging e.g., in its final
stage,

γ0 — minimal decay factor for exponential smoothing; in
our experiments γ0 = 0.99,

β2 — meta-step-size for adjustments of η; default β2 = 1−
γ0 = 10−2,

ε0 — a small constant that prevents division by zero in
scaling increments of η; default ε0 = 10−32,

ε1 — a small constant that prevents division by zero in
scaling derivatives; default ε1 = 10−8 is taken from
Tensorflow implementation of ADAM.

In all experiments reported in the following section default
values of the coefficients are applied.

VIII. EXPERIMENTAL STUDY

This section reports experiments with the algorithms pre-
sented in the previous section. The algorithms are tested on
training shallow neural classifiers, deep dense autoencoders,
and deep convolutional autoencoders.

Four new algorithms are examined:
• Self-Stabilizing Accelerated Gradient (S2AG) — Algo-

rithm 1
• Self-Stabilizing Accelerated Gradient with gradient Scal-

ing (S2AGS) — Algorithm 2.
The new algorithms are compared to the following known
ones: the classic momentum (CM), the accelerated gradient
(AG), ADAM, AdaGrad, AdaDelta. These algorithms are
considered in two settings: with optimized parameters e.g.,
CM/o, and with default parameters e.g., ADAM/d. The op-
timized parameters are the momentum decay factor and the
step-size selected from the Cartesian product {0.9, 0.99} ×
{. . . , 0.1, 0.05, 0.02, 0.01, . . . } such that they gave the best
ultimate error. The default parameters are ones applied by
Tensorflow when their values are not provided.

Table I presents the analyzed learning problems along with
their basic parameters, Table II demonstrates the parameters
that resulted from the aforementioned optimization, and Ta-
ble III presents ultimate errors obtained by all algorithms for
all learning problems.

A. Shallow neural classifiers

We take random 10 classification problems from UCI Ma-
chine Learning Repository [31]. They are listed in the first part
of Tab. I. For each we build a neural classifier with a single
hidden, logistic sigmoidal layer, and a linear output layer. The
number of neurons in the output layer is equal to the number
of classes, and the number of hidden neurons is roughly
optimized in preliminary experiments aiming at minimization
of the test error. (Below we only report the training error, as the
subject of the study is optimization rather than generalization.)
Initial weights of the hidden neurons are drawn from the
normal distribution N(0, σ2) where σ = 1/

√
dim(input).

Networks inputs are scaled with their means and standard

deviations. Required outputs are one-hot vectors. The loss
reported is mean-square error.

B. Dense autoencoders

There are three tasks, each based on a database that contains
grayscale images. They are fed to a dense autoencoder neural
network. The task for the network is to produce output equal
to input. Hidden layers of the networks have the following
sizes:
• Curves: 400, 200, 100, 50, 25, 6, 25, 50, 100, 200, 400.
• MNIST: 1000, 500, 250, 30, 250, 500, 1000.
• Faces: 2000, 1000, 500, 30, 500, 1000, 2000.

All layers in the networks are logistic sigmoidal, with the
exception of bottleneck layers, and the output layer in Faces,
which are linear. Sparse weights initialization is applied.
Details of the experimental setting are adopted from [32] and
[33].

C. Convolutional autoencoders

A convolutional autoencoder neural network is fed with
color images from CIFAR10 dataset. The required output is
equal to the input. The layers in the network are as follows:

1) Convolution with 32 filters 3×3, ReLU activation,
2) Max pooling 2×2, step 2,
3) Convolution with 64 filters 3×3, ReLU activation,
4) Dense layer with 512 units, linear activation,
5) Dense layer with 16·16·3 units, logistic sigmoid activa-

tion,
6) Transposed convolution with 32 filters 3×3, ReLU ac-

tivation,
7) Resizing ×2,
8) Transposed convolution output with 3 filters 3×3, logis-

tic sigmoid activation.
Initial weights of the hidden neurons are drawn with the xavier
method. The loss reported is mean-square error.

