
Automatic hyperparameter tuning in on-line
learning: Classic Momentum and ADAM

Paweł Wawrzyński, Paweł Zawistowski, Łukasz Lepak
Institute of Computer Science

Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland

pawel.wawrzynski@pw.edu.pl, pawel.zawistowski@pw.edu.pl, lukasz.lepak.stud@pw.edu.pl

Abstract—We propose a method that adapts hyperparameters,
namely step-sizes and momentum decay factors, in on-line
learning with classic momentum and ADAM. The approach is
based on the estimation of the short- and long-term influence of
these hyperparameters on the loss value. In the experimental
study, our approach is applied to on-line learning in small
neural networks and deep autoencoders. Automatically tuned
coefficients surpass or roughly match the best ones selected
manually in terms of learning speed. As a result, on-line learning
can be a fully automatic process, producing results from the
first run, without preliminary experiments aimed at manual
hyperparameter tuning.

Index Terms—online optimization, Stochastic Gradient De-
scent, hyperparameter tuning, neural networks, Classic Momen-
tum, ADAM

I. INTRODUCTION

In this paper, we consider the typical setting for on-line
learning: we wish to optimize a parameter, θ ∈ Rd, of
a learning system. For each time step, there exists a known
(momentary) loss function J(θ, ξ), where ξ denotes a ran-
domly generated data sample. The goal of learning is to find
the point θ∗ ∈ Rd for which the global loss function

J̄(θ) = EJ(θ, ξ) (1)

attains its minimum. We assume that only the gradient of the
momentary loss function, ∇θJ(θ, ξ), is available, which is
an unbiased estimate of the (unavailable) global loss gradient
∇J̄(θ).

Most fundamental methods of on-line learning, like stochas-
tic gradient descent [1] (SGD) and classic momentum [2]
(CM) require hyperparameters called step-sizes and momen-
tum decay factors that generally depend on the problem and
process stage.

In practice, on-line learning is usually conducted by se-
lecting the aforementioned parameters using trial-and-error,
which is time consuming and not satisfying. There have
been attempts, like AdaGrad [3] or ADAM [4], to design
an algorithm that does not depend on any manually tuned
hyperparameters, or at least works well with the defaults. How-
ever, these algorithms also require step-sizes and momentum
decay factors, and their default values do not guarantee good
performance for all learning problems.

In this paper, we design an algorithm that optimizes the
step-size and the momentum decay factor in CM and ADAM
while these methods are running. The algorithm presented here
extends and refines the ASDM method presented by Wawrzyn-
ski [5]. The focus is put on a novel method of analyzing the
long-term influence of the parameters on the momentary loss
value. This method overcomes important ASDM deficiencies.

In addition, the analysis of the short-term influence of the
step-size and the momentum decay factor on a momentary
value of θ introduced in the previous paper for CM is here
extended to ADAM. The resulting learning algorithm has been
analyzed experimentally and compared in simulations with
CM, accelerated gradient, ADAM, AdaGrad, and AdaDelta.
All algorithms are applied to 14 different learning problems
and two parameter settings.

The main contributions of this paper are thus as follows:
• we propose to estimate the initial step-size in ASDM us-

ing the estimate of the largest eigenvalue of the Hessian,
• we propose to define a quality measure for the algorithm’s

hyperparameters’ adjustments based on their influence on
the long-term performance of the learning process,

• we introduce indicators of optimization instability and
propose heuristics to ensure that the process remains
stable,

• we conduct extensive experiments to test the approach
against current state-of-the art methods.

The paper is organized as follows. The next section presents
related work. In Sec. III, the formal definition of the consid-
ered problem is given. In Sec. IV, the influence of hyperparam-
eters on the learning process is derived, while Sec. V presents
the resulting algorithm. Sec. VI reports the experimental study
with on-line learning in feedforward neural networks. The last
section concludes the paper.

II. RELATED WORK

The earliest methods of on-line learning include SGD,
which has its roots in the aforementioned works of Robbins
and Monro [1] and Kiefer et al. [6]. Two other classic
approaches, which build upon the concepts of SGD and are
directly related to this paper, are classic momentum [2, 7]
(CM) and accelerated gradient [8] (AG). Both CM and AG
are based on the concept of extracting a velocity component

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

from the iterative update procedure utilized by SGD; they only
differ in the way this component gets updated.

The CM approach, which is formally defined in Sec. III of
this paper, has been thoroughly analyzed by Qian [9], where
the convergence bounds for the learning rate and momentum
parameters have been analyzed. Bhaya and Kaszkurewicz [10]
present a view on CM from the control perspective on the
conjugate gradient algorithm [11] and perform an analysis in
terms of Lyapunov stability to choose the learning rate and
momentum parameters.

There have been multiple attempts to create algorithms
which adapt the momentum term to improve CM performance.
These include using one dimensional minimisation to estimate
this term [12].

Swanston et al. [13] propose to use the angle between the
previous update steps and the current one to determine the
magnitude of the momentum term.

Graepel and Schraudolph [14] utilize a curvature matrix
connected with a forgetting factor to formulate the Stable
Adaptive Momentum approach.

The back-propagation Gradient Descent Adaptive Momen-
tum Algorithm [15] (GDAM) adapts the momentum while
maintaining a fixed learning rate.

Hameed et al. [16] utilize eigenvalues of the autocorrelation
matrix of the optimized model’s inputs to adapt momentum in
a back-propagation algorithm.

YellowFin [17] is an approach that adapts the learning rate
and momentum term by approximating the curvature using
single-dimensional noisy quadratic models.

