Sztuka Wytwarzania Oprogramowania

Wyktad 13 - wspdtbieznos¢. Wspétbiezne wzorce projektowe, cz 1

Robert Nowak

257

Sztuka Wytwarzania Oprogramowania 1/26

Wzorce projektowe

» standardowe rozwigzania czesto pojawiajacych sie probleméw
projektowych

» sprawdzone w praktyce

Przyktady: obiektowe wzorce projektowe (prototyp, kompozyt,
adapter, leniwe tworzenie, leniwe kopiowanie, obserwator, fasada,
fabryki, singleton, wizytator, wielometoda, most, komenda)

Sztuka Wytwarzania Oprogramowania 2/26

Plan wyktadu

P procesy, watki, wyscigi
» blokady

» skalowalno$¢
» wzorce
> zdobywanie zasobdéw jest inicjacja (RAII)
konczenie watkdw
podwdjne sprawdzanie
monitor (pasywny obiekty)

>
>
4
> wspbtbiezna blokada (czytelnicy/pisarze)

Sztuka Wytwarzania Oprogramowania 3/26

Réwnolegtos¢ - obliczenia podczas obstugi urzadzen

» bardzo wolna reakcja cztowieka
» wolne urzadzenia wejscia - wyjscia (np. drukarki)
» bardzo szybkie procesory

PC AT (1987) | PC (2025) | Poprawa
zegar procesora 6 MHz 3.9 GHz 650x
ilo$¢ rdzeni (procesoréw) 1 24 24x
pamieé wielko$¢ 1MB 64 GB 64000x
pamiec (czas dostepu) 200 ns 15 ns 13x
pamiec (czas dostepu/cykl) 1.4 54 -39x
rodzaj pamieci wielkos¢ czas dostepu (cykle)
cache L1 64kB (na rdzen) 2
cache L2 256kB (na rdzen) 14
cache L3 16MB 16
DRAM 64GB 54
HDD 2000GB 15000000

Sztuka Wytwarzania Oprogramowania 4/26

Graficzne poréwnanie czaséw realizacji operacji

Latency Mumbers Every Programmer Should Know

Hirs

™ L1 cache reference: 8.5ns

L]
MH Eranch nispredict: Sns
[]

L]
MM L2 cache reference; Tns
[]

Hutex lock/unlock: 25ns

W L6dns

1

B Hain memory reference! 108 ns

Compress 1KB with Ziped: 3us

W ous

!zaktadajac 1GB/sec SSD, dane z Peter Norvig, Teach Yourself Programiming
Sztuka Wytwarzania Oprogramowania 5/26

W Send 1KE over 10bps netuark! 18ps

0 randon read C1Cb/s 300!

[

Read 1116 sequentially
W o nenoey; 2500s
[L1]]]

Round trig in same
datacenter: 580

B Read 1B sequentially
from 330 s

: Disk seek! 18ns

ead 1 MG sequentially
rom disk! 28ms

Source: hittesi//aist sithub.con/ 2841832

Wspbtbieznosé

wieloprocesowe systemy operacyjne
» na platformach jedno-procesorowych (jedno-rdzeniowych)
» na platformach wieloprocesorowych (wielordzeniowych)

aplikacje wielowatkowe
Watek (,lekki proces”) realizuje niezalezne ciagi instrukcji
w ramach procesu.
» watki wspotdziela kod, dane oraz zasoby.
» mechanizm przetaczania nie wprowadza duzych narzutéw

zasoby SysOp pamiec

& © O

Sztuka Wytwarzania Oprogramowania 6/26

Aplikacja wielowatkowa

» pozwala na reakcje na zlecenia uzytkownika podczas
przeprowadzania obliczen

> lepiej wykorzystuje dostepna moc obliczeniowa (szczegdlnie
na platformach wieloprocesorowych)

» moze obstugiwal wiele zlecen réwnolegle

» poprawnie zaprojektowana jest szybsza na platformach
wieloprocesorowych (wielordzeniowych)

Procesy, watki - byty omawiane na przedmiocie 'Systemy Operacyjne’.
Tutaj pokazujemy, jak uzywaé tych mechanizméw w tworzeniu bibliotek
i aplikacji.

Sztuka Wytwarzania Oprogramowania 7/26

Jezyk programowania, a tworzenie aplikacji wielowatkowej

» jezyki jedno-watkowe: JavaScript
» jezyki wielo-watkowe: C++, Java
Dla C++:

- nalezy uzywac bibliotek przeznaczonych do pracy wielowatkowe;j
- C++11 dostarcza mechanizmy tworzenia i synchronizacji watkéw

Wspétdzielone

Niezalezne

» obiekty globalne

» obiekty dynamiczne (adres unikalny
w ramach procesu)

> zasoby systemu operacyjnego (np.
pliki)
» kod wykonywany

P> rejestry
» ciag wyk. instrukcji
» stos

» obiekty automatyczne
(dostep przez stos)

Program ma zawsze jeden watek (funkcja main()) - watek gtéwny
lub inicjujacy. Moze tworzy¢ dodatkowe watki.

