Simon Singh The Code Book. The Evolution of Secrecy from Mary Queen of Scots to Quantum Cryptography
DOUBLEDAY, a division of Random House, Inc.

In the following example, I have enciphered a piece of ciphertext using the Vigenere cipher, using a keyphrase that is as long as the message. All the cryptanalytic techniques that I have previously described will fail. None the less, the message can be deciphered.

| Key | $?$ |
| :---: |
| Plaintext | $?$ |
| Ciphertext | \mathbf{V} | \mathbf{H} | \mathbf{R} | \mathbf{M} | \mathbf{H} | \mathbf{E} | \mathbf{U} | \mathbf{Z} | \mathbf{N} | \mathbf{F} | \mathbf{Q} | \mathbf{D} | \mathbf{E} | \mathbf{Z} | \mathbf{R} | \mathbf{W} | \mathbf{X} | \mathbf{F} | \mathbf{I} | \mathbf{D} | \mathbf{K} |

This new system of cryptanalysis begins with the assumption that the ciphertext contains some common words, such as the. Next, we randomly place the at various points in the plaintext, as shown below, and deduce what sort of keyletters would be required to turn the into the appropriate ciphertext. For example, if we pretend that the is the first word of the plaintext, then what would this imply for the first three letters of the key? The first letter of the key would encrypt \mathbf{t} into \mathbf{V}. To work out the first letter of the key, we take a Vigenere square, look down the column headed by \mathbf{t} until we reach \mathbf{V}, and find that the letter that begins that row is \mathbf{C}. This process is repeated with \mathbf{h} and \mathbf{e}, which would be encrypted as \mathbf{H} and \mathbf{R} respectively, and eventually we have candidates for the first three letters of the key, CAN. All of this comes from the assumption that the is the first word of the plaintext. We place the in a few other positions, and, once again, deduce the corresponding keyletters. (You can check the relationship between each plaintext letter and ciphertext letter by referring to the Vigenere square in Table 9.)

| Key | \mathbf{C} | \mathbf{A} | \mathbf{N} | $?$ | $?$ | $?$ | \mathbf{B} | \mathbf{S} | \mathbf{J} | $?$ | $?$ | $?$ | $?$ | $?$ | \mathbf{Y} | \mathbf{P} | \mathbf{T} | $?$ | $?$ | $?$ | $?$ |
| :---: |
| Plaintext | \mathbf{t} | \mathbf{h} | \mathbf{e} | $?$ | $?$ | $?$ | \mathbf{t} | \mathbf{h} | \mathbf{e} | $?$ | $?$ | $?$ | $?$ | $?$ | \mathbf{t} | \mathbf{h} | \mathbf{e} | $?$ | $?$ | $?$ | $?$ |
| Ciphertext | \mathbf{V} | \mathbf{H} | \mathbf{R} | \mathbf{M} | \mathbf{H} | \mathbf{E} | \mathbf{U} | \mathbf{Z} | \mathbf{N} | \mathbf{F} | \mathbf{Q} | \mathbf{D} | \mathbf{E} | \mathbf{Z} | \mathbf{R} | \mathbf{W} | \mathbf{X} | \mathbf{F} | \mathbf{I} | \mathbf{D} | \mathbf{K} |

We have tested three the's against three arbitrary fragments of the ciphertext, and generated three guesses as to the elements of certain parts of the key. How can we tell whether any of the the's are in the right position? We suspect that the key consists of sensible words, and we can use this to our advantage. If a the is in a wrong position, it will probably result in a random selection of keyletters. However, if it is in a correct position, the keyletters should make some sense. For example, the first the yields the keyletters CAN, which is encouraging because this is a perfectly reasonable English syllable. It is possible that this the is in the correct position. The second the yields BSJ, which is a very peculiar combination of consonants, suggesting that the second the is probably a mistake. The third the yields YPT, an unusual syllable but one which is worth further investigation. If YPT really were part of the key, it would be within a larger word, the only possibilities being APOCALYPTIC, CRYPT and EGYPT, and derivatives of these words. How can we find out if one of these words is part of the key? We can test each hypothesis by inserting the three candidate words in the key, above the appropriate section of the ciphertext, and working out the corresponding plaintext:

