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Abstract

Optimization competitions give an impulse to develop optimization algorithms.
However, there is no common agreement on how to rank the contestants. This
paper proposes a method of assessing the performance of the algorithms. The
proposed mark is easily interpretable by humans and can be compared with pre-
viously published marks. The proposed method was used to create a ranking for
contestants of the CEC 2022 competition on single objective bound constrained
numerical optimization. The resulting ranking is different from the official one.
The ranks of some algorithms differ by up to five. As the proposed ranking is
more focused on the results at the end of the budget, winning algorithms are bet-
ter suited for most real-world applications. Since the tuning effort influences the
algorithm’s results, the paper also examines the influence of parameter tuning
on the place achieved in both rankings by the top four algorithms. The parame-
ters to tune were extracted from the papers that introduced the algorithms and
from the source codes. The results showed that all considered algorithms were
not carefully tuned for CEC. Generally, tuning using the target performance
metric helps, but tuning using the other metric is harmful. The profit of tuning
is up to a 33% increase in the number of trails that found the global optimum.
The ablation analyses of the algorithms’ parameters showed that only a few
parameters strongly influence the results. Frequently, parameters not listed in
the papers are among the most important.
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1. Introduction

Optimization competitions give an impulse to develop optimization algo-
rithms. Competition results also make it easier to find state-of-the-art algo-
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rithms. To be able to order the contestants from the best to the worst, each
competition requires some objective function. Still, no common agreement ex-
ists on how this function should be composed. There are two complementary
approaches for single objective optimization: fixed cost and fixed target. In
a fixed target scenario, the target fitness level is assumed, and algorithms are
compared by the number of fitness evaluations (FES) needed to achieve the
target. In a fixed-cost approach, the budget of fitness evaluations is assumed,
and algorithms are compared by the error value achieved after reaching the
budget. In practice, these approaches are more complicated because there are
cases when specified fitness cannot be reached, and achieving extremely small
error values is not practical. One of the families of the single objective optimiza-
tion competitions is connected with the Congress of Evolutionary Computation
(CEC). The first CEC competition was held in 1996 [1]. Since then, the com-
petition has been organized nearly regularly, but its newer versions usually use
other performance measures than the older ones. As was noticed in [2], CEC
performance measures do not allow us to infer how much the new competition’s
winners improved over the older ones. Moreover, finding a place for a new al-
gorithm in published ranking is impossible without recalculating all scores from
raw data. Without context (e.g., taken from the publication), CEC scores alone
say nothing about the algorithm.

The most recent CEC competitions [3, 4] reward for speed of the algorithms
without preference for problem-solving ability over speed. From a practical
point of view, solving more problems is more important than improving the
algorithm’s performance. The score achieved by an algorithm in the aforemen-
tioned competitions can be interpreted as the number of its wins when all of
its trials are compared to all trials from all other algorithms. In practice, the
score is hardly interpretable when many algorithms and independent runs are
involved, e.g., 123456789 vs. 123457789 – is the difference meaningful in prac-
tice?

The second most popular benchmark is the Black Box Optimization Bench-
mark (BBOB) [5]. The BBOB does not provide a ranking of the algorithms;
it focuses on visualization of the performance of the algorithms using plots of
Empirical Cumulative Distribution Functions (ECDF).

Each contemporary algorithm has many parameters. Both CEC 2017 and
CEC 2022 require participants not to search for distinct parameters for each
problem/dimension. Contestants should also provide dynamic ranges of the
parameters, guides on how to tune them, and the estimated cost of the tun-
ing. Similar rules were applied during Real-Parameter Black-Box Optimization
Benchmarking [6]. Having those loose requirements, one contestant can use
minimal tuning by hand, and the other can use tools for automatic parameter
tuning. It was previously noticed [7] that comparison of the algorithms with the
different levels of tuning is not fair and should be avoided. The importance of
parameter tuning before benchmarking is also discussed in [8]. Since knowledge
of the tuning effort of CEC 2022 participants is not available, the published
ranking may reflect time spent on tuning rather than the performance of the
algorithms.
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For further development of evolutionary algorithms, it is necessary to know
which parameters or components of the top-rated methods strongly influence
their position in the ranking. Unfortunately, no such analysis exists in the
publications presenting the CEC 2022 winners.

The main contributions of the paper are:

� The proposal of a new method of assessing the performance of meta-
heuristic optimization algorithms. The proposed performance metric is
humanly interpretable; it allows for easy comparison of the results of a
new algorithm to the published results, and it has a built-in preference for
problem-solving over speed.

� Presentation of the alternative ranking for CEC 2022 bound constrained
single objective optimization competition. The resulting new ranking is
compared to the old one and to the rankings based on the area under
ECDF curves and based on values of ECDF curves achieved at the end of
the budget.

� Experimental examination of the influence of tuning the parameters of the
top four algorithms on both rankings. Tuning by the same method and
using the same budget makes the ranking more trustworthy.

� Extraction of hidden parameters from the source codes of the top four
algorithms and making the algorithms configurable from the command
line. The parametrized codes are made available to the community.

� Examination of the influence of the parameter values on the results and
ranks of the top four algorithms. The most important parameters of the
examined algorithms were identified.

The article is composed in the following way. Section 2 provides a literature
survey. Section 3 describes the proposed ranking method. The ranking is calcu-
lated for CEC 2022 bound constrained single objective optimization contestants
and compared to the official one. Section 4 examines the influence of parameter
tuning on both rankings. Section 5 summarizes the observations and concludes
the paper.

2. Related work

2.1. Competitions and rankings

When a new algorithm is proposed, it should be compared with state-of-
the-art. The state-of-the-art can be easily identified thanks to the competi-
tions and rankings they provide. As mentioned earlier, one of the families of
the competitions is connected with the Congress of Evolutionary Computation
(CEC). The first CEC competition was held in 1996 [1]. At that time, the pri-
mary performance measure used the expected number of function evaluations
per success (ENES), where success means that the method achieved a specified
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error value. The ENES was renamed to Expected Runtime (ERT) and used
as a performance measure for the Comparing Continuous Optimizers (COCO)
benchmarking platform [6]. The COCO is used by The Black Box Optimization
Benchmark (BBOB) competition series [5]. As some methods may not reach the
specified error level, COCO defines 51 error targets ranging from 102 to 10−8

[9]. The fractions of target fitness values achieved in consecutive iterations by
the best-so-far solution observed in that run are compiled into an Empirical Cu-
mulative Distribution Function (ECDF) [9]. The ECDF curves can be averaged
over many independent runs of the algorithm and many different optimization
problems. Thus, they are a convenient tool for results aggregation and presen-
tation. The BBOB competition does not provide a ranking of algorithms, but
some authors propose ranking them by the area under their ECDF curves [10].
This ranking favors algorithms that are efficient at the beginning of the search
over methods that are oriented toward exploitation at the end of the search, as
discussed in Section 3.3.

