
Testowanie oprogramowania
Sztuka Wytwarzania Oprogramowania, w. 10

Konrad Grochowski

Instytut Informatyki, Politechnika Warszawska, 2025 ©



Testowanie oprogramowania

› Ta część analizy, w której rzeczywiste wyniki zderza się z 
założonymi oczekiwaniami
– Uwaga – moda na LLMowe generowanie testów jest ekstremalnie 

niebezpieczna

2



Testowanie oprogramowania

› Z punktu widzenia klienta – najważniejsza część procesu 
wytwarzania oprogramowania
– Nawet jeśli klient nie zdaje sobie z tego sprawy...

– Może warto nazywać to zapewnianiem jakości?

› Weryfikuje zgodność programu z oczekiwaniami

› Nic innego nie daje informacji, co program naprawdę robi
– Istnieją metody weryfikacji formalnej, jednak nie zawsze daje się je 

zastosować, są drogie, i często mogą być użyte do weryfikacji 
fragmentów „odseparowanych od świata zewnętrznego”.

– Modelowanie może pomagać, ale zależy od procesu (czy model jest 
przetwarzany czy przepisywany) ale i jakości samego modelu

3



Testowanie oprogramowania – dwa użycia

› Oddzielny element cyklu, dedykowana czynność
– Czasem zwany „walidacją”, „kwalifikacją”, „certyfikacją” etc.

› Integralny element „implementacji” / codziennej pracy
– Nie można ocenić wykonanej pracy bez jej przetestowania

› Oba mają sens
– Ale uwaga na nieporozumienia

4



Testowanie oprogramowania

› Testowanie może tylko zweryfikować, 
czy nie ma znanych błędów

› Testy robi się na coś i tak naprawdę „zielone testy” to 
„negatywne wyniki”

› Czyli testowanie nie daje 100% gwarancji poprawności działania

› Ale to nie znaczy, że klient ma testować „na produkcji”...

5



Testowanie oprogramowania

› Rodzajów testów oprogramowania jest bardzo dużo

› W pewnym sensie każde uruchomienie programu i obserwacja 
jego zachowania to test
– Tylko najlepiej, żeby klient obserwował tylko oczekiwane działanie...

› Istnieją dedykowani specjaliści zajmujący aspektami testowania
– Product Assurance / Quality Assurance 

(choć w tych terminach jest więcej, niż tylko testy)

› Testowanie nie musi dotyczyć wyłącznie kodu
– Np. zgodność instrukcji użytkownika z rzeczywistym oprogramowaniem

6



Podział testów

› Ze względu na to czy program jest fizycznie uruchamiany:
– Statyczne
– Dynamiczne

› Ze względu na obiekty objęte testem (poziom testu):
– Jednostkowe
– Integracyjne
– Systemowe

– Akceptacyjne

› Testy bezpośrednio weryfikujące wymagania czasem nazywa się 
testami walidacyjnymi

7



Podział testów

› Ze względu na podejście do obserwacji wyniku:
– White-box

– Black-box

– Grey-box

› Ze względu na sposób przeprowadzenia:
– Automatyczne

– Manualne

8



Podział testów

› Ze względu na badane aspekty:
– Testy funkcjonalne (functional testing)

– Testy wydajnościowe (performance testing)

– Testy przeciążeniowe (stress testing)

– Testy bezpieczeństwa (security testing) 

– Testy bezpieczeństwa (safety testing) 

– Testy niezawodności (dependability testing)

– Testy odporności (recovery testing) 

– Testy zgodności (compatibility testing)

– Testy dokumentacji (documentation testing)

– ...

9



Inne przykłady rodzajów testów

› Testy dymne (smoke tests)

› Testy regresji (regression testing)

› Testy destrukcyjne (destructive testing)

› Testy „interakcji z człowiekiem”
– Testy tłumaczeń i regionalizacji (localization and internationalization)

– Testy używalności (usability)

– Testy dostępności (accessibility) 

10



Dobry test

› Jednoznacznie ustalony cel testu

› Czytelny scenariusz testu

› Określony warunek końca testu

› Określony warunek oceny testu (zaakceptowania)

› Jeśli możliwe – odwołanie do wymagań, z których test wynika.

› Idealnie:
– Automatyczny

– Deterministyczny i powtarzalny

– Jednoznacznie i łatwo oceniany

– Szybki
11



Testowanie jednostkowe

› „Najwyższa stopa zwrotu w jakości”
– Krótka ścieżka pomiędzy inwestycją/czasem a wynikiem i wpływem na kod

› „Najlepszy przyjaciel programisty”
– Tylko test mówi, co kod naprawdę robi, więc test jednostkowy pozwala 

wiedzieć co jest zrobione „na koniec dnia”

› Wymusza lepszą architekturę (decoupling)

› Brak formalnej definicji jednostki

› Nie wszystko da się unit-testować

› Nie zawsze odpowiada bezpośrednio wymaganiom 
– Usunie drobne błędy, ale nie poważne naruszenia funkcjonalności

12



Najlepsze praktyki tworzenia testu (jednostkowego)

› Automatyczny

› Powtarzalny i deterministyczny

› Szybki

› Jednoznaczny

› Skoncentrowany na pojedynczym aspekcie 

› Czytelny (testy to najlepsza dokumentacja kodu)

› Niezależny

› Nieidealny test zazwyczaj jest lepszy niż brak testu

› Zły test obniża morale i często przeszkadza

13



14

Dziękuję za uwagę
Konrad.Grochowski@pw.edu.pl

mailto:Konrad.Grochowski@pw.edu.pl

	Slajd 1: Testowanie oprogramowania
	Slajd 2: Testowanie oprogramowania
	Slajd 3: Testowanie oprogramowania
	Slajd 4: Testowanie oprogramowania – dwa użycia
	Slajd 5: Testowanie oprogramowania
	Slajd 6: Testowanie oprogramowania
	Slajd 7: Podział testów
	Slajd 8: Podział testów
	Slajd 9: Podział testów
	Slajd 10: Inne przykłady rodzajów testów
	Slajd 11: Dobry test
	Slajd 12: Testowanie jednostkowe 
	Slajd 13: Najlepsze praktyki tworzenia testu (jednostkowego)
	Slajd 14: Dziękuję za uwagę