| Key | \mathbf{C} | \mathbf{A} | \mathbf{N} | $?$ | $?$ | $?$ | $?$ | $?$ | \mathbf{A} | \mathbf{P} | \mathbf{O} | \mathbf{C} | \mathbf{A} | \mathbf{L} | \mathbf{Y} | \mathbf{P} | \mathbf{T} | \mathbf{I} | \mathbf{C} | $?$ | $?$ |
| :---: |
| Plaintext | \mathbf{t} | \mathbf{h} | \mathbf{e} | $?$ | $?$ | $?$ | | | \mathbf{n} | \mathbf{q} | \mathbf{c} | \mathbf{b} | \mathbf{e} | \mathbf{o} | \mathbf{t} | \mathbf{h} | \mathbf{e} | \mathbf{x} | \mathbf{g} | $?$ | $?$ |
| Ciphertext | \mathbf{V} | \mathbf{H} | \mathbf{R} | \mathbf{M} | \mathbf{H} | \mathbf{E} | \mathbf{U} | \mathbf{Z} | \mathbf{N} | \mathbf{F} | \mathbf{Q} | \mathbf{D} | \mathbf{E} | \mathbf{Z} | \mathbf{R} | \mathbf{W} | \mathbf{X} | \mathbf{F} | \mathbf{I} | \mathbf{D} | \mathbf{K} |
| Key | \mathbf{C} | \mathbf{A} | \mathbf{N} | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | \mathbf{C} | \mathbf{R} | \mathbf{Y} | \mathbf{P} | \mathbf{T} | $?$ | $?$ | $?$ | $?$ |
| Plaintext | \mathbf{t} | \mathbf{h} | \mathbf{e} | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | \mathbf{c} | \mathbf{i} | \mathbf{t} | \mathbf{h} | \mathbf{e} | $?$ | $?$ | $?$ | $?$ |
| Ciphertext | \mathbf{V} | \mathbf{H} | \mathbf{R} | \mathbf{M} | \mathbf{H} | \mathbf{E} | \mathbf{U} | \mathbf{Z} | \mathbf{N} | \mathbf{F} | \mathbf{Q} | \mathbf{D} | \mathbf{E} | \mathbf{Z} | \mathbf{R} | \mathbf{W} | \mathbf{X} | \mathbf{F} | \mathbf{I} | \mathbf{D} | \mathbf{K} |
| Key | \mathbf{C} | \mathbf{A} | \mathbf{N} | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | \mathbf{E} | \mathbf{G} | \mathbf{Y} | \mathbf{P} | \mathbf{T} | $?$ | $?$ | $?$ | $?$ |
| Plaintext | \mathbf{t} | \mathbf{h} | \mathbf{e} | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | \mathbf{a} | \mathbf{t} | \mathbf{t} | \mathbf{h} | \mathbf{e} | $?$ | $?$ | $?$ | $?$ |
| Ciphertext | \mathbf{V} | \mathbf{H} | \mathbf{R} | \mathbf{M} | \mathbf{H} | \mathbf{E} | \mathbf{U} | \mathbf{Z} | \mathbf{N} | \mathbf{F} | \mathbf{Q} | \mathbf{D} | \mathbf{E} | \mathbf{Z} | \mathbf{R} | \mathbf{W} | \mathbf{X} | \mathbf{F} | \mathbf{I} | \mathbf{D} | \mathbf{K} |

If the candidate word is not part of the key, it will probably result in a random piece of plaintext, but if it is part of the key the resulting plaintext should make some sense. With APOCALYPTIC as part of the key the resulting plaintext is gibberish of the highest quality. With CRYPT, the resulting plaintext is cithe, which is not an inconceivable piece of plaintext. However, if EGYPT were part of the key it would generate atthe, a more promising combination of letters, probably representing the words at the.

For the time being let us assume that the most likely possibility is that EGYPT is part of the key. Perhaps the key is a list of countries. This would suggest that CAN, the piece of the key that corresponds to the first the, is the start of CANADA. We can test this hypothesis by working out more of the plaintext, based on the assumption that CANADA, as well as EGYPT, is part of the key:

| Key | \mathbf{C} | \mathbf{A} | \mathbf{N} | \mathbf{A} | \mathbf{D} | \mathbf{A} | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | \mathbf{E} | \mathbf{G} | \mathbf{Y} | \mathbf{P} | \mathbf{T} | $?$ | $?$ | $?$ | $?$ |
| :---: |
| Plaintext | \mathbf{t} | \mathbf{h} | \mathbf{e} | \mathbf{m} | \mathbf{e} | \mathbf{e} | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | \mathbf{a} | \mathbf{t} | \mathbf{t} | \mathbf{h} | \mathbf{e} | $?$ | $?$ | $?$ | $?$ |
| Ciphertext | \mathbf{V} | \mathbf{H} | \mathbf{R} | \mathbf{M} | \mathbf{H} | \mathbf{E} | \mathbf{U} | \mathbf{Z} | \mathbf{N} | \mathbf{F} | \mathbf{Q} | \mathbf{D} | \mathbf{E} | \mathbf{Z} | \mathbf{R} | \mathbf{W} | \mathbf{X} | \mathbf{F} | \mathbf{I} | \mathbf{D} | \mathbf{K} |

Our assumption seems to be making sense. CANADA implies that the plaintext begins with themee which perhaps is the start of the meeting. Now that we have deduced some more letters of the plaintext, ting, we can deduce the corresponding part of the key, which turns out to be BRAZ. Surely this is the beginning of BRAZIL. Using the combination of CANADABRAZILEGYPT as the bulk of the key, we get the following decipherment: the meeting is at the ????.

In order to find the final word of the plaintext, the location of the meeting, the best strategy would be to complete the key by testing one by one the names of all possible countries, and deducing the resulting plaintext. The only sensible plaintext is derived if the final piece of the key is CUBA:

| Key | \mathbf{C} | \mathbf{A} | \mathbf{N} | \mathbf{A} | \mathbf{D} | \mathbf{A} | \mathbf{B} | \mathbf{R} | \mathbf{A} | \mathbf{Z} | \mathbf{I} | \mathbf{L} | \mathbf{E} | \mathbf{G} | \mathbf{Y} | \mathbf{P} | \mathbf{T} | \mathbf{C} | \mathbf{U} | \mathbf{B} | \mathbf{A} |
| :---: |
| Plaintext | \mathbf{t} | \mathbf{h} | \mathbf{e} | \mathbf{m} | \mathbf{e} | \mathbf{e} | \mathbf{t} | \mathbf{i} | \mathbf{n} | \mathbf{g} | \mathbf{i} | \mathbf{s} | \mathbf{a} | \mathbf{t} | \mathbf{t} | \mathbf{h} | \mathbf{e} | \mathbf{d} | \mathbf{o} | \mathbf{c} | \mathbf{k} |
| Ciphertext | \mathbf{V} | \mathbf{H} | \mathbf{R} | \mathbf{M} | \mathbf{H} | \mathbf{E} | \mathbf{U} | \mathbf{Z} | \mathbf{N} | \mathbf{F} | \mathbf{Q} | \mathbf{D} | \mathbf{E} | \mathbf{Z} | \mathbf{R} | \mathbf{W} | \mathbf{X} | \mathbf{F} | \mathbf{I} | \mathbf{D} | \mathbf{K} |

Table 9 Vigenere square.

Plain	a	b	c	d	e	f	g	h	1		,	1	m	n	0	p	q	r	S	t	u	v	W	X	y	z
1	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A
2	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B
3	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C
4	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D
5	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E
6	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F
7	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G
8	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H
9	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I
10	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J
11	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K
12	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L
13	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M
14	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N
15	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
16	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P
17	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q
18	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R
19	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	
20	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T
21	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U
22	W	X	Y	Z	A	B																		T		V
23	\mathbf{X}	Y	Z	$\begin{aligned} & \mathbf{A} \\ & \mathbf{A} \end{aligned}$	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P		\mathbf{R}		T	U	V	W
24	\mathbf{X}	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	\mathbf{R}	\mathbf{K}	T	U	V	W	X
25	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y
26	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	\mathbf{Z}

So, a key that is as long as the message is not sufficient to guarantee security. The insecurity in the example above arises because the key was constructed from meaningful words. We began by randomly inserting the throughout the plaintext, and working out the corresponding keyletters. We could tell when we had put a the in the correct place, because the keyletters looked as if they might be part of meaningful words. Thereafter, we used these snippets in the key to deduce whole words in the key. In turn this gave us more snippets in the message, which we could expand into whole words, and so on. This entire process of toing and froing between the message and the key was only possible because the key had an inherent structure and consisted of recognisable words. However, in 1918 cryptographers began experimenting with keys that were devoid of structure. The result was an unbreakable cipher.