The CEC 2017 Special Session and Competition on Single Objective Bound
Constrained Numerical Optimization (SOBC) [11] used two combined measures
of function error: 50(SEmin/SE +SRmin/SR), where SE is dimension weighted
sum of errors of all functions, SEmin is the minimal sum of errors of all algo-
rithms, SR is the dimension-weighted sum of ranks, where ranks were based on
mean error values, and SRmin is the minimal sum of ranks from all algorithms.
The benchmark assumed weight of 0.1 for 10 dimensions, 0.2 for 30, 0.3 for 50,
and 0.4 for 100. CEC 2020 [12] and CEC 2021 [13] adopted the same idea, but
error scores were normalized so that each function contributed more equitably.
The quality measure used in this method does not show how many functions
were solved. It also does not prefer a faster method when an identical objective
function error level is found.

During CEC 2005 [14], the algorithm was considered better when it had
more success. This rule was applied when at least one algorithm had at least
one success. On the other hand, when there were no success trials, the algorithm
with a lower median error was preferred. This approach does not account for
error levels when at least one success occurred. It also does not promote faster
algorithms.

The CEC 2022 Competition on Single Objective Bound Constrained Numer-
ical Optimization (SOBC) [3] takes into consideration both accuracy and speed
without making any assumptions about their relative importance. The ranking
method is based on the Wilcoxon rank-sum test [15] (Mann-Whitney U-test
[16]). As usual, each algorithm has n trials on each function. To compare m
algorithms on one function, FES orders the results of all trials that achieved the
desired error level. The rest of the trials are ordered by the error level achieved
at the end of the budget. The best trial gets the highest rank (n · m). For
each function, score of the algorithm is a sum of the ranks of its trials, minus
the correction term n(n + 1)/2. The final score of the algorithm is the sum of
its function scores. The elaborate explanation of the rationale behind the CEC
2022 ranking together with the survey of ranking methods used in CEC com-
petitions is available in [17]. This method does not show how many functions
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were solved. Its other deficiencies were discussed in Section 1.
In [18], a chess rating system is applied to create a ranking of evolutionary

algorithms. The rating system is based on the Glicko-2 [19] chess rating sys-
tem. The evolutionary algorithms are treated as chess players. Each algorithm
is described by rating R, rating deviation RD, and rating volatility σ. The σ
indicates expected rating fluctuations. The parameters of the new algorithm are
initialized to R = 1500, RD = 350, σ = 0.06. Specific equations update these
parameters after each tournament. In the case of evolutionary algorithms, the
tournament consists of k algorithms, N problems, and n independent runs. For
each problem, each run, for each pair of the algorithms, the algorithm with the
result closer to the optimum wins. If the difference between algorithms is below
the specified threshold, the game’s result is a draw. The authors identified the
benefits of their approach, like robustness to outliers, but also identified its lim-
itations, like the change of the ranking list after the addition of the algorithm
and the fact that already published results cannot be used to create the pro-
posed ranking. It can also be observed that the ratings do not show how many
functions were solved. This system also does not prefer a faster method when
an identical objective function error level is found.

In [20], a fixed target approach is used to compare stochastic solvers. For
each solver, the observed variable is runtime or the number of function evalua-
tions required to achieve the desired objective function value. In this approach
for specified dimensionality and objective function, n independent runs are per-
formed. The results are analyzed to identify the best-matching statistical distri-
bution. Knowing the distribution allows for using appropriate statistical tests
to determine whether there is a significant difference between the solvers. The
paper proposes to find distribution parameters for different dimensionalities and
build a model for each distribution parameter. Having the models allows for the
prediction of the algorithm’s behavior for larger dimensionalities of the problem.
For this approach, the target objective function level should be appropriately
set to obtain a 100% hit ratio. Objective functions with variable dimensionality
are required to obtain a predictive model. If this approach were used to create
a ranking, then it would be strongly influenced by the speed of the algorithms.

2.2. Parameter tuning and ablation analysis

Besides educated guesses by the algorithm’s author, there are more system-
atic ways of setting parameter values. One of the most obvious ways is the
exhaustive search on the product of discretized parameter values (grid search).

Another possibility is the application of the Taguchi design method [21] to
parameter tuning [22]. As for a grid search, a few levels should be proposed for
each parameter. The Taguchi method requires fever experiments than the grid
search. The decision on which combination of parameters should be evaluated
is taken according to specially designed orthogonal arrays. As random factors
influence results, this method maximizes signal-to-noise ratio.

There is also a group of parameter tuning methods that treat tuning as an
optimization task. One of them is based on Bayesian optimization (BO) [23].
Typically, BO has two components: a Bayesian statistical model for mapping
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from hyperparameter values to the values of the objective function and an ac-
quisition function, which decides where to sample the next set of observations.
The optimization starts from a certain number of random samples of parameters
values, which are evaluated by using an optimization algorithm. After that, the
model is updated iteratively. It was shown [23] that BO obtains better results
in fever evaluations than random search due to its ability to reason about the
quality of the experiment before running it.

In [24], authors propose a Surrogate-based Bayesian Hyperparameter Opti-
mizer (SUBHO). In SUBHO, each hyperparameter of EA is represented as a
bound-constrained integer. The objective function to be minimized is defined
as follows: f(xt) = q(x0) + (100 − q(xt)), where q is the performance metric
defined by CEC 2021 competition organizers [13], x0 are the initial parameters
and xt are parameters at iteration t. SUBHO minimizes the f using Bayesian
optimization with a limit of 128 function evaluations.

In [25], a parameter tuning method based on racing is proposed. The it-
erated racing repeats three steps: 1) sampling new configurations according to
specified distribution; 2) rejecting weak configurations by racing; 3) changing
distributions to maximize the chance of selecting the best configurations. The
implementation of that approach is readily available in the package irace [26].

There are also methods that use specially designed metaheuristics for pa-
rameter tuning, like gender-based genetic algorithms [27] and ParamILS [28].