In order to get rid of free parameters, the classic methods
have also been combined with gradient normalization in mul-
tiple approaches. AdaGrad [3] scales the gradient descent step
at time t with an inversed diagonal matrix constructed using
a cumulative sum of gradient products from times 1, . . . , t.
However, it requires setting a global learning rate manually
and results in a decay of learning rates as the optimization
progresses. The AdaDelta method [18] addresses these issues
by restricting the cumulative sum to a time window of fixed
size and utilizing a diagonal Hessian approximation to obtain
correct units for the parameter update vectors. A similar
remedy to the decaying learning rates problem present in Ada-
Grad was suggested for RMSProp [19], which also suggests
applying a running average of the gradient magnitude to scale
the global learning rate.

ADAM and ADAMAX [4] are currently among the most
widely used optimization algorithms that utilize first and
second-order moment corrections in their parameter update
rules. A version incorporating Nesterov momentum into
ADAM is introduced by Dozat [20] and called NADAM.

Although ADAM is a robust and widely used approach in
the field of deep learning models, there exist cases in which
it is not able to converge [21]. This has been tackled by
the AMSGRAD [21] approach. Furthermore, AdaBound and
AmsBound methods [22] try to address the problem (signalled
by Wilson et al. [23]) of extreme learning rates which occurs

in, respectively, ADAM and AMSGRAD and slows down the
optimization process in the long run.

To the best of our knowledge, the only method that adjusts
the momentum decay factor on-line in CM was introduced by
Schraudolph and Graepel [24], where a stochastic version of
the conjugate gradient algorithm is presented.

In recent years, tremendous progress has been made in
the field of online convex optimization, which considers
a simplified version of the problem analyzed here in which
J̄ is convex. One interesting branch of relevant research
is connected with meta-descent methods like the stochastic
meta-descent algorithm [25] (SMD) which adapts the learning
rates in successive iterations using an exponentiated gradient
descent controlled by a global learning rate.

The hypergradient descent method [26] (HD) applies gra-
dient descent directly on the learning rate parameters in an
online fashion. The L4 adaptation scheme [27] is a meta-
algorithm which calculates step size at every iteration using
a lineariztion of the loss function (inspired by root-finding
Newton’s method).

The limitations of current meta-optimization approaches are
explored by Wu et al. [28]. The authors argue that short
time horizons typically used in meta-optimization settings lead
to using too small learning rates — this poses a significant
challenge in that area of research.

III. NOTATION AND PROBLEM FORMULATION

In the below equations, t denotes discrete time, θt ∈ Rd is
the optimized vector, mt ∈ Rd is an auxiliary vector called
momentum, βt > 0 is the step-size, λt ∈ (0, 1) denotes the
momentum decay factor, the symbol ◦ denotes the Hadamard
(elementwise) product, and st ∈ Rd is a vector that normalizes
different coordinates of θ.

Additionally, we denote g(θ, ξ) = ∇θJ(θ, ξ). In the context
of feedforward neural network training, θ is a vector of
neural weights, ξt is a data sample (an input–output pair or
a minibatch of these), and g(θ, ξ) is computed by means of
gradient backpropagation.

We wish to find the minimum of J̄ (1) using the following
procedure:

mt = λtmt−1 − βtg(θt, ξt) ◦ st
θt+1 = θt +mt, t = 1, 2, . . .

(2)

In original CM, the elements of st are uniformly equal to 1.
The ADAM algorithm implements (2) with st containing the
inverses of square roots of average squares of elements of
g(θt−i, ξt−i), i ≥ 0.

The problem considered here is how to tune βt and λt on
the run of procedure (2) to make it most efficient.

IV. QUALITY INDEX FOR OPTIMIZATION OF β AND λ

The approach to β and λ optimization in the course of
learning can be summarized as follows:
• the influence of previous values of β and λ on the

current θt and the exponentially smoothed θt, denoted

by θ̄t, is analyzed; the parameters of smoothing also
undergo constant optimization,

• the values of β and λ are being incrementally adjusted
in the direction, that if these parameters had been pushed
before, then current positions of θt and θ̄t would be better.

The idea of optimization of the current loss, J(θt, ξt), by
manipulating previous values of β and λ is not new. However,
when applied directly, it yields small β and λ, since their small
values are the best way to suppress random fluctuations of θt
thereby minimizing the current loss. But small β and λ lead to
slow learning in the long term. Therefore, we analyze how β
and λ influence θ̄t, whose improvement rate roughly reflects
the long-term speed of learning.

Technically the aggregation of the impact of βi and λi on
future values of θt is done by means of an operator, Sγ , which
is defined for γ ∈ (0, 1] as follows

Sγ
dv

dαk
=
∑
i≤k

γk−i
dv
dαi

. (3)

It is a discounted sum of derivatives of the same value v with
respect to parameters αi, in which the weight of a specific
derivative decreases with growing k − i. Short-term influence
of βk, λk on mt, θt+1, t ≥ k can be expressed in the following
recursive equations:

Sγ
dmt

dλt
= mt−1 + λtγSγ

dmt−1

dλt−1
− βtγ

∂gt
∂θt
Sγ

dθt
dλt−1

◦ st (4)

Sγ
dθt+1

dλt
= γSγ

dθt
dλt−1

+ Sγ
dmt

dλt
, (5)

Sγ
dmt

dβt
= λtγSγ

dmt−1

dβt−1
− gt ◦ st − βtγ

∂gt
∂θt
Sγ

dθt
dβt−1

◦ st (6)

Sγ
dθt+1

dβt
= γSγ

dθt
dβt−1

+ Sγ
dmt

dβt
. (7)

For brevity, gt is written in here in place of g(θt, ξt). The
above equations can be derived following the original work of
Wawrzynski [5].