D. Results

The results are depicted in Tab. III. The smallest error for
each problem is indicated by bold face font. The following
observations can be made:
• In most cases (11 cases out of 14) the winner is either

S2AGS or S2AG.
• Usually (in 9/14 cases) ADAM with optimized parame-

ters (ADAM/o) gives slightly worse results than S2AGS.
Rarely (in 3/14 cases) ADAM/o outperforms S2AGS.

• In most cases (13/14) manual optimization of parameters
of ADAM yield significant improvement of its behavior.
However, its default parameters make that algorithm
perform well in comparison others, except S2AG and
S2AGS.

• CM and AG also have their moments of glory. Each
of them yield the smallest error twice. The case of
CM and Robot is especially interesting: The algorithm
outperformed all the rest so much to oblige us to double-
check the setting and repeat all the experiments with
Robot. However, the results were the same.

TABLE I
BASIC PARAMETERS OF ANALYZED LEARNING PROBLEMS.

Problem Abr* Size Idim Odim Ncnt Mbs Len
Default of credit card clients CCard 30000 32 2 21 200 107

Dota2 games results Dota2 102944 116 2 55 200 107

HTRU2 Htru2 17898 8 2 34 200 107

Sensorless drive diagnosis Motor 58509 48 11 89 200 107

Poker hand Poker 1025010 10 10 89 200 107

Wall-following Robot navigation Robot 5456 24 4 34 200 107

Statlog shuttle Shuttle 58000 9 7 34 200 107

Skin segmentation Skin 245057 3 2 21 200 107

Spambase Spam 4601 57 2 34 200 107

First order theorem prooving Theo 6118 51 6 89 200 107

Curves Curves 20000 784 784 — 200 108

Handwritten Digits MNIST MNIST 60000 784 784 — 200 108

Olivetti Faces Faces 165600 625 625 — 200 108

CIFAR10 CIFAR10 50000 3072 3072 — 200 2·107

* Abr — problem name abbreviation, Size — number of samples in the dataset, Idim — input dimension, Odim — output dimension, Ncnt — number of
neurons in hidden layer, Mbs — mini-batch size, Len — number of samples processed before termination (i.e., a run takes Len/Mbs steps).

TABLE II
STEP-SIZES AND MOMENTUM DECAY FACTORS OPTIMAL FOR EACH PROBLEM.

Alg. CM AG ADAM AGrad ADelta
Problem ss* mdf* ss mdf ss mdf ss ss mdf
CCard 0.5 0.9 0.02 0.99 0.05 0.9 0.2 0.05 0.99
Dota2 0.05 0.99 0.05 0.99 0.002 0.99 0.2 0.2 0.99
Htru2 0.02 0.99 0.05 0.99 0.05 0.9 0.2 1 0.99
Motor 0.02 0.99 0.05 0.99 0.002 0.99 0.05 1 0.9
Poker 0.01 0.99 0.05 0.99 0.005 0.9 0.2 0.1 0.99
Robot 0.2 0.99 0.1 0.99 0.05 0.9 0.2 0.2 0.99
Shuttle 0.2 0.99 0.1 0.99 0.02 0.9 0.2 0.05 0.99
Skin 0.1 0.9 0.1 0.99 0.05 0.9 0.5 1 0.9
Spam 0.2 0.99 0.1 0.99 0.02 0.9 0.2 0.2 0.99
Theo 0.01 0.99 0.02 0.99 0.01 0.9 0.2 0.2 0.99
Curves 0.01 0.9 0.002 0.9 0.002 0.9 0.02 1 0.9
MNIST 0.02 0.9 0.02 0.9 0.002 0.9 0.02 1 0.99
Faces 0.001 0.99 0.001 0.99 0.0002 0.99 0.01 0.5 0.99
CIFAR10 10−5 0.99 10−5 0.99 0.001 0.9 0.005 0.5 0.99

* ss — step-size, mdf — momentum decay factor.

TABLE III
RESULTING AVERAGE ERRORS. EACH NUMBER AVERAGES 10 RUNS.

