Sztuka Wytwarzania Oprogramowania

Wyktad 14 - wspétbieznosé. Wspédtbiezne wzorce projektowe, cz 2

Robert Nowak

257

Sztuka Wytwarzania Oprogramowania 1/30

Obstuga wejscia/wyjscia

Wspétbieznosé .
P Instrukcje atomowe

Plan wyktadu

» procesy, watki, wyscigi, blokady, skalowalnos¢

> obstuga wejécia/wyjscia, petla obstugi zdarzen,
asynchroniczna obstuga wejscia-wyjscia, boost::asio, reaktor,
proaktor

» operacje atomowe, std::atomic, algorytmy bez blokad
(lock-free)

» podsumowanie

Sztuka Wytwarzania Oprogramowania 2/30

Obstuga wejscia/wyjscia

Wspétbieznosé .
P Instrukcje atomowe

powtdrzenie: procesy, watki, wyscigi, blokady (1)

» Procesor dziata znacznie szybciej, niz inne urzadzenia

» wspbiczesne komputery s3 wieloprocesorowe (wielordzeniowe)
Woatek realizuje niezalezne ciagi instrukcji w ramach procesu.

P> watki wspotdzielg kod, dane oraz zasoby.

» mechanizm przetaczania nie wprowadza duzych narzutéw

zasoby SysOp pamiec

W aplikacjach wspétbieznych moga wystapi¢ wyscigi.
ng R\ T
> [|

Czas
(s} B

Sztuka Wytwarzania Oprogramowania 3/30

Obstuga wejscia/wyjscia

Wspétbieznosé .
P Instrukcje atomowe

powtdrzenie: procesy, watki, wyscigi, blokady (2)

Wyscigom mozna zapobiegac wykorzystujac sekcje krytyczne
(blokady).

#include <mutex>

mutex.lock();

//Sekcja krytyczna, w danej chwili dostep ma tylko jeden watek
mutex.unlock();

Niewtasciwe stosowanie blokad moze prowadzi¢ do zakleszczen.

A.lock()
T czas

Prawo Amdahla

FT T T T

werost eyl

Skalowalnosé:

Sztuka Wytwarzania Oprogramowania 4/30

Obstuga wejicia/wyjscia

Wspétbieznosé .
P Instrukcje atomowe

Obstuga urzadzen wejscia wyjscia

System operacyjny zapewnia 3 metody obstugi urzadzen
wejscia/wyjscia:
» synchroniczne blokujace - sterowanie wraca, gdy operacja jest
zakonczona

» synchronicznie nieblokujace - sterowanie wraca natychmiast z
informacja, czy udato sie zrealizowal operacje (np. z
informacja o iloéci odczytanych bajtéw), uzytkownik moze
operacje ponowi¢

» asynchroniczne - sterowanie wraca natychmiast, uzytkownik
dostarcza uchwyt (handler, callback), ktéry bedzie wotany,
gdy operacja sie zakonczy

Sztuka Wytwarzania Oprogramowania 5/30

Obstuga wejicia/wyjscia
Instrukcje atomowe

Wspoétbieznosé

Obstuga urzadzen bazujaca na watkach

Wykorzystuje synchroniczne metody obstugi wejécia/wyjscia J

we/wy AVAVAV
e odbierz

WHtasciwosci:
» sekwencyjna (prosta) struktura sterowania

» narzuty: synchronizacja, blokady, mechanizm przetaczania
watkdéw

Sztuka Wytwarzania Oprogramowania 6/30

Obstuga wejicia/wyjscia

Wspétbieznosé .
P Instrukcje atomowe

Obstuga urzadzen bazujaca na zdarzeniach

Wykorzystuje synchroniczne lub asynchroniczne metody obstugi wej-
Scia/wyjscia J

we/wy //\/\/\/ N

petla
- obstugi |UChWyt obstugi zdarzenia
kolejka zdarzen zdarzen

N

- J

» odwrdcenie sterowania: rejestrujemy uchwyty, ktére beda
wykonywane

» brak kontroli nad kolejnoscig obstugi
» brak narzutéw na synchronizacje, blokady, watki