A. Influence of β and λ on the trend in θt

Here we analyze the influence of β and λ on the long-term
movement of θt. In this order, we define θ̄t as a smoothed θt,
namely

θ̄1 = θ1, θ̄t+1 = µθ̄t + (1− µ)θt, (8)

where µ ∈ [0, 1) is optimized to minimize J(θ̄t, ξt).
Let us visualize the optimization process as a descent down

a multidimensional valley between steep slopes. The goal is
to descend in the direction of the bottom of this valley and θ̄t
plays the role of the projection of θt onto its bottom. We
will optimize βt and λt to approximately minimize a linear
combination of J(θt, ξt) and J(θ̄t, ξt). For this purpose we
analyze how fast θ̄t is moving depending on β and λ.

Using the Sγ operator, it is easy to quantify the influence
of β and λ on θ̄t (8), namely

Sγ
dθ̄t+1

dβt
= µγSγ

dθ̄t
dβt−1

+ (1− µ)γSγ
dθt

dβt−1
, (9)

Sγ
dθ̄t+1

dλt
= µγSγ

dθ̄t
dλt−1

+ (1− µ)γSγ
dθt

dλt−1
. (10)

For θ̄t to play its role in the projection of θt on the
valley’s bottom, J̄(θ̄t) needs to be minimized with respect
to µ. In order to adjust µ in the course of learning with CM,
we notice that from (8) we have

dθ̄t+1

dµ
= θ̄t − θt + µ

dθ̄t
dµ

, (11)

and then
dJ(θ̄t, ξt)

dµ
=

dJ(θ̄t, ξt)

dθ̄t

dθ̄t
dµ

. (12)

The above derivative will indicate the direction of incremental
adjustments of µ. In order to compute θ̄t − θt in (11) conve-
niently we define

φ1 = 0, φt+1 = mt + µφt. (13)

A simple induction combining (8) and (13) reveals that θ̄t −
θt = −φt.

B. Optimization of β and λ

In order to maintain the desired trend in θt both in the short
and long-term we propose here to minimize (with respect to
β and λ) the following quality index

Qt = J(θ̄t, ξt) + rTt (θt − θt−1). (14)

where rt = g(θ̄t, ξt) is treated as a constant.
The first term of the sum in (14) is crucial as it directly

leads to decreasing the loss value observed for θ̄t. However,
a second term needs to be included in order to penalize the
fluctuations of consecutive θt values. This penalty is for the
increment θt along the gradient of the loss function, thereby
increasing the loss.

Then, we propose recognizing how infinitesimal changes of
βk, λk for k < t would influence (14), which can be quantified
as, respectively,

Sγ
dQt

dβt−1
=g(θ̄t, ξt)

T

(
Sγ

dθ̄t
dβt−1

+ Sγ
dmt−1

dβt−1

)
, (15)

Sγ
dQt

dλt−1
=g(θ̄t, ξt)

T

(
Sγ

dθ̄t
dλt−1

+ Sγ
dmt−1

dλt−1

)
. (16)

Next, β and λ are adjusted in the directions opposite to the
above derivatives.

V. ALGORITHM ASDM2

Algorithm 1 is based on pillars presented in the previous
sections. When the symbol “←” is used, the full assignment is
given on the right side of the symbol. The notation introduced
above is generally preserved in the algorithm but simplified
e.g., the subscript t is omitted. The algorithm has two versions:

1 Assign 0 to all estimators
2 Initialize θ
3 Assign t← 1, set any β 6= 0
4 (If needed) Update s
5 dQ

dβ ← g(θ̄, ξt)
T
(
Sγ dθ̄

dβ + Sγ dm
dβ

)
6 dQ

dλ ← g(θ̄, ξt)
T
(
Sγ dθ̄

dλ + Sγ dm
dλ

)
7 dJ̄

dµ ← g(θ̄, ξt)
T dθ̄

dµ
8 if t ≤ t0 then

9 β ← 1
2

(
t−1
t

1
2β
−1 + 1

t

∥∥∥∂g(θ,ξt)
∂θ gt

∥∥∥ /‖gt‖)−1

10 α← lnβ
11 λ← 0.5
12 η ← − ln(1− λ)
13 else
14 α← α− δ dQ

dβ /
√
A(dQ

dβ)2

15 β ← exp(α)

16 η ← η − δ dQ
dλ /
√
A(dQ

dλ)2

17 η ← max{− ln(1−λmin), η}
18 λ← 1− exp(−η)

19 ν ← ν − δ dJ̄
dµ/
√
A(dJ̄

dµ)2

20 µ← 1− exp(−ν)

21 Sγ dg
dβ ←

dg(θ,ξt)
dθ Sγ dθ

dβ

22 Sγ dg
dλ ←

dg(θ,ξt)
dθ Sγ dθ

dλ
23 if t > 1 then
24 α0 ← ln

(
1
2 min

{
‖Sγdθ/dβ‖
‖Sγdg/dβ‖ ,

‖Sγdθ/dλ‖
‖Sγdg/dλ‖

})
25 if α > α0 then
26 α← α− 2δ
27 β ← exp(α0)