Alg. CM AG ADAM AdaGrad AdaDelta S2AG S2AGS
Problem /d* /o* /d /o
CCard 0.262 0.264 0.262 0.260 0.266 0.342 0.274 0.265 0.258
Dota2 0.422 0.418 0.412 0.394 0.405 0.500 0.417 0.426 0.394
Htru2 0.0326 0.0300 0.0313 0.0293 0.0294 0.1033 0.0295 0.0290 0.0299
Motor 0.0642 0.0480 0.0668 0.0415 0.0829 0.802 0.0872 0.0526 0.0386
Poker 0.451 0.315 0.448 0.327 0.477 0.569 0.532 0.358 0.519
Robot 0.0642 0.0908 0.1198 0.1064 0.1270 0.6178 0.1311 0.0975 0.0941
Shuttle 0.0064 0.0045 0.0084 0.0038 0.0093 0.2768 0.0218 0.0053 0.0033
Skin 0.0070 0.0055 0.0074 0.0043 0.0074 0.2573 0.0102 0.0054 0.0048
Spam 0.0245 0.0230 0.0279 0.0172 0.0257 0.4270 0.0449 0.0240 0.0151
Theo 0.442 0.409 0.430 0.393 0.440 0.720 0.457 0.419 0.380
Curves 0.178 0.312 0.158 0.157 0.444 15.930 0.348 0.122 0.104
MNIST 1.03 1.03 1.27 1.12 2.11 15.351 1.30 1.03 1.07
Faces 15.99 16.81 15.32 14.61 39.63 103.26 19.88 13.1 14.8
CIFAR10 5.11 3.75 2.29 2.29 4.98 23.75 3.29 2.95 2.12

* /d — default step-size and momentum decay factor, /o — optimized ones.

• Table II shows how optimal step-sizes for CM, AG,
ADAM, AdaGrad, and AdaDelta may differ for various
problems. The differences reach four orders of magnitude.

• Performance of AdaGrad and AdaDelta is especially
disappointing. Those algorithm were presented as a way
to optimize the step-size on-the-fly in SGD and CM,
respectively. That does not check out in our experiments.

IX. CONCLUSIONS AND FUTURE WORK

In this paper a method has been introduced to approximate
the Hessian of the loss function within the process of on-line
learning. That enable estimation of the approximately optimal
step-size of the method of accelerated gradient.

The experimental study with on-line learning in several
types of neural networks confirms that the presented learn-
ing algorithms are efficient. Moreover, they are practically
parameter-free, as default values of the required parameters
are as good for all problems.

The presented material is a proof-of-concept that justifies
the following claims:
• The step-size in SGD-like algorithms may be estimated

with good results with the use of a certain approximation
of the Hessian of the loss function.

• The momentum decay factor may be estimated just on
the basis of large components of the momentum vector.

All the above observations require further studies to produce
even better performing learning algorithms with strict conver-
gence guarantees.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the following
students in this research: Karol Chȩciński, Łukasz Lepak,
Daniel Klepacki, and Jakub Łyskawa.

REFERENCES

[1] H. J. Kushner and G. Yin, Stochastic Approximation Algorithms and
Applications. Springer-Verlag, 1997.

[2] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate o(1/sqr(k)),” Soviet Mathematics Doklady, vol. 27, pp.
372–376, 1983.

[3] H. Robbins and S. Monro, “A stochastic approximation method,” Annals
of Matchematical Statistics, vol. 22, pp. 400–407, 1951.

[4] B. T. Polyak, “Some methods of speeding up the convergence of iter-
ation methods,” USSR Computational Mathematics and Mathematical
Physics, vol. 4, pp. 1–17, 1964.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, no. 323, pp. 533–536,
1986.

[6] N. Qian, “On the momentum term in gradient descent learning algo-
rithms,” Neural Networks, vol. 12, 1999.

[7] A. Bhaya and E. Kaszkurewicz, “Steepest descent with momentum for
quadratic functions is a version of the conjugate gradient method,”
Neural Networks, vol. 17, pp. 65–71, 2004.

[8] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, pp. 2121–2159, 2011.

[9] M. D. Zeiler, “Adadelta: An adaptive learning rate method,”
http://arxiv.org/abs/1212.5701, 2012.