As many algorithms tend to be overcomplicated [29] and some parameters
undergo adaptation, the influence of some parameters could be marginal. To
order parameters from the most important to the least important, an ablation
analysis [30] could be used. The input to ablation analysis is two configurations:
source (not tuned) and target (tuned). The parameters that have identical
values in the source and target are ignored. The rest of the process has as many
iterations as the number of remaining parameters. Each iteration generates a
sequence of configurations where one parameter is taken from the target and
the rest from the source. Each configuration is tested using a specified number
of independent runs. The best parameter is identified, and it is fixed in further
iterations. The implementation of ablation is also available in the package irace.

3. Proposed ranking method

3.1. Introduction

As discussed earlier, CEC 2022 SOBC considers both the speed and the
error level without prioritizing error. Therefore, an algorithm faster by one
objective function evaluation may achieve a better rank than an algorithm that
solves more problems. Table 1 shows an example of such a situation and Table
2 presents the resulting ranking (the more, the better). The example assumes
that the global minimum has fitness equal to zero, and there are two competing
algorithms, ’A’ and ’B’, each run three times. Table 1 presents achieved fitness
and the number of used fitness function evaluations (in parentheses). Table 2
presents ranks according to CEC 2022 SOBC. Even though algorithm ’A’ always
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Table 1: Exemplary results of two hypothetical algorithms. The number of used objective
function evaluations (FES) is shown in parentheses. Assumed budget is 20 FES.

Algorithm run 1 run 2 run 3
A 0 (12) 0 (10) 0 (11)
B 1 (20) 0 (8) 0 (9)

Table 2: CEC 2022 SOBC ranking for results from Table 1 (the more the better).

Algorithm run 1 run 2 run 3 sum CEC score
A 2 4 3 9 3
B 1 6 5 12 6

quickly found the global optimum, algorithm ’B’, which failed, won because it
was slightly faster in two runs.

3.2. Proposed performance metric

From the point of view of practical application, e.g., [31, 32, 33], the best
algorithm is the one that finds the global optimum. Of the algorithms that
cannot do this, the best is the one that achieves the smallest error. The improved
performance of the algorithm is a nice bonus. Based on the observations above,
this paper proposes to use three ordered criteria to rank algorithms during
competitions:

1. Percent of trails that found the global optimum. The optimum is con-
sidered to be found when the objective function error is less or equal to
10−8.

2. Percent of thresholds achieved by all trials. The thresholds are set up like
for creating ECDF curves [9]. There are 51 thresholds, which are evenly
spaced on a logarithmic scale from 103 to 10−8.

3. Percent of budget left. The run is interrupted when the algorithm finds
the global optimum.

Since the criteria are ordered, and no lower-order criterion should be able to
compensate for a significant loss in a higher-order criterion, these criteria can
be combined by weighting.

q = c1 + wc2 + w2c3, (1)

where c1, c2, c3 are the results of criteria 1, 2, 3, and w is a weight. From the
practical point of view, a weight smaller or equal to 0.01 is acceptable. All rat-
ings (c1, c2, c3) are calculated using many independent runs (30 for CEC 2022).
They can be averaged for all functions in the benchmark and all dimensionalities
to produce a single value for each algorithm. The value can be used to create
ranking and can be understood by humans when w is a ”nice” number (e.g.,
100, 1000), but for better readability c1, c2, c3 can be shown as three columns
in tables. Like the CEC 2022 ranking method, the proposed method uses both
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Table 3: An example of the application of the proposed performance metric for results from
Table 1. Each triplet contains the percent of trials that found the global optimum (c1), the
percent of thresholds achieved by all trials (c2), and the percent of budget left (c3).

Algorithm c1 c2 c3 rank
A 100 100 45 1
B 67 76 38 2

a fixed target and fixed cost approach, but unlike CEC, the proposed method
allows one to determine the place of new algorithms in previously published
rankings.

As an example of the calculations involved in the application of the proposed
method, the algorithms’ marks and ranks for the data from Table 1 have been
determined. It can be easily observed that 100% trials (c1 = 100) finished
successfully for algorithm ’A’ but only 67% for ’B’. As ’A’ always finds the
global optimum, it also achieves 100% of the thresholds (c2 = 100). On the
other hand, ’B’ achieved 76% of the thresholds ((14 + 51 + 51)/(3 · 51) · 100).
Assuming that the budget was set to 20 evaluations of the objective function
(FES), ’A’ spared 8 + 10 + 9 FES, which gives 45% of the budget (c3 = 45). ’B’
spared 0 + 12 + 11, which gives 38% of the budget. ’A’ scored better by about
33 percentage points, winning the ranking. The results presented as triplets
(c1, c2, c3) are presented in Table 3.

3.3. Application to the CEC 2022 SOBC competition

The proposed ranking was used to rank methods from the CEC 2022 compe-
tition. Raw results of the contestants were downloaded from the official reposi-
tory [34]. The weight w was set to 0.01. The thresholds were calculated like for
ECDF [9], but the sequence starts from 103 to be sure that at least one thresh-
old is achieved. Table 4 presents the resulting ranking and the CEC 2022 SOBC
official ranking [17]. Additionally, two rankings based on the ECDF curves are
created. One uses the area under the curve (AUC), and the other uses the
ECDF curve value taken at the budget’s end. All ranking methods disagree.
According to the proposed method, the best was S-LSHADE-DP [38], which
was 4th in the official ranking. The second was IUMOEAII [41], which was
7th, and the third was EA4EigN100 10 [35], which was the official winner. The
ranking based on ECDF value at the end of the budget is in better agreement
with the proposed one than with the official. According to the averaged AUC,
the best was EA4EigN100 10, MTT-SHADE [40] was the second, but it was 6th
in the official ranking and 9th in the proposed one. All ranking methods agreed
that SPHH-Ensemble [47] is the worst.

To better understand what is behind the rankings, Figure 1 shows ECDFs
of the winners of each ranking and the second best according to AUC (for 20
dimensional problems). It can be observed that EA4EigN100 10 and MTT-
SHADE, which were the first and the second according to AUC improved their
results quickly before 105 evaluations of the objective function. On the other
hand, S-LSHADE-DP, considered the best by the proposed ranking, improved
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Table 4: Possible rankings of contestants of the CEC 2022 SOBC competition.