28 γ ← min

{
1, C A‖g‖2

‖Sγ dθ
dβ ‖2

, C A‖m‖2

‖Sγ dθ
dλ‖2

}
29 if λ > γ then
30 η ← η − 2δ
31 λ← γ

32 Update θ̄ with (8)
33 Update Sγ dθ̄

dβ with (9)
34 Update Sγ dθ̄

dλ with (10)
35 Update dθ̄

dµ with (11)
36 Update Sγ dm

dβ with (6)
37 Update Sγ dm

dλ with (4)
38 Update m and θ with (2)
39 Update φ with (13)
40 Update Sγ dθ

dβ with (7)
41 Update Sγ dθ

dλ with (5)
42 A(dQ

dβ)2 ← wρtA(dQ
dβ)2 + (1− wρt)(dQ

dβ)2

43 A(dQ
dλ)2 ← wρtA(dQ

dλ)2 + (1− wρt)(dQ
dλ)2

44 A(dJ̄
dµ)2 ← wρtA(dJ̄

dµ)2 + (1− wρt)(dJ̄
dµ)2

45 A‖g‖2 ← wρtA‖g‖2 + (1− wρt)‖gt‖2
46 A‖m‖2 ← wρtA‖m‖2 + (1− wρt)‖m‖2
47 Increment t and go to Line 4

Algorithm 1: Autonomous stochastic descent with mo-
mentum version 2: ASDM2.

• ASDM2/b is based on CM and applies no gradient
normalization: st is the vector of 1s (“/b” stands for
“bare”),

• ASDM2/n is based on ADAM i.e., CM with gradient
normalization (hence “/n”).

The core of the algorithm is Line 38, where the basic ad-
justment of m and θ is done. The algorithm utilizes several
technicalities such as (i) initialization of β based on a rough
estimate of the inverse of the largest eigenvalue of the Hessian
∇2J̄ (Lines 3 and 9), (ii) re-parameterization of β, λ, and
µ (Lines 10, 12, 15, 18, 20, 27) (iii) keeping β, λ, and γ
small enough to prevent abnormal operation of the algorithm
(Lines 25–28), and (iv) exponential smoothing of some esti-
mates (Lines 42–46). All the aforementioned technicalities are
discussed below.

A. Initialization of β and λ

According to [5], a good initial β would be the inverse of
the largest eigenvalue of the global loss function Hessian i.e.,

β ≈
(

max
v∈Rd

‖∇2J̄(θ)v‖/‖v‖
)−1

. (17)

As it is not possible to determine that value, we notice that

∇2J̄(θ) = E∇2J(θ, ξ) = E
∂g(θ, ξ)

∂θ
(18)

and set βt equal to half the inverse of the average of values
maximized in (17) with v = gi, namely

βt =
1

2

(
1

t

t∑
i=1

∥∥∥∥∂g(θi, ξi)

∂θi
gi

∥∥∥∥ /‖gi‖
)−1

(19)

for t ≤ t0, where t0 > 0 determines how long the initial stage
of learning lasts. For t ≤ t0, we set λt ≡ 0.5. See Lines 8–
12, where βt is calculated recursively on the basis of βt−1

and (19).

B. Re-parameterization and adjusting β, λ, and µ

We want to adjust β, λ, and µ with increments of controlled
magnitude, regardless of the actual scale of β, 1−λ, and 1−µ.
In this order, the parameters α, η, and ν are introduced and
the following equivalence is established

β = exp(α), α = ln(β), (20)
λ = 1− exp(−η), η = − ln(1− λ), (21)
µ = 1− exp(−ν), ν = − ln(1− µ). (22)

Technically, these are α, η, and ν that are incrementally
adjusted. Since the updates are normalized, α, η, and ν are
updated on average ±δ, thus β, 1− λ, and 1− µ are updated
by factor (1 ± δ), where δ is a meta-stepsize. See Lines 10,
12, 15, 18, 20, and 27.

Effectively, the step-size β and the momentum decay factor
λ are adjusted according to the discussion in Sec. IV-B. The
main steps of these operations are in Lines 5, 6, 14, and 16.
The supplementary steps are in Lines 32–34, 35–37, 40–41.

Additionally, in order to locate θ̄t properly, the µ parameter
needs to be adjusted. That happens in Lines 7, 19, and 35.

C. Keeping β, λ, and γ small enough

As discussed above, the learning becomes unstable when
the step-size β becomes significantly larger than

‖v‖/‖∇2J̄(θt)v‖ (23)

for a certain v ∈ Rd. We utilize the fact that ∇2J(θt, ξt) is
multiplied by a vector in (6) and (4). Namely, early signs of
instability are detected when β is larger than

β0 =
1

2
min

∥∥∥Sγ dθt

dβt−1

∥∥∥∥∥∥ ∂gt∂θt
Sγ dθt

dβt−1

∥∥∥ ,
∥∥∥Sγ dθt

dλt−1

∥∥∥∥∥∥ ∂gt∂θt
Sγ dθt

dλt−1

∥∥∥
 . (24)

When that happens (Line 25), β0 is used instead of β (Line
27), and β is decreased (Line 26).

Both γ and λ are exponential decay factors that deter-
mine the memory lengths of certain estimators. The term
Sγ(dθt+1/dλt) captures the influence of the previous values
of λi on θt+1. The memory length defined by γ should be at
least as large as the memory length defined by λ. Therefore,
whenever γ < λ, λ is being decreased (Lines 29, 30). Also,
λ is kept equal to at least λmin, as very small values of this
parameter hardly ever work well in practice.

It can be seen from (7) and (5) that Sγ(dθt+1/dλt) and
Sγ(dθt+1/dβt) are adjusted additively by gt and mt, re-
spectively. Considering the limited precision of floating point
numbers, ‖Sγ(dθt+1/dλt)‖ and ‖Sγ(dθt+1/dβt)‖ can not be
too many orders of magnitude larger than average ‖gt‖ and
‖mt‖, respectively.

We apply γ small enough to assure

‖Sγ(dθt+1/dλt)‖2 ≤ C · average‖gt‖2

‖Sγ(dθt+1/dβt)‖2 ≤ C · average‖mt‖2,

where C is a large constant depending on the representation
of numbers. It expresses how many times one number can be
larger than another with their addition still being effective. In
our experiments, we set C = 108.