[10] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[11] Y. Iiguni, H. Sakai, and H. Tokumaru, “A real time learning lagorithm for
a multilayered neural network based on extended kalman filter,” IEEE
Trans. on Signal Processing, vol. 45, no. 6, pp. 959–966, 1992.

[12] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms for
online convex optimization,” Machine Learning, vol. 69, no. 2–3, pp.
169–192, 2007.

[13] T. van Erven and W. M. Koolen, “Metagrad: Multiple learning rates in
online learning,” in Advances in NIPS, 2016, pp. 3666–3674.

[14] A. Cutkosky and K. A. Boahen, “Stochastic and adversarial online
learning without hyperparameters,” in Advances in NIPS, 2017, pp.
5059–5067.

[15] T. Schaul, S. Zhang, and Y. LeCun, “No More Pesky Learning Rates,”
in ICML, 2013, pp. 343–351.

[16] J. Martens and R. Grosse, “Optimizing neural networks with kronecker-
factored approximate curvature,” in ICML, 2015, pp. 573–582.

[17] F. M. Silva and L. B. Almeida, “Acceleration techniques for the
backpropagation algorithm,” in Neural Networks EURASIP Workshop,
Sesim, 1990.

[18] R. A. Jacobs, “Increased rates of convergence through learning rate
adaptation,” Neural Networks, vol. 1, no. 4, pp. 295–308, 1988.

[19] C. Tan, S. Ma, Y.-H. Dai, and Y. Qian, “Barzilai-borwein step size for
stochastic gradient descent,” in ICML, 2016, pp. 685–693.

[20] L. Xiao and T. Zhang, “A proximal stochastic gradient method with
progressive variance reduction,” SIAM Journal on Optimization, vol. 24,
no. 4, pp. 2057–2075, 2014.

[21] L. Behera, S. Kumar, and A. Patnaik, “On adaptive learning rate
that guarantees convergence in feedforward networks,” IEEE Trans. on
Neural Networks, vol. 17, no. 5, pp. 1116–1125, 2006.

[22] T. Kathirvalavakumar and S. J. Subavathi, “Neighborhood based mod-
ified backpropagation algorithm using adaptive learning parameters for
training feedforward neural networks,” Neurocomputing, vol. 72, pp.
3915–3921, 2009.

[23] M. Zak, “Terminal attractors in neural networks,” Neural Networks,
vol. 2, pp. 259–274, June 1989.

[24] X. Yu, B. Wang, B. Batbayar, L. Wang, and Z. Man, “An improved train-
ing algorithm for feedforward neural network learning based on terminal
attractors,” Journal of Global Optimization, pp. 1–14, September 2010.

[25] A. P. George and W. B. Powell, “Adaptive stepsizes for recursive
estimation with applications in approximate dynamic programming,”
Machine Learning, vol. 65, pp. 167–198, 2006.

[26] Y. Zhang, F. Cao, and Z. Xu, “Estimation of learning rate of least square
algorithm via jackson operator,” Neurocomputing, vol. 74, pp. 516–521,
2011.

[27] R. Ranganath, C. Wang, D. M. Blei, and E. P. Xing, “An adaptive
learning rate for stochastic variational inference,” in ICML, 2013, pp.
298–306.

[28] F. Orabona and D. Pl, “Coin betting and parameter-free online learning,”
in Advances in NIPS, 2016, pp. 577–585.

[29] N. Schraudolph and T. Graepel, “Towards stochastic conjugate gradient
methods,” in Proceedings of the 9th International Conference on Neural
Information Processing, 2002, pp. 853–856.

[30] P. Wawrzynski, “Asd+m: Automatic parameter tuning in stochastic
optimization and on-line learning,” Neural Networks, vol. 96, pp. 1–10,
2017.

[31] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
[Online]. Available: http://archive.ics.uci.edu/ml

[32] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, pp. 504–507, 2006.

[33] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in ICML, vol. 28, no. 3.
JMLR Workshop and Conference Proceedings, 2013, pp. 1139–1147.