Algorithm official proposed ECDF at end AUC
EA4EigN100 10 [35] 1 3 4 1
NL-SHADE-LBC [36] 2 5 3 3
NL-SHADE-RSP-MID [37] 3 4 5 5
S-LSHADE-DP [38] 4 1 1 8
jSObinexpEig[39] 5 8 8 7
MTT-SHADE [40] 6 9 10 2
IUMOEAII [41] 7 2 2 9
IMPML-SHADE [42] 8 12 9 10
NLSOMACLP [43] 9 6 7 11
ZOCMAES [44] 10 11 12 4
OMCSOMA [45] 11 7 6 12
Co-PPSO [46] 12 10 11 6
SPHH-Ensemble [47] 13 13 13 13
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Figure 1: ECDFs of the winners of compared ranking method (EA4EigN100 10, S-LSHADE-
DP) and the second best according to AUC (MTT-SHADE).
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Table 5: The proposed performance metric for contestants of the CEC 2022 SOBC competi-
tion. Each triplet contain the percent of trials that found the global optimum, the percent of
thresholds achieved by all trials, and the percent of budget left.

Algorithm 10 D 20 D All
S-LSHADE-DP 59 69 23 48 57 28 54 63 27
IUMOEAII 54 65 29 26 36 17 40 50 19
EA4EigN100 10 49 61 28 31 43 22 40 52 23
NL-SHADE-RSP-MID 48 60 32 28 40 21 38 50 23
NL-SHADE-LBC 50 61 36 25 37 22 37 49 24
NLSOMACLP 40 56 18 28 42 15 34 49 16
OMCSOMA 41 58 10 24 42 13 33 50 12
jSObinexpEig 38 54 21 25 37 18 31 46 19
MTT-SHADE 34 48 28 25 35 22 29 42 23
Co-PPSO 32 45 24 14 29 07 23 37 10
ZOCMAES 21 41 18 20 32 18 20 37 18
IMPML-SHADE 27 52 15 13 37 06 20 45 07
SPHH-Ensemble 0 26 00 0 11 00 0 18 00

strongly at the end of the budget and achieved much better final results. When
the budget is known, it is quite reasonable for the algorithm to focus on explo-
ration for most of the budget and exploitation at the end, which can result in
low AUC.

As previously discussed, the proposed performance metric can be shown as
triplets containing the percent of trials that found the global optimum, the
percent of thresholds achieved by all trials, and the percent of budget left. The
results of the contestants of the CEC 2022 SOBC competition are presented in
Table 5. Algorithms are ordered according to results on the whole benchmark
(column ’All’). According to the proposed ranking scheme, S-LSHADE-DP is
the winner. It found global optimum in 14 percentage points more trials than
the official winner. It also passed 11 percentage points more thresholds, with
four percentage points more budget left. Now, it can be easily observed that
SPHH-Ensemble found optimum in 0% trials, which suggests the existence of an
error in the implementation. When we compare results for 10 and 20 dimensions,
we can observe that the second method, i.e., IUMOEAII, is more than two times
better in 10 D than in 20 D. NL-SHADE-RSP-MID [37] and NL-SHADE-LBC
[36] have the same core, but NL-SHADE-RSP-MID won because it was better
in 20 D. All algorithms except ZOCMAES [44] perform much worse in 20 D.

3.4. Summary and discussion

The proposed performance metric:

� Allows for creating a ranking that agrees with the practitioner’s needs.

� Can be calculated for a single algorithm and compared with others previ-
ously published to create the ranking. Each algorithm’s score calculated
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according to CEC 2022 SOBC rules depends on all algorithms in compe-
tition.

� Is easily interpretable by humans.

The proposed approach matches the needs of the CEC competition series
well. For other benchmarks, when all benchmark functions are too complex to
solve even once, the mark will degrade to its second component, but it will still
be interpretable and allow the ranking of the algorithms. On the other hand,
if all functions are solved, the mark will degrade to its last component, which
equals the fixed target approach.

The proposed mark aggregates well. It can be used to compare algorithms
on one function, all functions, and all functions and dimensionalities or even on
a whole family of benchmarks like CEC competitions of single objective bound
constrained search. The mark can be extended by adding components that
match the needs of the future benchmarks.

The influence of outliers on the proposed mark is small for CEC benchmarks.
For a specific dimensionality in CEC 2022 one outlier changes the mark by
0.28 percentage points. The change is 0.065 percentage points for CEC 2017.
The influence can be noticeable for very small benchmarks (few functions, few
independent runs), e.g., 3.3 percentage points for a benchmark with 3 functions
and 10 runs.

One of the limitations of the proposed approach is that the fitness at the
global optimum should be known. For the proposed method to work as intended,
the results at the end of the budget should be within the expected range (by
default, from 103 to 0).

4. Influence of parameter tuning on ranking

As mentioned earlier, rankings can be artificially skewed if only a subset
of the contestants are carefully tuned for the competition. To check whether
this was the case for CEC 2022 SOBC competition, the top four algorithms
(according to the official ranking) were tuned, and changes in the performance
metrics of each were analyzed. Since automatic tuning requires source code
adaptation and large computational effort, only implementations made in C++,
i.e., NL-SHADE-LBC, NL-SHADE-RSP-MID, S-LSHADE-DP, were tuned by
irace [26]. As EA4EigN100 10 was implemented in Matlab, it was tuned by
hand by turning off its internal components.

The source codes of the aforementioned top four algorithms were downloaded
from the repository [34]. The codes were analyzed, and internal numerical
parameters were found and named. For the automatic tuning, the codes were
changed to allow for setting parameters’ values during the start of the program.
The source codes of the parametrized algorithms are available on [48].

The tuning was performed two times; once, the aim was to improve the
algorithm’s ranks in the official CEC ranking, and the second time, the aim was
to improve the algorithm’s place in the proposed ranking. The budget of irace
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was set to 5000 experiments. The tuning was performed collectively, i.e., the
whole set of 12 functions run in both 10 and 20 dimensions is treated as an
instance in irace. Instances differ by used seed, which influences the algorithm’s
starting points and random numbers. The instance result seen by irace comes
from 5 independent runs of the algorithm under tuning. A larger number of
runs would make the experiments too time-consuming. Fewer runs would make
marks used in both ranking methods too sensitive to random fluctuations. Since
competing algorithms are needed to calculate the CEC 2022 rating, the NL-
SHADE-RSP [49], RB IPOP [50], and SADE [51] were used.

After tuning, the resulting configuration was tested using 30 independent
runs as required by the CEC 2022 competition. During the test, all algorithms
started from the same starting points when possible, i.e., when some algorithm
uses a larger population than the other, all additional points were not seen by
the other.