D. Exponential smoothing

Let xt, t = 1, 2, 3, ... be a sequence. Let Axt be the
exponentially moving average of (xt), namely

Axt =

∑t−1
i=0 ρ

ixt−i∑t−1
i=0 ρ

i
(25)

for ρ ∈ (0, 1]. Elementary transformations reveal that

Axt = wρtAxt−1 + (1− wρt)xt (26)

for wρt = ρ(1 − ρt−1)/(1 − ρt). Exponential smoothing
is applied in Lines 42–46 of ASDM2. The terms A(dQ

dβ)2,
A(dQ

dλ)2, and A(dJ̄
dµ)2 play the role of scalar variables in the

algorithm.

E. Gradient normalization

If the algorithm applies gradient normalization (Line 4), the
normalization takes the following form

A(g ◦ g)i ← wρtA(g ◦ g)i + (1− wρt)gi(θt, ξt)
2, (27)

si ← 1/
√
A(g ◦ g)i + ε, , (28)

where ε > 0 is a coefficient that prevents division by zero, ρ
is a decay factor (like ρ = 0.999), and subscript i denotes the
i-th coordinate of the vector.

F. Coefficients

The algorithm requires several coefficients to be provided.
Their values applied in the experiments discussed below are
based mainly on common-sense, and are as follows: ε = 10−8,
δ = 0.0005, λmin = 0.5, ρ = 0.999, t0 = 10, and C = 108.
On several occasions, a certain value is set below a certain
threshold (Line 24) or above a certain value (Line 26, 30). In
all such cases, “below” is twice smaller, and “above” is twice
larger.

The initial µ is set equal to 0.99.
While all these coefficients may undergo some optimization,

their default values give good performance over diverse testbed
learning tasks.

VI. EXPERIMENTAL STUDY

This section reports experiments with the algorithms pre-
sented in the previous section. The algorithms are tested in
three settings: firstly, training shallow neural classifiers for
10 arbitrary classification problems from the UCI Machine
Learning Repository [29], secondly, creating three classic
deep dense autoencoders [30], and thirdly a convolutional
autoencoder for CIFAR-10 dataset, taken from [31].

The two new algorithms, namely ASDM2/b and ASDM2/n,
are compared with the following known ones: CM, AG,
ADAM, AdaGrad, and AdaDelta. The known algorithms are
considered in two settings: with optimized parameters e.g.,
CM/o, and with default parameters e.g., ADAM/d. The op-
timized parameters are the momentum decay factor and the
step-size selected from the Cartesian product {0.9, 0.99} ×
{. . . , 0.1, 0.05, 0.02, 0.01, . . . } such that they give the smallest
ultimate loss. The default parameters are ones applied by
Tensorflow when their values are not provided when calling
the algorithm.

A. Optimization tasks’ details

In case of the shallow neural classifiers, we take 10 arbi-
trary classification problems from the UCI Machine Learning
Repository [29]. They are listed in the first part of Tab. I.
For each, we build a neural classifier with a single hidden,
logistic sigmoidal layer, and a linear output layer. The number
of neurons in the output layer is equal to the number of classes,
and the number of hidden neurons is roughly optimized in
preliminary experiments aiming to minimize the test error.
Initial weights of the hidden neurons are drawn from normal
distribution N(0, σ2), where σ = 1/

√
dim(input). Networks

inputs are scaled with their means and standard deviations.

TABLE I
BASIC PARAMETERS OF ANALYZED LEARNING PROBLEMS. ABR —

PROBLEM NAME ABBREVIATION, SIZE — NUMBER OF SAMPLES, IDIM —
INPUT DIMENSION, ODIM — OUTPUT DIMENSION, NCNT — HIDDEN

LAYER SIZE, MBS — MINI-BATCH SIZE, LEN — NUMBER OF SAMPLES
PROCESSED BEFORE TERMINATION (I.E., A RUN TAKES LEN/MBS STEPS).

Problem Abr Size Idim Odim Ncnt Mbs Len
Credit card defaults CCard 30000 32 2 21 200 107

Dota2 games results Dota2 102944 116 2 55 200 107

HTRU2 Htru2 17898 8 2 34 200 107

Sensorless drive Motor 58509 48 11 89 200 107

Poker hand Poker 1025010 10 10 89 200 107

Robot navigation Robot 5456 24 4 34 200 107

Statlog shuttle Shuttle 58000 9 7 34 200 107

Skin segmentation Skin 245057 3 2 21 200 107

Spambase Spam 4601 57 2 34 200 107

Theorem proving Theo 6118 51 6 89 200 107

Curves Curves 20000 784 784 — 200 108

Handwritten Digits MNIST 60000 784 784 — 200 108

Olivetti Faces Faces 165600 625 625 — 200 108

CIFAR10 autoencoder CF10ae 50000 3072 3072 — 200 2·107

Required outputs are one-hot vectors. The loss reported is
mean-square error.

Experiments connected with deep autoencoders are based
on three datasets containing grayscale images. They are fed to
a dense autoencoder neural network. The task for the network
is to produce output equal to input. Hidden layers of the
networks have the following sizes:

• Curves: 400, 200, 100, 50, 25, 6, 25, 50, 100, 200, 400,
• MNIST: 1000, 500, 250, 30, 250, 500, 1000,
• Faces: 2000, 1000, 500, 30, 500, 1000, 2000.

All layers in the networks are logistic sigmoidal, with the
exception of bottleneck layers and the output layer in Faces,
which are linear. Sparse weights initialization is applied.
Details of the experimental setting are adopted from [32] and
[33]. The loss reported is mean-square error.