Sztuka Wytwarzania Oprogramowania 8/26

std::thread - watki w C++

#include <thread>

//Funkcja gtdéwna watku uzytkownika
void my_thread() { /* ... */ }
//Mozna tez uzy¢ funktora

class MyThread {

public:
//tutaj implementacja funkcji watku uzytkownika
void operator() () { /* ... */ }

};

int main() {
std::thread thrd(&my_thread); //Utworzenie i uruchomienie watku
try {
thrd.join(); //Biezacy watek czeka na zakoiczenie watku thrd
} catch(...) { } //wyjatek zgtaszany, gdy watek juz nie istnieje
return O;

}

Sztuka Wytwarzania Oprogramowania 9/26

Wyscigi (race conditions)

wiele watkéw pisze lub _ » niewtasciwa wartosé

czyta te samg pamigc » niezdefiniowane zachowanie
= r— ')D_P -
NP> m— N
A B

jedno z rozwiazan: synchronizacja (blokady)

Sztuka Wytwarzania Oprogramowania 10/26

problemy z usuwaniem btedéw w aplikacjach

wielowatkowych

v

niektére btedy sa niepowtarzalne
» r6zne zachowanie sie wersji debug od release

> testy na platformach z jednym procesorem (rdzeniem) moga
nie pokazywa¢ btedéw ktére wystapia na platformach
posiadajacych wiele procesoréw (rdzeni)

» trudno testowal wszystkie mozliwe przebiegi sterowania

Sztuka Wytwarzania Oprogramowania 11/26

Blokady, mutex (mutual exclusion)

Mutex to obiekt synchronizujacy, pozwala tworzyé sekcje krytyczne J

#include <mutex>

mutex.lock();

//Sekcja krytyczna, w danej chwili dostep ma tylko jeden watek
mutex.unlock();

Wzorzec projektowy - RAIl - zdobywanie zasobéw jest inicjacja J

struct Lock { //Zdobywanie zasobéw jest inicjowaniem RAII
Lock(mutex& m) : m_(m) { m_.lock(); }
~Lock() { m_.unlock(); } //Destruktor wychodzi z sekcji
mutex& m_; //Mutex, ktérym zarzadza

};

//Przyklad uzycia

std::mutex m; //obiekt stuzgcego do synchronizacji

{
Lock guard(m); //lock_guard - RAII dla mutex
//sekcja krytyczna, dostep do zasobus

}//zwolnienie zasobu

Sztuka Wytwarzania Oprogramowania 12/26

Zakleszczenia (deadlock)

kazdy z watkéw czeka na jakié inny (jest blokowany). Zaden
z nich nie moze dalej pracowac.

=>{ A.lock() »{B.lock() P

> B.l0Ck() P A.loCk() (3K

Czas
>

Rozwigzanie:
» zajmowanie blokad zawsze w tej samej kolejnosci
P stosowanie innych mechanizméw synchronizujacych

Sztuka Wytwarzania Oprogramowania 13/26

zenie watku - tylko z wewnatrz

Btedne jest przerwanie watku z zewnatrz, nieustalony stan aplikacji. J

class MyThread {
public:
MyThread() : finish_(false) {}
//sygnalizacja, ze watek ma sie zakonczyé wczesniej
void finish() { finish_ = true; }
void operator() () {
while(!finish_) {
//cze§é przetwarzania
//a nastepnie sprawdzanie warunku !finish_
}
}
private:
volatile bool finish_; //zabronione optymalizowanie tej sktadowej

};

Sztuka Wytwarzania Oprogramowania 14/26

Skalowalno$¢ - wydajnos$¢ przy zwiekszaniu zasobéw

Prawo Amdahla (przyspieszenie dla 'p’ procesoréw):

1
S =157

P ta sama ilo$¢ danych
» pomijamy narzuty wspétbieznosci (np. czas przetaczania)
» a - proporcja algorytmu, ktéry moze podlegaé zréwnolegleniu,
(1 — a) musi by¢é wykonywane szeregowo
a 1-a

czes¢ rownolegta czesé szeregowa

al/p 1-a

1
p procesoréw 2 :l

Sztuka Wytwarzania Oprogramowania 15/26

Prawo Amdahla i prawo Gustafsona-Barsisa

Prawo Amdahla

- FFTT T 1]
Dla statej wielosci problemu. e =2 I
j 20
) Fm L
lim S(p) = .
p—00 () 1—a o L
2o ||

liczba procesorow

Prawo Gustafsona-Barsisa

5(p) =p—(1—a)(p—1), gdzie:
p ilo$¢ procesorow
(1 —a) czeé¢ procesu, ktéra musi by¢é wykonywana szeregowo
Ze wzrostem N wyrazenie (1 — a) jest zbiezne i mniejsze od 1.
Whiosek: kazdy wystarczajaco duzy problem da sie zréwnoleglié. l