Sztuka Wytwarzania Oprogramowania 7/30

Obstuga wejicia/wyjscia

Wspétbieznosé .
P Instrukcje atomowe

Boost.Asio - synchroniczne/asynchroniczne we/wy w C++

Przenosna obstuga:
> zegardw (timer)
» gniazd (socket) UDP, TCP (oraz strumieni z nimi
zwigzanych)
» portéw szeregowych
» sygnatéw
» synchronicznych/asynchronicznych operacjach na uchwytach
do plikéw
Wsparcie dla:
» Win64, Win32 (np. Windows NT), Windows 95, 98, Me
» Linux (jadra od 2.4), 32 i 64bit,
» Mac OS X, Solaris, QNX i inne.

Sztuka Wytwarzania Oprogramowania 8/30

Obstuga wejicia/wyjscia

Wspétbieznosé .
P Instrukcje atomowe

Boost.Asio - zegary

//Funkcja wotana, gdy zajdzie odpowiednie zdarzenie
void event(const boost::system::error_code&) {
cout << "timer 2 event" << endl;

}

int main() {
boost::asio::io_service io; //obiekt obstugujacy zdarzenia
boost::asio::deadline_timer t1(io, boost::posix_time::seconds(3));
tl.wait(); //rejestracja zdarzenia i wykonanie synchroniczne
cout << "timer 1 event" << endl;

boost::asio::deadline_timer t2(io, boost::posix_time::seconds(3));
t2.async_wait(event); //rejestracja zdarzenia i wykonanie synchr.
io.run(); //obstuga zdarzen asynchronicznych

return O;

Sztuka Wytwarzania Oprogramowania 9/30

Obstuga wejicia/wyjscia

Wspétbieznosé .
P Instrukcje atomowe

Wozorzec projektowy reaktora (reactor)

Obstuga urzadzen oparta o zdarzenia. Odwrdcenie sterowania.

Wykorzystuje nieblokujace, synchroniczne operacje wejscia-wyjscia. J

sync event
client reactor demultiplexer callback
| =l | |
register ! !
| |
| |
| |
| |
| |
o | |
| | |
| |
run select() I !
event !
|
handl‘e [I|

|

|

|

Sztuka Wytwarzania Oprogramowania 10/30

Obstuga wejicia/wyjscia

Wspétbieznosé .
P Instrukcje atomowe

Wozorzec projektowy proaktora (proactor)

Obstuga urzadzen oparta o zdarzenia. Odwrdcenie sterowania.

Wykorzystuje asynchroniczne operacje wejscia-wyjscia.)
) async event async
client proactor gemuyltiplexer operation callback
H - -
L _register M o ocute | ;_L i
| i
| |
| |
| |
| |
- | |
o i I
MR M wait !
|
' event result | !
| |
! handle | i
i i D
| |
T T I I

Sztuka Wytwarzania Oprogramowania 11/30

Obstuga wejicia/wyjscia

Wspétbieznosé .
P Instrukcje atomowe

Boost.Asio, porty szeregowe

using Time = steady_timer::duration; using Error = const error_code&;
class SerialPort {
public:
SerialPort(const string& n,Time t):io(),timeout(t),port(io,n),timer (io){}
~SerialPort() { port.close(); }
const vector<char>& read_n(int n) { //petla obsl. zdarzen
timer.expires_from_now(timeout);
timer.async_wait ([=] (Error e){this->timerEvent(e);});
readSomeCall(n);
io.run();
return buffer;
}
private:
io_service io_; Time timeout;
serial_port port;//port szeregowy
steady_timer timer; //zegar
char tab [1]; //bufor transmisji
vector<char> buffer; //bufor odczytu

//...
Sztuka Wytwarzania Oprogramowania 12/30

Obstuga wejicia/wyjscia

Wspétbieznosé .
P Instrukcje atomowe

Boost.Asio, porty szeregowe (2)