Images from CIFAR10 dataset are fed to a convolutional
autoencoder. All details of the network and training procedure
are taken from [31].

Table II shows how optimal step-sizes for CM, AG, ADAM,
AdaGrad, and AdaDelta may differ for various problems. The
differences reach four orders of magnitude.

B. Software and computational complexity

Our experimental software has been written in two
versions: in C++ with CUDA, and in Python with
Tensorflow. The Python version is freely available on
https://github.com/Bestest96/ASDM2-TF. The most computa-
tionally expensive operations in Algorithm 1 are gradient back-
propagation performed twice in each loop step and Hessian—
vector multiplication, also performed twice. The latter opera-
tion is slightly more expensive than the first one. Consequently,
ASDM2 needs 3-3.5 times more real time per loop step than
CM applied to the same problem.

TABLE II
STEP-SIZES AND MOMENTUM DECAY FACTORS OPTIMAL FOR EACH
PROBLEM. SS — STEP-SIZE, MDF — MOMENTUM DECAY FACTOR.

Alg. CM AG ADAM AGrad ADelta
Problem ss mdf ss mdf ss mdf ss ss mdf
CCard 0.5 0.9 0.02 0.99 0.05 0.9 0.2 1 0.99
Dota2 0.05 0.99 0.05 0.99 0.002 0.99 0.2 1 0.99
Htru2 0.02 0.99 0.05 0.99 0.05 0.9 0.2 1 0.99
Motor 0.02 0.99 0.05 0.99 0.002 0.99 0.05 1 0.9
Poker 0.01 0.99 0.05 0.99 0.005 0.9 0.2 1 0.99
Robot 0.2 0.99 0.1 0.99 0.05 0.9 0.2 1 0.99
Shuttle 0.2 0.99 0.1 0.99 0.02 0.9 0.2 1 0.99
Skin 0.05 0.99 0.1 0.99 0.05 0.9 0.5 1 0.99
Spam 0.2 0.99 0.1 0.99 0.02 0.9 0.2 1 0.99
Theo 0.01 0.99 0.02 0.99 0.01 0.9 0.2 1 0.99
Curves 0.01 0.9 0.002 0.9 0.002 0.9 0.02 0.5 0.99
MNIST 0.02 0.9 0.02 0.9 0.002 0.9 0.02 1 0.99
Faces 0.001 0.99 0.001 0.99 0.0002 0.99 0.01 0.5 0.99
CF10ae 10−5 0.99 10−5 0.99 0.001 0.9 0.005 0.5 0.99

C. Results

The results are depicted in Tab. III in the form of average
losses attained at the end of training. The table also presents
the accuracy of errors in the form of standard deviations. Only
training losses are reported, as here we focus on optimization
rather than the quality of models that could be demonstrated by
test losses. The smallest losses for each problem are indicated
by bold face font. The observations made are summarized
below.

1) In most cases (12 cases out of 14) the winner is either
form of ASDM2.

2) In most cases (12/14), the manual optimization of the
parameters of ADAM yield significant improvement of
its behavior. However, its default parameters make that
algorithm perform well in comparison to others, except
all variants of ASDM2.

3) ASDM2/n may be understood as ADAM with β and
λ tuned on-the-fly by the method introduced here. In
(13/14) cases, ASDM2/n outperformed ADAM/d (with
default parameters). In (12/14) cases, ASDM2/n also
outperformed ADAM/o (with optimized parameters).

4) The performance of AdaGrad and AdaDelta is especially
disappointing. Those algorithms were presented as a way
to optimize the step-size on-the-fly in SGD and CM,
respectively. That does not check out in our experiments.

Table IV presents parameters β, λ, γ, and µ that ASDM2
was using in the middle of training. Note that these parameters
were being constantly adjusted. The β and λ parameters
determined by the algorithm may be compared to those
optimized manually, which are depicted in Tab. II. Analogies
are rather vague, but do exist. ASDM2 adjusts the parameters
to the current stage of the learning process, and what is seen
in Tabs. IV are points in certain trajectories. The γ and µ
parameters are close to 1, as was expected.

In general, the ASDM2 algorithm in its various forms
yields encouraging results. Usually it reaches its goal, which is

TABLE III
FINAL LOSS ESTIMATES OBTAINED BY AVERAGING 10 INDEPENDENT RUNS AND REPORTING THE MEAN LOSS VALUE. THE ACCURACY IS DEFINED AS

THE STANDARD DEVIATION OF THE SAMPLE MEAN. /D — DEFAULT STEP-SIZE AND MOMENTUM DECAY FACTOR, /O — OPTIMIZED ONES. THE
ACCURACY IS PRESENTED WITH THE SAME NUMBER OF DIGITS AFTER THE DECIMAL POINT BUT WITHOUT LEADING ZEROS E.G., 15.35 ±31 DENOTES

15.35 ±0.31, AND 0.0055 ±4 DENOTES 0.0055±0.0004.

