
Sztuka Wytwarzania Oprogramowania
Wykład 13 - współbieżność. Współbieżne wzorce projektowe, cz 1

Robert Nowak

25Z

Sztuka Wytwarzania Oprogramowania 1/26

Wzorce projektowe
▶ standardowe rozwiązania często pojawiających się problemów

projektowych
▶ sprawdzone w praktyce
Przykłady: obiektowe wzorce projektowe (prototyp, kompozyt,

adapter, leniwe tworzenie, leniwe kopiowanie, obserwator, fasada,
fabryki, singleton, wizytator, wielometoda, most, komenda)

Sztuka Wytwarzania Oprogramowania 2/26

Plan wykładu

▶ procesy, wątki, wyścigi
▶ blokady
▶ skalowalność
▶ wzorce

▶ zdobywanie zasobów jest inicjacją (RAII)
▶ kończenie wątków
▶ podwójne sprawdzanie
▶ monitor (pasywny obiekty)
▶ współbieżna blokada (czytelnicy/pisarze)

Sztuka Wytwarzania Oprogramowania 3/26

Równoległość - obliczenia podczas obsługi urządzeń

▶ bardzo wolna reakcja człowieka
▶ wolne urządzenia wejścia - wyjścia (np. drukarki)
▶ bardzo szybkie procesory

PC AT (1987) PC (2025) Poprawa
zegar procesora 6 MHz 3.9 GHz 650x
ilość rdzeni (procesorów) 1 24 24x
pamięć wielkość 1MB 64 GB 64000x
pamięć (czas dostępu) 200 ns 15 ns 13x
pamięć (czas dostępu/cykl) 1.4 54 -39x
rodzaj pamięci wielkość czas dostępu (cykle)
cache L1 64kB (na rdzeń) 2
cache L2 256kB (na rdzeń) 14
cache L3 16MB 16
DRAM 64GB 54
HDD 2000GB 15000000

Sztuka Wytwarzania Oprogramowania 4/26

Graficzne porównanie czasów realizacji operacji

1
1zakładając 1GB/sec SSD, dane z Peter Norvig, Teach Yourself Programming

in Ten Years, 2014 Sztuka Wytwarzania Oprogramowania 5/26

Współbieżność
wieloprocesowe systemy operacyjne
▶ na platformach jedno-procesorowych (jedno-rdzeniowych)
▶ na platformach wieloprocesorowych (wielordzeniowych)

aplikacje wielowątkowe
Wątek („lekki proces”) realizuje niezależne ciągi instrukcji
w ramach procesu.
▶ wątki współdzielą kod, dane oraz zasoby.
▶ mechanizm przełączania nie wprowadza dużych narzutów

Sztuka Wytwarzania Oprogramowania 6/26

Aplikacja wielowątkowa

▶ pozwala na reakcję na zlecenia użytkownika podczas
przeprowadzania obliczeń

▶ lepiej wykorzystuje dostępną moc obliczeniową (szczególnie
na platformach wieloprocesorowych)

▶ może obsługiwać wiele zleceń równolegle
▶ poprawnie zaprojektowana jest szybsza na platformach

wieloprocesorowych (wielordzeniowych)

Procesy, wątki - były omawiane na przedmiocie ’Systemy Operacyjne’.
Tutaj pokazujemy, jak używać tych mechanizmów w tworzeniu bibliotek
i aplikacji.

Sztuka Wytwarzania Oprogramowania 7/26

Język programowania, a tworzenie aplikacji wielowątkowej

▶ języki jedno-wątkowe: JavaScript
▶ języki wielo-wątkowe: C++, Java

Dla C++:
- należy używać bibliotek przeznaczonych do pracy wielowątkowej
- C++11 dostarcza mechanizmy tworzenia i synchronizacji wątków
Współdzielone Niezależne
▶ obiekty globalne
▶ obiekty dynamiczne (adres unikalny

w ramach procesu)
▶ zasoby systemu operacyjnego (np.

pliki)
▶ kod wykonywany

▶ rejestry
▶ ciąg wyk. instrukcji
▶ stos
▶ obiekty automatyczne

(dostęp przez stos)

Program ma zawsze jeden wątek (funkcja main()) - wątek główny
lub inicjujący. Może tworzyć dodatkowe wątki.