4.1. NL-SHADE-RSP

In the following sections, the parameters of several algorithms will be named
and tuned. Most parameters were not named in the original articles. They
were just numeric constants in the source codes. This section aims not to de-
scribe algorithms in detail but to facilitate understanding of parameter names
and their roles. For this purpose, the NL-SHADE-RSP [49] algorithm will be
presented and briefly described. The NL-SHADE-RSP is the predecessor to
NL-SHADE-RSP-MID and NL-SHADE-LBC, and it is similar to S-LSHADE-
DP. The pseudocode of NL-SHADE-RSP is presented in Figure 2. To calculate
population size pop size mult parameter is multiplied by problem dimension-
ality N . The memory size for F and CR is a product of mem size mult and
problem dimensionality. The archive size of the individuals is the product of
arch size mult and population size. Parameters initial CR and initial F are
used at the beginning of the search to initialize CR and F. The parameter
arch prob sets the probability of archive usage during mutation (line 16). Param-
eters per of the best considered at start and per of the best considered at end are
used to calculate p best rate, which controls greediness of current-to-pbest strat-
egy. The parameter norm sigma sets standard deviation (σ) for the normal
distribution random number generator used to generate CR (line 6). The pa-
rameter cauchy sigma sets the scale parameter of the Cauchy distribution ran-
dom number generator, which is used to generate F (line 8). The parameter
prob use exp sets the probability of the usage of exponential crossover (line 26).
Variable A is an archive that is filled in line 32 and used during mutation (line
23) when the condition in line 16 is not satisfied. Variable k is a counter used
to select a place for the update in memory of F and CR (line 36).

The algorithm works iteratively till the budget of the objective function eval-
uations is exhausted (line 2). At the beginning of each iteration, the memory of
F and CR is cleaned. Lines 4-11 are responsible for generating and normalizing
CR an F. Lines 13-21 are responsible for selecting indexes of individuals that
will be used to perform mutation in line 23. Line 25 updates CRtoUse. It is
set to 0 during when start 2 use CRtoUse fraction of the budget. After that,
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1: pop size mult = 30; pop size = pop size mult · N ; mem size mult = 20;
mem size = mem size mult · N ; A = ∅; k = 1; initial F = 0.2; MF r =
initial F ; initial CR = 0.2; MCRr = initial CR; arch size mult = 2.1;
arch size = arch size mult · pop size; arch prob = 0.5; norm sigma =
0.1; cauchy sigma = 0.1; per of the best considered at start = 20;
p best rate = per of the best considered at start/100; CRtoUse = 0;
prob use exp = 0.5

2: while fes < fesmax do
3: SF = ∅; SCR = ∅;
4: for all i ∈ {1, 2, ..., pop size} do
5: r = randInt(1,mem size + 1)
6: CRi = randNorm(MCRr, norm sigma); CRi = min(1,max(0,CRi))
7: repeat
8: Fi = randCauchy(MF r, cauchy sigma)
9: until Fi ≥ 0

10: Fi = min(1, Fi)
11: end for
12: for all i ∈ {1, 2, ..., pop size} do
13: repeat
14: pbest = randInt(1, pop size · p best rate)
15: r1 = randInt(1, pop size)
16: if rand(0, 1) > arch prob then
17: r2 = randInt(1, pop size)
18: else
19: r2 = randInt(1, arch size)
20: end if
21: until i ̸= pbest ̸= r1 ̸= r2
22: for all j ∈ {1, 2, ..., N} do
23: vi,j = xi,j + Fi · (xpbest,j − xi,j) + Fi · (xr1,j − xr2,j)
24: end for
25: Update CRtoUse
26: if rand(0, 1) > prob use exp then
27: ui =binomial crossover with CRtoUse
28: else
29: ui =exponential crossover with CRi

30: end if
31: if q(ui)<q(xi) then // q is the objective function
32: a = randInt(1, arch size); Aa = xi; xi = ui

33: SF = SF ∪ Fi; SCR = SCR ∪ CRi

34: end if
35: Update pop size, arch size, adjust archive content by removing ran-

dom individuals, adjust population by removing worst individuals
36: Update MF k,MCRk, arch prob; k = modulo(k,mem size) + 1
37: end for
38: end while

Figure 2: The pseudocode of NL-SHADE-RSP.
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CRtoUse is proportional to the budget spent. This parameter is only used when
the algorithm executes binomial crossover (line 27). If the result of the crossover
(ui) is better than the current individual xi, then xi is stored in the memory A,
and its place in the population is given to ui. Values of F and CR that lead to
current success are stored in SF and SCR collections (line 33). In 36, expected
values of F and CR are updated based on the Lehmer mean on SF or SCR,
accordingly. The arch prob update is based on objective function improvements
achieved using the archive and the number of archive usages.

4.2. Modifying EA4EigN100 10

EA4EigN100 10 was proposed in [35]. It is the official winner of the CEC
2022 competition. The algorithm uses four well-known optimization methods,
namely: CoBiDE [52], IDEbd [53], CMA-ES [54], and jSO [55]. At each itera-
tion the algorithm stochastically selects which internal algorithm will be used.
Additionally, all algorithms except CMA-ES use Eigen crossover with probabil-
ity 0.4. Unfortunately, the paper does not include an analysis of the influence
of each component on the quality of the results. This section will fill this gap.
During the experiments, each of the internally used algorithms was either turned
off or used alone, e.g., the version named here IDE uses only IDEbd as a search
engine, but the version called NO IDE uses all components except IDEbd. As
Eigen crossover is used stochastically, two additional versions of the algorithm
were tested. In the first of them (called EIG) Eigen crossover is always used. In
the second version, Eigen crossover is disabled (NO EIG). As NO COBIDE and
NO CMA versions turned out good, the version with both components disabled
was also examined.

During the experiments, it was noticed that one of the decision paths in
EA4EigN100 10 allows it to ask for fitness values outside the bounds, and the
official implementation of the benchmark answers such queries. This decision
path is active when the algorithm uses jSO and Eigen crossover. The error was
corrected, and the resulting version is named CORRECTED BOUNDS. The
original implementation was used in all modifications of the algorithm mentioned
above. The source code of the discussed versions of the algorithm is available
on [48].

The results of the experiments are shown in Table 6. As can be observed,
the official implementation, which sometimes uses information outside the search
boundary, is better than the corrected version according to both ranking schemes.
Considering the CEC 2022 SOBC ranking, the official implementation is in 9th
place, and its error-free version is 10th. The best is the version that does not use
CoBiDE and CMA-ES. Even the version that uses only IDEbd is better than
the whole algorithm. Eigen crossover is beneficial. Using it always improved
results; disabling it deteriorated results.