Alg. CM AG ADAM AdaGrad AdaDelta ASDM2
Problem /d /o /d /o /b /n
CCard 0.262 ±1 0.264 ±1 0.262 ±1 0.260 ±1 0.266 ±1 0.342 ±2 0.265 ±1 0.257 ±1 0.256 ±1
Dota2 0.422 ±1 0.418 ±1 0.412 ±1 0.394 ±1 0.405 ±1 0.500 ±1 0.423 ±1 0.414 ±1 0.379 ±1
Htru2 0.0326±7 0.0300±3 0.0313±5 0.0293±5 0.0294±4 0.1033±16 0.0321±5 0.0307±2 0.0291±4
Motor 0.0642±10 0.0480±8 0.0668±90 0.0415±5 0.0829±9 0.802 ±16 0.0956±13 0.0614±24 0.0413±7
Poker 0.451 ±10 0.315 ±13 0.448 ±15 0.327 ±3 0.477 ±7 0.569 ±1 0.524 ±3 0.499 ±6 0.302 ±3
Robot 0.0642±21 0.0908±23 0.1198±14 0.1064±12 0.1270±13 0.6178±19 0.1251±17 0.0843±32 0.0925±44
Shuttle 0.0064±7 0.0045±3 0.0084±3 0.0038±2 0.0093±3 0.2768±41 0.0135±4 0.0100±3 0.0059±2
Skin 0.0062±2 0.0055±1 0.0074±1 0.0043±2 0.0074±2 0.2573±75 0.0089±2 0.0053±1 0.0037±2
Spam 0.0245±10 0.0230±3 0.0279±3 0.0172±4 0.0257±3 0.4270±56 0.0390±5 0.0243±3 0.0171±3
Theo 0.442 ±2 0.409 ±1 0.430 ±2 0.393 ±1 0.440 ±1 0.720 ±1 0.454 ±1 0.408 ±1 0.381 ±2
Curves 0.178 ±2 0.312 ±16 0.158 ±4 0.157 ±3 0.444 ±8 15.930±1 0.303 ±5 0.129 ±1 0.109 ±1
MNIST 1.03 ±1 1.03 ±1 1.27 ±6 1.12 ±1 2.11 ±1 15.35 ±31 1.31 ±1 0.90 ±1 0.92 ±1
Faces 15.99 ±3 16.81 ±38 15.32 ±25 14.61 ±2 39.63 ±32 103.26±9 19.73 ±3 14.45 ±5 15.76 ±8
CF10ae 5.11 ±12 3.75 ±8 2.29 ±2 2.29 ±2 4.98 ±9 23.75 ±7 2.69 ±4 3.73 ±10 2.22 ±2

TABLE IV
AVERAGE (OVER TRAINING RUNS) VALUES OF β , λ, γ , AND µ IN THE

MIDDLE OF TRAINING.

Alg. ASDM2/b ASDM2/n
Problem β λ γ µ β λ γ µ
CCard 0.33 0.92 1 0.997 0.0024 0.81 1 0.997
Dota2 0.24 0.93 0.9999 0.998 0.0024 0.74 0.9994 0.9994
Htru2 0.19 0.96 0.9998 0.995 0.0025 0.89 0.9999 0.995
Motor 0.11 0.93 0.998 0.995 0.0011 0.76 0.995 0.996
Poker 0.076 0.93 1 0.997 0.00022 0.97 0.9997 0.996
Robot 0.26 0.97 0.9998 0.997 0.0033 0.84 1 0.996
Shuttle 0.20 0.86 0.9999 0.990 0.00048 0.89 0.998 0.985
Skin 0.31 0.98 0.9992 0.993 0.0028 0.96 0.9994 0.994
Spam 0.22 0.97 0.9996 0.997 0.0019 0.78 0.9999 0.996
Theo 0.11 0.94 1 0.997 0.0013 0.71 0.9992 0.996
Curves 0.001 0.996 0.9995 0.998 3.2e-5 0.97 0.9998 0.9991
MNIST 0.016 0.91 0.9999 0.9995 7.5e-5 0.87 1 0.9994
Faces 0.004 0.94 1 0.9996 3.4e-5 0.84 0.9998 0.9996
CF10ae 4.2e-5 0.94 0.997 0.97 2.5e-5 0.98 0.994 0.998

approximate optimization on-the-fly of the β and λ parameters
for CM, AG, and ADAM. Consequently, ASDM2 yields good
speed of learning from the first run. However, in some cases,
the algorithm does not provide optimal β or λ, and those cases
are especially interesting. Such cases are Robot and Shuttle.

What is conspicuous about those problematic cases in
Tab. IV are the relatively small values of γ. While for the
sake of numeric accuracy (see Sec. V-C), it does not make
sense to set γ equal to 1, there is a systematic reason why
the larger that parameter is, the better. Rough interpretation of
the terms SγdJ(θ̄t, ξt)/dβt−1 and SγdJ(θ̄t, ξt)/dλt−1 is as
follows: ASDM2 at each t looks at what would happen with
J(θ̄t, ξt) if βi and λi had been larger in preceding (1− γ)−1

steps. Therefore, if the algorithm is forced to set small γ, it
has only a myopic view on the influence of β and λ on the
learning process. That, in turn, leads to suboptimal values of
β and λ. How to enable large γ for all problems and learning

stages is a curious research topic.

VII. CONCLUSIONS

The manual tuning of hyperparameters in on-line learning
slows research down since it requires a whole process to be
repeated many times. It also makes many potential applications
of machine learning unavailable, since in most cases one can
not tell the user to go pick the right hyperparameters by trial
and error.

In this paper, a step has been made to get rid of “pesky”
hyperparameters such as step-size and momentum decay fac-
tor, and to be able to get results of on-line learning after
a single run. A method was introduced that adjusts those
hyperparameters in CM and ADAM. The method is based
on the recognition of the short- and long-term influence of the
hyperparaemters on the learning process. The hyperparameters
are tuned to make the process fast yet stable. The method
does not depend on any preliminary knowledge of the learning
problem, thereby making on-line learning a process that needs
to be run only once. In the experimental study, the method
was applied to shallow neural networks, as well as deep auto-
encoders, and in most cases it performed better than any
manually selected hyperparameters.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the Titan X Pascal GPU used for
this research.