Sztuka Wytwarzania Oprogramowania 8/26

std::thread - wątki w C++

#include <thread>

//Funkcja główna wątku użytkownika
void my_thread() { /* ... */ }
//Można też użyć funktora
class MyThread {

public:
//tutaj implementacja funkcji wątku użytkownika
void operator()() { /* ... */ }

};

int main() {
std::thread thrd(&my_thread); //Utworzenie i uruchomienie wątku
try {

thrd.join(); //Bieżący watek czeka na zakończenie wątku thrd
} catch(...) { } //wyjątek zgłaszany, gdy wątek już nie istnieje
return 0;

}

Sztuka Wytwarzania Oprogramowania 9/26

Wyścigi (race conditions)

wiele wątków pisze lub
czyta tę samą pamięć →

▶ niewłaściwa wartość
▶ niezdefiniowane zachowanie

jedno z rozwiązań: synchronizacja (blokady)

Sztuka Wytwarzania Oprogramowania 10/26

problemy z usuwaniem błędów w aplikacjach
wielowątkowych

▶ niektóre błędy są niepowtarzalne
▶ różne zachowanie się wersji debug od release
▶ testy na platformach z jednym procesorem (rdzeniem) mogą

nie pokazywać błędów które wystąpią na platformach
posiadających wiele procesorów (rdzeni)

▶ trudno testować wszystkie możliwe przebiegi sterowania

Sztuka Wytwarzania Oprogramowania 11/26

Blokady, mutex (mutual exclusion)

Mutex to obiekt synchronizujący, pozwala tworzyć sekcje krytyczne

#include <mutex>
mutex.lock();
//Sekcja krytyczna, w danej chwili dostęp ma tylko jeden wątek
mutex.unlock();

Wzorzec projektowy - RAII - zdobywanie zasobów jest inicjacją

struct Lock { //Zdobywanie zasobów jest inicjowaniem RAII
Lock(mutex& m) : m_(m) { m_.lock(); }
~Lock() { m_.unlock(); } //Destruktor wychodzi z sekcji
mutex& m_; //Mutex, którym zarządza

};
//Przykład użycia
std::mutex m; //obiekt służącego do synchronizacji
{

Lock guard(m); //lock_guard - RAII dla mutex
//sekcja krytyczna, dostęp do zasobus

}//zwolnienie zasobu

Sztuka Wytwarzania Oprogramowania 12/26

Zakleszczenia (deadlock)

każdy z wątków czeka na jakiś inny (jest blokowany). Żaden
z nich nie może dalej pracować.

Rozwiązanie:
▶ zajmowanie blokad zawsze w tej samej kolejności
▶ stosowanie innych mechanizmów synchronizujących

Sztuka Wytwarzania Oprogramowania 13/26

Kończenie wątku - tylko z wewnątrz

Błędne jest przerwanie wątku z zewnątrz, nieustalony stan aplikacji.

class MyThread {
public:

MyThread() : finish_(false) {}
//sygnalizacja, że wątek ma się zakończyć wcześniej
void finish() { finish_ = true; }
void operator()() {

while(!finish_) {
//część przetwarzania
//a następnie sprawdzanie warunku !finish_

}
}

private:
volatile bool finish_; //zabronione optymalizowanie tej składowej

};

Sztuka Wytwarzania Oprogramowania 14/26

Skalowalność - wydajność przy zwiększaniu zasobów
Prawo Amdahla (przyspieszenie dla ’p’ procesorów):

S(p) = 1
1 − a + a

n

▶ ta sama ilość danych
▶ pomijamy narzuty współbieżności (np. czas przełączania)
▶ a - proporcja algorytmu, który może podlegać zrównolegleniu,

(1 − a) musi być wykonywane szeregowo
a

p procesorów

część równoległa część szeregowa

...

1
2

n

1-a

1-aa/p

Sztuka Wytwarzania Oprogramowania 15/26

Prawo Amdahla i prawo Gustafsona-Barsisa

Dla stałej wielości problemu.

lim
p→∞

S(p) = 1
1 − a

Prawo Gustafsona-Barsisa

S(p) = p − (1 − a)(p − 1), gdzie:
p ilość procesorów
(1 − a) część procesu, która musi być wykonywana szeregowo

Ze wzrostem N wyrażenie (1 − a) jest zbieżne i mniejsze od 1.
Wniosek: każdy wystarczająco duży problem da się zrównoleglić.