//. ..
void readSomeCall(int n) {
port.async_read_some(tab, [=] (Error e,int n){this->readEvent(e,n);});
}
void readEvent (Error error, int n) {
if(error) return; //jezeli wystapil blad odczytu
buffer_.push_back(tab[0]);
if (buffer_.size()>=n){ //koniec czytania
timer.cancel();
return;
}
readSomeCall(n);
}
void timerEvent (Error error) {
if(error) return; //jezeli zdarzenie wycofane, to nic nie réb
port.cancel(); //wygeneruje zdarzenie odczytu z biedem
}
};

Sztuka Wytwarzania Oprogramowania 13/30

Obstuga wejscia/wyjscia

Wspdtbieznosé Instrukcje atomowe

Instrukcje atomowe

> niektdre operacje s3 transakcjami (wykonuja sie w catosci,
albo wecale)
» za pomoca takich operacji mozemy tworzy¢ algorytmy
wspotbiezne bez blokad (lock-free)
> takie algorytmy moga dziataé szybciej, niz tworzenie sekcji
krytycznych.
Operacje atomowe: gwarantuje sprzet (procesor), ale nie tylko!

int x = 0;
++x; //nie jest atomowa!
//1.0dczyt z pamieci do rejestru, 2.wykonanie ++x, 3.zapis do pamieci

Przyktady dla C++ std: :atomic.
» typy danych, ktére moga by¢ atomowe,
» narzuty przy operacjach na typach atomowych,
» algorytmy bez blokad.

Sztuka Wytwarzania Oprogramowania 14/30

Wspétbieznosé Ol)s{uga- wejscia/wyjécia
Instrukcje atomowe

Instrukcje atomowe - przyktad (1)

std::atomic<int> x(0);

++x; //instrukcja atomowa, blokujgcy dostep do pewnego obszaru pamieci

CPU registers CPU registers
L1 cache L1 cache

L2 cache L2 cache

L3 cache

RAM x=0

Sztuka Wytwarzania Oprogramowania 15/30

Wspétbieznosé Ol)s{uga- wejscia/wyjécia
Instrukcje atomowe

Instrukcje atomowe - przyktad (1)

std::atomic<int> x(0);

++x; //instrukcja atomowa, blokujgcy dostep do pewnego obszaru pamieci

CPU registers CPU registers
++X

L1 cache X L1 cache

L2 cache X L2 cache

L3 cache X

RAM x=1

Sztuka Wytwarzania Oprogramowania 16/30

Wspétbieznosé Ol)s{uga- wejscia/wyjécia
Instrukcje atomowe

Instrukcje atomowe - przyktad (1)

std::atomic<int> x(0);

++x; //instrukcja atomowa, blokujgcy dostep do pewnego obszaru pamieci

CPU registers . CPU reqisters X
L1 cache X L1 cache X
L2 cache X L2 cache X
L3 cache X

RAM X =2

Sztuka Wytwarzania Oprogramowania 17/30

Obstuga wejscia/wyjscia

Wspdtbieznosé Instrukcje atomowe

Typy danych, ktére moga by¢ atomowe

Atomowe moga by¢ wszystkie typy, dla ktérych kopiowanie jest
trywialne (obiekt to ciagty obszar pamieci, nie ma funkgji
wirtualnych)

std::atomic<int> i=0; //0K

std: :atomic<double> d=0.0; //0K

struct A { long x; long y; };
std::atomic<A> a; //OK, nie zawsze lock-free!

Operacje atomowe na typach atomowych:

is_lock_free bada, czy typ nie uzywa blokad

(constructor) tworzy obiekt

operator=

store zast. warto$¢ atomowa, argument nieatomowy
load zwraca warto$¢ atomowa jako obiekt nieatomowy
compare_exchange_weak podstawowa operacja dla algorytmoéw lock-free
compare_exchange_strong | podstawowa operacja dla algorytméw lock-free