REFERENCES

[1] H. Robbins and S. Monro, “A stochastic approximation
method,” Annals of Matchematical Statistics, vol. 22, pp.
400–407, 1951.

[2] B. T. Polyak, “Some methods of speeding up the con-
vergence of iteration methods,” USSR Computational

Mathematics and Mathematical Physics, vol. 4, pp. 1–
17, 1964.

[3] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient
methods for online learning and stochastic optimization,”
Journal of Machine Learning Research, vol. 12, pp.
2121–2159, 2011.

[4] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in CoRR, vol. abs/1412.6980, 2014.

[5] P. Wawrzynski, “ASD+M: Automatic parameter tuning
in stochastic optimization and on-line learning,” Neural
Networks, vol. 96, pp. 1–10, 2017.

[6] J. Kiefer, J. Wolfowitz et al., “Stochastic estimation of
the maximum of a regression function,” The Annals of
Mathematical Statistics, vol. 23, no. 3, pp. 462–466,
1952.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
“Learning representations by back-propagating errors,”
Nature, no. 323, pp. 533–536, 1986.

[8] Y. Nesterov, “A method of solving a convex program-
ming problem with convergence rate o(1/sqr(k)),” Soviet
Mathematics Doklady, vol. 27, pp. 372–376, 1983.

[9] N. Qian, “On the momentum term in gradient descent
learning algorithms,” Neural Networks, vol. 12, 1999.

[10] A. Bhaya and E. Kaszkurewicz, “Steepest descent with
momentum for quadratic functions is a version of the
conjugate gradient method,” Neural Networks, vol. 17,
pp. 65–71, 2004.

[11] T. A. Straeter, “On the extension of the davidon-broyden
class of rank one, quasi-newton minimization methods to
an infinite dimensional hilbert space with applications to
optimal control problems,” 1971.

[12] G. Qiu, M. Varley, and T. Terrell, “Accelerated training of
backpropagation networks by using adaptive momentum
step,” Electronics letters, vol. 28, no. 4, pp. 377–379,
1992.

[13] D. Swanston, J. Bishop, and R. J. Mitchell, “Simple
adaptive momentum: new algorithm for training multi-
layer perceptrons,” Electronics Letters, vol. 30, no. 18,
pp. 1498–1500, 1994.

[14] T. Graepel and N. N. Schraudolph, “Stable adaptive
momentum for rapid online learning in nonlinear sys-
tems,” in International Conference on Artificial Neural
Networks. Springer, 2002, pp. 450–455.

[15] M. Z. Rehman and N. M. Nawi, “The effect of adaptive
momentum in improving the accuracy of gradient descent
back propagation algorithm on classification problems,”
in International Conference on Software Engineering and
Computer Systems. Springer, 2011, pp. 380–390.

[16] A. A. Hameed, B. Karlik, and M. S. Salman, “Back-
propagation algorithm with variable adaptive momen-
tum,” Knowledge-Based Systems, vol. 114, pp. 79–87,
2016.

[17] J. Zhang and I. Mitliagkas, “Yellowfin and the art of
momentum tuning,” arXiv preprint arXiv:1706.03471,
2017.

[18] M. D. Zeiler, “Adadelta: An adaptive learning rate

method,” in arXiv:1212.5701, 2012.
[19] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide

the gradient by a running average of its recent magni-
tude,” 2012.

[20] T. Dozat, “Incorporating Nesterov momentum into
Adam,” in ICLR, 2016.

[21] L. Luo, Y. Xiong, and Y. Liu, “Adaptive
gradient methods with dynamic bound of
learning rate,” in International Conference on
Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=Bkg3g2R9FX

[22] L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient
methods with dynamic bound of learning rate,” arXiv
preprint arXiv:1902.09843, 2019.

[23] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and
B. Recht, “The marginal value of adaptive gradient
methods in machine learning,” in Advances in Neural
Information Processing Systems, 2017, pp. 4148–4158.

[24] N. Schraudolph and T. Graepel, “Towards stochastic
conjugate gradient methods,” in Proceedings of the 9th
International Conference on Neural Information Process-
ing, 2002, pp. 853–856.

[25] N. N. Schraudolph, “Local gain adaptation in stochastic
gradient descent,” 1999.

[26] A. G. Baydin, R. Cornish, D. M. Rubio, M. Schmidt,
and F. Wood, “Online learning rate adaptation with hy-
pergradient descent,” arXiv preprint arXiv:1703.04782,
2017.

[27] M. Rolinek and G. Martius, “L4: Practical loss-based
stepsize adaptation for deep learning,” in Advances in
Neural Information Processing Systems, 2018, pp. 6433–
6443.

[28] Y. Wu, M. Ren, R. Liao, and R. Grosse.,
“Understanding short-horizon bias in stochastic
meta-optimization,” in International Conference on
Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=H1MczcgR-

[29] A. Frank and A. Asuncion, “UCI machine
learning repository,” 2010. [Online]. Available:
http://archive.ics.uci.edu/ml

[30] A. P. George and W. B. Powell, “Adaptive stepsizes
for recursive estimation with applications in approximate
dynamic programming,” Machine Learning, vol. 65, pp.
167–198, 2006.

[31] P. Wawrzynski, “Efcient on-line learning with diagonal
approximation of loss function hessian,” in IJCNN, 2019.

[32] G. E. Hinton and R. R. Salakhutdinov, “Reducing the
dimensionality of data with neural networks,” Science,
vol. 313, pp. 504–507, 2006.

[33] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On
the importance of initialization and momentum in deep
learning,” in ICML, vol. 28, no. 3. JMLR Workshop
and Conference Proceedings, 2013, pp. 1139–1147.