Considering the proposed ranking scheme, the best version does not use
CoBiDE, and the second best does not use IDEbd. The best version improved
three percentage points on the top of the default.
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Table 6: Analysis of the influence of EA4EigN100 10 components on its position in ranking.

Alg. version CEC
rank

CEC
points

proposed
rank

prop. perf.
metric

NO COBIDE NO CMA 1 157606 5 40 51 29
NO COBIDE 2 150943 1 43 53 29
NO CMA 3 137550 4 40 51 28
IDE 4 123947 6 38 48 26
EIG 5 121193 9 37 52 26
NO IDE 6 121064 2 42 53 27
NO jSO 7 117080 7 37 49 25
jSO 8 115005 10 37 50 28
official 9 112593 3 40 52 23
CORRECTED BOUNDS 10 110666 11 37 48 24
NO EIG 11 97744 8 37 48 24
COBIDE 12 60206 12 36 48 21

4.3. Tuning NL-SHADE-LBC

NL-SHADE-LBC took second place during the CEC 2022 competition. It is
the modification of NL-SHADE-RSP [49]. The most important novelties of NL-
SHADE-LBC include: 1) the usage of generalized Lehmer mean [56]; 2) linear
change of power used in generalized Lehmer mean; 3) usage of the resampling
[57] as bound constraints handling. The list of parameters to tune was created
based on the source code analysis. Parameters default CR and default F are
used during memory updates when there are no successful individuals in the
current iteration. The MWLp1 and MWLp2 set the initial values of power (p)
used in generalized Lehmer mean to calculate F and CR, respectively. The
power is linearly reduced during the search to achieve LBC fin at the end. The
MWLm sets bias parameter (m) of generalized Lehmer mean. The min pop size
set minimal population size at the end of the budget. The assumed ranges and
types of the parameters are provided in Table A.1. The source code of the
parametrized algorithm is available on [48].

The tuning results are provided in Table 7. It can be observed that the results
of tuning for CEC score and for the proposed measure are different. An ablation
analysis was performed to determine which parameters are most important. The
maximal number of experiments for ablation was set to 5000. The results for
configuration tuned for CEC score are provided in Figure 3, and for the proposed
measure in Figure 4. Both performance measures should be maximized, but
irace performs minimalization. Therefore, the sign of performance measures
was changed. As it can be observed, initial F is important for tuning for
both ranking methods. It was increased for CEC but strongly decreased for the
proposed measure. Even though modern algorithms adapt their parameters,
their initial values are still important. The probability of archive usage was
also considered important for both rankings. Again, changes for CEC and for
the proposed method have opposite directions. The parameters introduced in
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Table 7: Default and tuned parameters of NL-SHADE-LBC.

Parameter default tuned
for CEC

tuned for
proposed score

pop size mult 23 12 30
mem size mult 20 11 6
arch size mult 1 1.91 0.67
initial CR 0.9 0.93 0.57
initial F 0.5 0.65 0.12
min pop size 4 11 9
arch prob 0.5 0.46 0.57
per of the best considered at start 20 37 33
per of the best considered at end 30 25 27
norm sigma 0.1 0.22 0.18
cauchy sigma 0.1 0.21 0.1
default CR 0.5 0.82 0.43
default F 0.5 0.8 0.53
MWLp1 3.5 2.49 2.29
MWLp2 1 2 1.06
MWLm 1.5 2.55 0.53
LBC fin 1.5 1.88 2.49
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Figure 3: Ablation analysis of NL-SHADE-LBC parameters tuned for CEC 2022 ranking.
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Figure 4: Ablation analysis of NL-SHADE-LBC parameters tuned for the proposed ranking.

NL-SHADE-LBC (MWLp1, MWLp2, LBC fin, MWLm) are not important for
CEC 2022, but all except MWLp1 are important for the proposed measure.

The decrease of the population size (by pop size mult) was the most impor-
tant change for CEC. For the proposed measure, the most important change
was the increase of σ (norm sigma), which results in higher CR variability.

4.4. Tuning NL-SHADE-RSP-MID

The NL-SHADE-RSP-MID [37] took third place during the CEC 2022 SOBC
competition. The most important novelties introduced by NL-SHADE-RSP-
MID include: 1) calculating and using population midpoint; 2) splitting popu-
lation into two groups by k-means algorithm to find better midpoints; 3) intro-
ducing restarts to the algorithm; 4) using resampling [57] as bound constrain
handling. As NL-SHADE-RSP-MID was built on top of NL-SHADE-RSP, dur-
ing the first tuning series, the influence of parameters and components added
to NL-SHADE-RSP was tested. The second series of tuning also includes pa-
rameters of NL-SHADE-RSP.

4.4.1. Tuning parameters introduced by NL-SHADE-RSP-MID

As mentioned earlier, the first series of experiments focused on tuning param-
eters added on top of NL-SHADE-RSP parameters. All parameters of the core
algorithm were left untouched except the initial population size. Categorical
parameters, like k-means, allow turning components introduced in NL-SHADE-
RSP-MID on or off. To calculate population size pop size mult parameter is
multiplied by problem dimensionality. The population size after restart of the
algorithm is set by pop size reset. The minimal population size after restart is
set by min pop size aft restart. The restart is triggered when at least one indi-
vidual has at least one dimension on bounds for more than min its on bounds
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Table 8: Default and tuned parameters of NL-SHADE-RSP-MID.

Parameter default tuned
for CEC

tuned for
proposed score

k-means 1 1 1
resampling 1 0 1
count lim 1 0 1
min its on bounds 9 - 9
pop size mult 5 4 13
min num stag it 8 12 10
min pop size aft restart 20 19 44
pop size reset 400 300 210
shape const 0.1 0.08 0.11
min silhouette mult 0.025 0.01 0.02

iterations or when the distance between the current mean of the population and
mean min num stag it+1 older is less than 10−9. The rate of decline in popula-
tion size is affected by shape const. The split of the population into two groups
is rejected when the silhouette score calculated for that grouping is smaller than
the product of min silhouette mult and

√
N , where N is problem dimensional-

ity. The types and assumed ranges of the parameters are provided in Table A.2.
The source code of the parametrized algorithm is available on [48].