Sztuka Wytwarzania Oprogramowania 18/30

Obstuga wejscia/wyjscia

Wspdtbieznosé Instrukcje atomowe

Specjalne typy atomowe

operator++, operator--,
operator+=, operator-=,

atomic<Integral> operator&=, operator|=,
(bool, char, short, int, long, ... | operator"=
unsigned int, ...) fetch_add, fetch_sub,

fetch_and, fetch_or, fetch_xor

atomic_signed_Ilock_free,
atomic_unsigned_lock_free | wydajne

atomic<float>,
atomic<double>,

) fetch_add, fetch_sub
atomic<long double>

atomic<U*>,
atomic<shared_ptr>, wskaznik i sprytne wskazniki, operacje
atomic<weak_ptr> na licznikach beda atomowe

Sztuka Wytwarzania Oprogramowania 19/30

Obstuga wejscia/wyjscia

Wspdtbieznosé Instrukcje atomowe

Struktury danych bez blokad (lock-free)

bool compare_exchange(atomic<T>* obj, T* exp, T val)

if (obj==exp) { obj = val; return true;}
else { exp = obj; return false; }

struct Node { int value; Node* next; };
std: :atomic<Node*> head(nullptr);

void push_front(int val) { //moze by¢ wolane w réznych watkach
Node* old_head = head.load();
Node* new_node = new Node {val,old_head};
//zatozenie - konflikty wystepuja rzadko
while (! head.compare_exchange_weak(old_head,new_node))
new_node->next = old_head;

Sztuka Wytwarzania Oprogramowania 20/30

Obstuga wejscia/wyjscia

Wspdtbieznosé Instrukcje atomowe

Struktury danych bez blokad (lock-free) (2)

void push_front(int val) { //moze by¢ wotane w rdznych watkach
Node* old_head = head.load();
Node* new_node = new Node {val,old_head};
//zatozenie - konflikty wystepuja rzadko
while (! head.compare_exchange_weak(old_head,new_node))
new_node->next = old_head;

}
Przed CAS (bez konfliktu):

head /'i next EH next[| |

old_head

Po CAS:

head | —f-l next| —|—|—>| next —+H next[| |
old_head H /

new_node

Sztuka Wytwarzania Oprogramowania 21/30

Obstuga wejscia/wyjscia

Wspdtbieznosé Instrukcje atomowe

Struktury danych bez blokad (lock-free) (3)

void push_front(int val) { //moze by¢ wotane w rdznych watkach
Node* old_head = head.load();
Node* new_node = new Node {val,old_head};
//zatozenie - konflikty wystepuja rzadko
while (! head.compare_exchange_weak(old_head,new_node))
new_node->next = old_head;

}
Przed CAS, z konfliktem:

head _u—/;l next | ——]-I—»I next|] |
old_head

Po CAS:

head | next | —!-I—»I next| | |
old_head

Sztuka Wytwarzania Oprogramowania 22/30

Obstuga wejscia/wyjscia

Wspdtbieznosé Instrukcje atomowe

Instrukcje atomowe - podsumowanie

» Operacje atomowe s3 znacznie wolniejsze niz te same
operacje nieatomowe, nawet dla typéw takich jak 'int’
(czekaja na dostep do linii cache),

» warto je stosowaé do tworzenia wspétbieznych struktur
danych (lock-free),

» algorytmy lock-free sg trudne do implemtacji
» algorytmy lock-free sg takze trudne do zrozumienia.

Operacje atomowe moga by¢ szybsze lub wolniejsze niz sekcje
krytyczne.

Sztuka Wytwarzania Oprogramowania 23/30

Wspétbieznosé Obstuga wejscia/wyjscia

Instrukcje atomowe

Powtorzenie

Sztuka Wytwarzania Oprogramowania 24/30

Obstuga wejscia/wyjscia
Instrukcje atomowe

Wspoétbieznosé

using Counter = int;

struct MTCounter { //wsk. na Counter z mutexem
MTCounter() : counter(new Counter(0)) {}
void inc() { lock_guard lock(m_); *counter += 1; }
int get() { lock_guard lock(m_); return *counter; }
shared_ptr<Counter> counter; //wskaznik
mutex m_;