Sztuka Wytwarzania Oprogramowania 16/26

Wysoka skalowalność - wskazówki

Wątki mogą pracować niezależnie gdy:
▶ odczytują współdzielone dane
▶ zapisują własne (lokalne) dane

zapis współdzielonych danych jest kłopotliwy (spowalnia)

Wyróżnia się „szybką” i „wolną” ścieżkę w funkcjach
wykonywanych w wątkach
▶ brak blokad na ”szybkiej ścieżce” (blokady, wykorzystywane

nawet tylko do odczytu zapisują stan)
▶ usuwanie współdzielonych obiektów do zapisu (lepiej

informację wyjściową przechowywać niezależnie dla każdego
wątku, a później scalać wynik)

Sztuka Wytwarzania Oprogramowania 17/26

Podwójne sprawdzanie (double-checked locking)

class Singleton {
/* patrz wzorzec Singeton */
private:

static Singleton* pInstance_ = nullptr;
};

Singleton& Singleton::getInstance() { //1
if(!pInstance_) //2

pInstance_ = new Singleton; //3
return *pInstance_; //4

} //5

Sztuka Wytwarzania Oprogramowania 18/26

Podwójne sprawdzanie (2)

//Singleton poprawny, ale nieefektywny
Singleton& Singleton::getInstance() {

std::lock_guard guard(mutex_); //tworzenie w sekcji krytycznej
if(!pInstance_)

pInstance_ = new Singleton;
return *pInstance_;

}
//Singleton wielowątkowy efektywny
Singleton& Singleton::getInstance() {

if(!pInstance_) { //wzorzec podwójnego sprawdzania
std::lock_guard guard(mutex_); //tworzenie w sekcji krytycznej
if(!pInstance_)

pInstance_ = new Singleton;
}
return *pInstance_;

}

Sztuka Wytwarzania Oprogramowania 19/26

Singleton DCLP (Double checked locking pattern)

Singleton& Singleton::getInstance() {
if(!pInstance_) { //wykorzystuje kolejność operacji w linii 5

std::lock_guard guard(mutex_);
if(!pInstance_)
//zakłada kolejność: przydział pamięci, konstruktor, przypisanie

pInstance_ = new Singleton;
}
return *pInstance_;

}

▶ może być niepoprawny (brak ’sequence point’)
▶ próby poprawy są nieskuteczne np. dodatkowe instrukcje,

wstawianie ’sequence point’, oznaczanie obiektów jako
zmienne (volatile)

▶ działa w praktyce

Wniosek
singletony inicjować w tym samym wątku (start aplikacji)

Sztuka Wytwarzania Oprogramowania 20/26

Wątki i mechanizm wyjątków

▶ wyjątki mogą być rzucane i wyłapywane w niezależnych
wątkach

▶ wątek nie powinien rzucać wyjątku, który będzie wyłapywany
w innym wątku

class MyThread {
//...
void operator()() { //funkcja wątku użytkownika

try {
//...

} catch(...) { /* Wyłapuje wszystkie wyjątki */ }
}

};

Sztuka Wytwarzania Oprogramowania 21/26

Wzorzec monitora (pasywny obiekt)
Obiekt sam zapewnia, że metody mogą być wołane przez różne
wątki.
class Queue {

static const char END_TOKEN = ’\0’;
std::queue<char> data_;
std::mutex mutex; //wewnętrzny mutex

public:
void put(char c) {

std::lock_guard guard(mutex);
data_.push(c);

}
bool get(char& c) {

while(bool read = false; !read) {
std::lock_guard<std::mutex> lock(mutex);
if(! data_.empty()) {

c = data_.front(); data_.pop(); read = true;
}

}
return c != END_TOKEN;

}
}; Sztuka Wytwarzania Oprogramowania 22/26

Przetwarzanie potokowe

algorytmy wykorzystujące przetwarzanie potokowe wygodnie
tworzyć przy wykorzystaniu wątków

Sztuka Wytwarzania Oprogramowania 23/26

Współbieżna blokada

Problem czytelników i pisarzy (multiple-readers /single-writer
locking pattern)
▶ czytelnicy: wątki nie wykluczające się nawzajem
▶ pisarze: wątki wykluczające każdy inny wątek, zarówno

czytelnika jak i pisarza
Bardziej skomplikowany od sekcji krytycznej.

▶ std::shared_mutex (C++14)
▶ boost::shared_mutex

▶ M::lock, M::try_lock, M::timed_lock
▶ M::lock_shared, M::try_lock_shared, M::timed_lock_shared

Sztuka Wytwarzania Oprogramowania 24/26

Zagłodzenia (starvation)

dany wątek nie może się wykonywać, ponieważ cały czas jest
blokowany

Sztuka Wytwarzania Oprogramowania 25/26

Dziękuję

robert.nowak@pw.edu.pl

robert.nowak@pw.edu.pl