Table 8 provides the default and tuned parameter values. It can be ob-
served that the algorithm tuned for the proposed score uses all new compo-
nents introduced in NL-SHADE-RSP-MID, but the algorithm tuned for CEC
2022 uses only the k-means component. Form changes of the pop size mult and
min pop size aft restart, it can be inferred that larger populations are preferred
for the proposed score and smaller than the default are preferred for the CEC
score.

The results of the ablation analysis for parameters tuned for CEC 2022 are
provided in Figure 5, and the results for parameters tuned for the proposed
performance metric are in Figure 6. When tuning is performed for CEC
ranking, the most important is to turn off resampling, followed by decreasing
population size (pop size mult and min pop size aft restart parameters). On the
other hand, when using the proposed measure, the most important is to increase
population size.

When analyzing Figure 6 it can be noticed that using a tuned values of
the two least important parameters deteriorated results, suggesting that tuned
parameters are still far from optimal. This hypothesis was verified by an ad-
ditional experiment in which only the top 5 tuned parameters were used, and
the rest were default. For that setup 30 independent runs were performed. The
results are similar to the results when all tuned parameters were used. The
Wilcoxon test does not rejected null hypothesis at a confidence level of 0.95.
Due to the large computational cost, the ablation analyses use data from only
five independent runs. Therefore, some results may be distorted by randomness.
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Figure 5: Ablation analysis of NL-SHADE-RSP-MID parameters tuned for CEC 2022 ranking.
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Table 9: Default and tuned full set of parameters of NL-SHADE-RSP-MID.

Parameter default tuned
for CEC

tuned for
proposed score

k-means 1 1 1
resampling 1 1 1
count lim 1 1 1
min its on bounds 9 10 13
pop size mult 5 3 7
min num stag it 8 5 10
min pop size aft restart 20 24 21
pop size reset 400 62 272
shape const 0.1 0.07 0.08
min silhouette mult 0.025 0.02 0.02
min pop size 4 5 43
mem size mult 20 19 26
arch size mult 2.1 1.69 2.83
initial CR 0.2 0.9 0.12
initial F 0.2 0.54 0.2
arch prob 0.5 0.28 0.59
prob use exp 0.5 0.87 0.09
when start 2 use CRtoUse 0.5 0.24 0.44
per of the best considered at start 20 24 33
per of the best considered at end 60 32 22
norm sigma 0.1 0.24 0.22
cauchy sigma 0.1 0.25 0.26
default CR 0.5 0.98 0.48
default F 0.5 0.51 0.32

4.5. Tuning parameters of NL-SHADE-RSP

The base algorithm for NL-SHADE-RSP-MID, i.e., NL-SHADE-RSP, also
has many parameters. In addition to parameters shown in its introductory paper
[49] it has constants that were found in the source code. They were named and
also tuned. The list of the NL-SHADE-RSP-MID parameters not listed in Table
8, together with their assumed ranges of the values, are provided in Table A.3.
The meaning of all parameters was discussed earlier.

The results of the tuning are provided in Table 9. Unlike when tuning
only new parameters of NL-SHADE-RSP-MID for CEC 2022, this time re-
sampling and count lim components are enabled. Again, tuning for CEC re-
duced population size, but tuning for the proposed measure increased it. Tun-
ing for the proposed measure also increased the minimal population size by
more than ten times. The results of ablation analyses for the CEC measure
are provided in Figure 7, and for the proposed measure in Figure 8. For
both considered ranking methods, the set of the most important parameters
includes initial CR, per of the best considered at start, and cauchy sigma. Ini-
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Figure 7: Ablation analysis of the full set of NL-SHADE-RSP-MID parameters tuned for the
CEC 2022.
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Figure 8: Ablation analysis of the full set of NL-SHADE-RSP-MID parameters tuned for the
proposed ranking.
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tial CR was strongly increased for CEC but decreased for the proposed mea-
sure. The per of the best considered at start was increased for both ranking
methods, but for the proposed measure, it was also important to decrease
per of the best considered at end. In both cases, cauchy sigma was increased
more than two times. It seems that a stronger variability of F is desired. From
the set of other parameters important for CEC, norm sigma was also increased
more than two times, resulting in more substantial CR variability. The initial F
was also increased more than two times. The probability of using exponential
crossover (prob use exp) was increased to nearly 0.9. The probability of archive
usage was reduced nearly two times. From the set of other parameters impor-
tant for the proposed measure, the population size after the restart was strongly
reduced, and the archive size was increased.

4.6. Tuning S-LSHADE-DP

S-LSHADE-DP [38] took fourth place during the CEC 2022 competition,
but according to the proposed ranking, it is the winner. The most impor-
tant novelties introduced by the algorithm include: 1) stagnation detection and
additional perturbation of stagnated individuals; 2) using two mutation strate-
gies (DE/target/1, DE/current-to-pbest/1) switched by additional heuristics;
3) modified adaptation mechanism for CR.

The list of parameters to tune was created based on the source code analy-
sis. Parameter gamma sets the probability of current-to-pbest mutation instead
DE/target/1. The number of the best solutions used in p-best mutation is the
product of p best rate and population size. The selection of the mutation oper-
ator is made every upd mut op iters. The stagnation threshold sets the number
of iterations after which a stagnated individual undergoes dynamic perturba-
tion. The CR switch at sets at what point of the budget algorithm will switch
CR from 0 to a uniform random number U(0,1). The mut switch at is the
probability of performing dynamic perturbation when stagnation is detected.
The stag detect at sets at what point of the budget the stagnation detection
mechanism will be enabled. The types and assumed ranges of the parameters
are provided in Table A.4. The source code of the parametrized algorithm is
available on [48].

The results of parameter tuning are provided in Table 10. The results of
ablation analysis for CEC is provided in Figure 9 and for the proposed measure
in Figure 10. It can be observed that for both ranking methods, population size
is the most important parameter. Like for other previously analyzed algorithms,
tuning for CEC requires a smaller population size, and tuning for the proposed
measure requires larger populations. When tuning for CEC it is important to
switch CR from 0 to a larger number much earlier. Another interesting aspect is
a more than two-fold reduction of the probability of current-to-pbest mutation.

4.7. The influence of the tuning on the rankings

This section examines the influence of the tuning on both rankings. Every
tuned algorithm was run 30 times to calculate its score for each ranking method.
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Table 10: Default and tuned parameters of S-LSHADE-DP.