};

struct Thread {
Thread (MTCounter counter) : c(counter) {}
void operator() () { for(int i=0;i<1000000;++i) c.inc(); }
MTCounter c;

};

int main() {
MTCounter counter; Thread t1(counter), t2(counter);
thread thrdl(ref(t1)), thrd2(ref(t2));
thrdl.join(); thrd2.join();
return O;

Sztuka Wytwarzania Oprogramowania 25/30

Obstuga wejscia/wyjscia

Wspdtbieznosé Instrukcje atomowe

Rozwiazanie

//Rozwiazanie - sekcja krytyczna
struct CounterSync {
CounterSync() : value(0) {}
int value; mutex m;
I
struct MTCounterSync {
MTCounterSync() : counter(new CounterSync) {}
void inc() { lock_buard lock(counter->m); counter->value += 1; }
int get(){ lock_guard(counter->m); return counter->value; }
shared_ptr<CounterSync> counter; //wspdéitdzielony licznik
I
//Rozwigzanie - licznik wykorzystuje operacje atomowe
using CounterAtomic = std::atomic<int>;
struct MTCounterAtomic {
MTCounterSync() : counter(new CounterAtomic(0)) {3}
void inc() { *counter += 1; }
int get(){ return *counter; }
shared_ptr<CounterAtomic> counter; //wspdétdzielony licznik
}.

Sztuka Wytwarzania Oprogramowania 26/30

Obstuga wejscia/wyjscia

Wspdtbieznosé Instrukcje atomowe

Zadanie 2: popraw wydajnos$¢. Funkcja main

class Data {/* skladowe nieistotne */}; using PData = shared_ptr<Data>;
struct Out {

OQut (int size) : size_(size) {}

int size_;

std: :vector<PData> v_;

mutex m_;

int main() {
Out out(10000);
boost::asio::io_service io;
boost::asio::deadline_timer tO1(milliseconds(8));
/7. ..
boost::asio::deadline_timer t99(milliseconds(8));
t01.async_wait ([&] (const error_code& e){ serve_event(out,t01,e);1});
//...
t99.async_wait ([&] (const error_code& e){ serve_event(out,t99,e);1});
io.run();
return O;
}

Obstuga wejscia/wyjscia

Wspdtbieznosé Instrukcje atomowe

Zadanie 2: popraw wydajno$¢. Obtuga urzadzenia

struct Out { //powtérzona z poprzedniego slajdu
Out(int size) : size_(size) {}
int size_;
std: :vector<PData> v_;
mutex m_;

};

void serve_event(Out& out, deadline_timer& t, const error_code& error) {
if(error) return;
//obliczenia lokalne, tworzy dane dla nowej paczki
lock_guard<mutex> guard(out.m_);
PData data = PData(new Data()); //tworzy nowg paczke, kopiuje dane
out.v_.push_back(data);
if(out.v_.size() < out.size_) {
t.async_wait ([&] (const error_code& error){ serve_event(out,t,error);});

}
}

Sztuka Wytwarzania Oprogramowania 28/30

Obstuga wejscia/wyjscia

Wspdtbieznosé Instrukcje atomowe

Zadanie 2: popraw wydajnos$¢. Rozwiazanie

struct Out { //powtérzona z poprzedniego slajdu
Out(int size) : size_(size) {}
int size_;
std: :vector<PData> v_;
mutex m_;

};

//petla zdarzen, nie ma konieczno§ci stosowania sekcji krytycznej!
void serve_event(Out& out, boost::asio::deadline_timer& t, const error_coc
if (error) return;
//obliczenia lokalne, tworzy dane dla nowej paczki
PData data = PData(new Data()); //tworzy nowg paczke, kopiuje dane
out.v_.push_back(data);
if(out.v_.size() < out.size_) {
t.async_wait ([&] (const error_code& error){ serve_event(out,t,error);});

}
}

Sztuka Wytwarzania Oprogramowania 29/30

Dziekuje

robert.nowak@pw.edu.pl

robert.nowak@pw.edu.pl

	Współbieżność
	Obsługa wejścia/wyjścia
	Instrukcje atomowe