Sztuka Wytwarzania Oprogramowania 16/26

Wysoka skalowalnos¢ - wskazéwki

Watki moga pracowac niezaleznie gdy:
» odczytuja wspoétdzielone dane
> zapisuja wtasne (lokalne) dane

zapis wspoétdzielonych danych jest ktopotliwy (spowalnia) |

Wyréznia sie ,,szybka" i ,,wolng"” Sciezke w funkcjach
wykonywanych w watkach
» brak blokad na "szybkiej Sciezce” (blokady, wykorzystywane
nawet tylko do odczytu zapisuja stan)
» usuwanie wspdtdzielonych obiektéw do zapisu (lepiej
informacje wyjéciowa przechowywac niezaleznie dla kazdego
watku, a pdzniej scala¢ wynik)

Sztuka Wytwarzania Oprogramowania 17/26

Podwdjne sprawdzanie (double-checked locking)

class Singleton {
/* patrz wzorzec Singeton */
private:
static Singleton* pInstance_ = nullptr;

};

Singleton& Singleton::getInstance() { //1
if (!pInstance_) //2

pInstance_ = new Singleton; //3
return *pInstance_; //4
} //5

[o s |
2 e s

czas‘

Sztuka Wytwarzania Oprogramowania 18/26

Podwdjne sprawdzanie

//Singleton poprawny, ale nieefektywny
Singleton& Singleton::getInstance() {
std: :lock_guard guard(mutex_); //tworzenie w sekcji krytycznej
if (!pInstance_)
pInstance_ = new Singleton;
return *pInstance_;
}
//Singleton wielowagtkowy efektywny
Singleton& Singleton::getInstance() {
if (!pInstance_) { //wzorzec podwéjnego sprawdzania
std::lock_guard guard(mutex_); //tworzenie w sekcji krytycznej
if (!pInstance_)
pInstance_ = new Singleton;
}
return *pInstance_;

}

Sztuka Wytwarzania Oprogramowania 19/26

Singleton DCLP (Double checked locking pattern)

Singleton& Singleton::getInstance() {
if (!pInstance_) { //wykorzystuje kolejno§¢ operacji w linii 5
std::lock_guard guard(mutex_);
if (!pInstance_)
//zaktada kolejno§é: przydzial pamieci, konstruktor, przypisanie
pInstance_ = new Singleton;

}

return *plInstance_;

}
» moze by¢ niepoprawny (brak 'sequence point')
» proby poprawy s3 nieskuteczne np. dodatkowe instrukcje,
wstawianie 'sequence point’, oznaczanie obiektéw jako
zmienne (volatile)

» dziata w praktyce

Whiosek
singletony inicjowa¢ w tym samym watku (start aplikacji) l

= = = =

Sztuka Wytwarzania Oprogramowania 20/26

Watki i mechanizm wyjatkéw

» wyjatki moga by¢ rzucane i wytapywane w niezaleznych
watkach

» watek nie powinien rzucaé wyjatku, ktéry bedzie wytapywany
w innym watku

class MyThread {

//. ..
void operator() () { //funkcja watku uzytkownika
try {
//. ..
} catch(...) { /x Wytapuje wszystkie wyjatki */ }
}

};

Sztuka Wytwarzania Oprogramowania 21/26

Wzorzec monitora (pasywny obiekt)

Obiekt sam zapewnia, ze metody moga by¢ wotane przez rézne
watki.
class Queue {
static const char END_TOKEN = ’\0’;
std: :queue<char> data_;
std::mutex mutex; //wewnetrzny mutex
public:
void put(char c) {
std::lock_guard guard(mutex);
data_.push(c);
}
bool get(char& c) {
while(bool read = false; !'read) {
std: :lock_guard<std::mutex> lock(mutex);
if (! data_.empty()) {
¢ = data_.front(); data_.pop(); read = true;
}
}
return c != END_TOKEN;
}

Przetwarzanie potokowe

algorytmy wykorzystujace przetwarzanie potokowe wygodnie
tworzy¢ przy wykorzystaniu watkéw

= Garekd) Gatek D
—> —> > > —

Sztuka Wytwarzania Oprogramowania 23/26

Wspbtbiezna blokada

Problem czytelnikéw i pisarzy (multiple-readers /single-writer
locking pattern)

P czytelnicy: watki nie wykluczajace sie nawzajem
» pisarze: watki wykluczajace kazdy inny watek, zaréwno
czytelnika jak i pisarza
Bardziej skomplikowany od sekcji krytyczne;j.

» std::shared_mutex (C++14)
» boost::shared__mutex

» M::lock, M::try_lock, M::timed_lock
» M::lock_shared, M::try_lock_shared, M::timed_lock_shared

Sztuka Wytwarzania Oprogramowania 24/26

Zagtodzenia (starvation)

dany watek nie moze sie wykonywac¢, poniewaz caty czas jest
blokowany

reader A

Il
N
Q
w0

reader A reader A

reader B

reader A

reader B reader B

Sztuka Wytwarzania Oprogramowania 25/26

Dziekuje

robert.nowak@pw.edu.pl

robert.nowak@pw.edu.pl