Parameter default tuned
for CEC

tuned for
proposed score

pop size 100 47 114
mem size 6 12 7
arch size mult 2.6 1.88 1.86
p best rate 0.11 0.1 0.12
gamma 0.3 0.12 0.37
upd mut op iters 20 32 37
min pop size 4 13 17
cauchy sigma 0.1 0.21 0.27
initial F 0.5 0.45 0.56
stagnation threshold 100 134 120
CR switch at 0.5 0.13 0.27
mut switch at 0.5 0.78 0.29
stag detect at 0.5 0.44 0.82
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Figure 9: Ablation analysis of the S-LSHADE-DP parameters tuned for CEC 2022 SOBC.
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Figure 10: Ablation analysis of the S-LSHADE-DP parameters tuned for the proposed ranking.

The results of the experiments are shown in Table 11. The table includes the
results of all tuned algorithms and IUMOEAII, as it was the second in the pro-
posed ranking. As other algorithms are worse than even not-tuned considered
methods, they are omitted in this table. It can be observed that generally, tun-
ing using target measure helps, but tuning using the other measure is harmful,
e.g., NL-SHADE-RSP-MID tuned for the proposed ranking is the last one in
CEC 2022 SOBC ranking, NL-SHADE-LBC tuned for CEC is the last one for
the proposed ranking. The first for the proposed ranking is the eleventh for
CEC.

Analysis of the CEC ranking points shows that all improvements by tun-
ing are large. Tuning all parameters of NL-SHADE-RSP-MID gave better re-
sults than tuning only new ones. If only NL-SHADE-LBC was tuned, and the
other contestants were not, it would win the competition. The same holds for
S-LSHADE-DP. If only NL-SHADE-RSP-MID was tuned, it would be the sec-
ond. If all considered algorithms were tuned, EA4Eig and NL-SHADE-LBC
would maintain their order, but NL-SHADE-RSP-MID and S-LSHADE-DP
would switch their positions.

When considering the proposed ranking, tuned versions of S-LSHADE-DP
were not better than the base version. If only one algorithm were tuned, NL-
SHADE-RSP-MID would advance two positions to the second place. EA4Eig
and NL-SHADE-LBC could also be the second. If all considered algorithms were
tuned, NL-SHADE-RSP-MID would be the second, EA4EigN100 10 would be
the third, and NL-SHADE-LBC would be the fourth. Untuned IUMOEAII
would drop from the second to the fifth place. The profit of tuning EA4Eig
is three percentage points. The same holds for NL-SHADE-LBC. For the NL-
SHADE-RSP-MID, it is 13 percentage points.

When using the proposed measure, it is possible to calculate the mark on
the whole benchmark on both dimensionalities for each run separately. Thanks
to that, it is possible to compare two algorithms in a rather standard way
using statistical tests. As both compared methods start from common starting
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Table 11: Results and ranking of the tuned algorithms. For better readability suffix N100 10
was removed from EA4EigN100 10 and prefix NL-SHADE was removed from NL-SHADE-
RSP-MID and NL-SHADE-LBC.

Alg. version CEC
rank

CEC
points

proposed
rank

prop. quality
measure

EA4Eig for CEC 1 204591 10 40 51 29
EA4Eig for prop. 2 195415 5 43 53 29
LBC for CEC 3 183983 15 37 49 25
S-LSHADE-DP for CEC 4 180997 3 52 61 38
EA4Eig 5 172320 9 40 52 23
RSP-MID all for CEC 6 169964 8 41 51 30
RSP-MID new for CEC 7 164483 14 37 50 23
LBC 8 162954 13 38 49 25
LBC for proposed 9 132412 7 41 52 23
RSP-MID 10 128856 12 39 51 23
S-LSHADE-DP 11 124787 1 54 63 27
S-LSHADE-DP for prop. 12 123656 2 54 62 30
IUMOEAII 13 114675 11 40 50 19
RSP-MID all for prop. 14 108404 4 52 61 22
RSP-MID new for prop. 15 100499 6 42 52 17

points, the Wilcoxon signed-rank test was used. Tuning NL-SHADE-RSP-MID
significantly improved its results (p-value: 9e-10). The same holds for NL-
SHADE-LBC (p-value 6e-06).

5. Conclusions

This paper proposes a new method of assessing the performance of meta-
heuristic optimization algorithms. The method was used to create an alternative
ranking for CEC 2022 SOBC competition contestants. The new ranking was
compared to the official one. The influence of parameter tuning on both rankings
was also investigated.

The proposed performance metric is human-interpretable and allows for find-
ing a place for new algorithms in published rankings. As resulting rankings are
more focused on the results at the end of the budget, winning algorithms are
better suited for real-world applications than winners of rankings more focused
on convergence rate.

The results showed that automatically tuned algorithms significantly im-
proved their ranks when the tuning used the same performance metric as the
target ranking. On the other hand, when tuning used the other metric, the rank
deteriorated. The observed improvements indicate that none of the examined
algorithms was carefully tuned for CEC 2022 SOBC. The tuning results showed
that larger populations are usually preferred for the proposed score, and smaller
than the default are preferred for the CEC score.

27



The ablation analyses of the algorithms’ parameters showed that only a
few of them strongly affect the results. Some of them are not documented
in the introductory papers and can only be found in the source codes. Even
though modern algorithms adapt their parameters, their initial values are still
important.

Since tuning impacts ranking significantly, future competitions should spec-
ify the tuning procedure. The procedure should determine the tuning budget
and the tuning method. The latter is essential to reduce the variability of the re-
sults that come from personal preferences on tuning methods. As some authors
wish to make their algorithms as universal as possible, they propose initial values
of the parameters that should work for many optimization problems. Therefore,
it would be interesting to have and compare two rankings, one for not-tuned
algorithms and the second for the tuned ones. The comparison of the results
of these rankings could give additional knowledge about the algorithms, e.g., a
significant change in the ranking position suggests that built-in adaptation of
a few parameters could be improved or extended. The high tuning potential
may also indicate that the algorithm is overcomplicated, i.e., it has too many
modules and parameters.

Future work aims to find out how to optimally select thresholds for a given
benchmark and how to handle functions with unknown global optimum.

Appendix A. Types and ranges of the parameters of tuned algo-
rithms

This section provides types and ranges of the parameters used for tuning
by irace method. Table A.1 contains parameters of NL-SHADE-LBC, Table
A.2 parameters of NL-SHADE-RSP-MID, Table A.3 contains parameters of
NL-SHADE-RSP-MID inherited from NL-SHADE-RSP, and Table A.4 contains
parameters of S-LSHADE-DP.
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