
Współbieżność

Sztuka Wytwarzania Oprogramowania
Wykład 14 - współbieżność. Współbieżne wzorce projektowe, cz 2

Robert Nowak

25Z

Sztuka Wytwarzania Oprogramowania 1/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Plan wykładu

▶ procesy, wątki, wyścigi, blokady, skalowalność
▶ obsługa wejścia/wyjścia, pętla obsługi zdarzeń,

asynchroniczna obsługa wejścia-wyjścia, boost::asio, reaktor,
proaktor

▶ operacje atomowe, std::atomic, algorytmy bez blokad
(lock-free)

▶ podsumowanie

Sztuka Wytwarzania Oprogramowania 2/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

powtórzenie: procesy, wątki, wyścigi, blokady (1)
▶ Procesor działa znacznie szybciej, niż inne urządzenia
▶ współczesne komputery są wieloprocesorowe (wielordzeniowe)

Wątek realizuje niezależne ciągi instrukcji w ramach procesu.
▶ wątki współdzielą kod, dane oraz zasoby.
▶ mechanizm przełączania nie wprowadza dużych narzutów

W aplikacjach współbieżnych mogą wystąpić wyścigi.

Sztuka Wytwarzania Oprogramowania 3/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

powtórzenie: procesy, wątki, wyścigi, blokady (2)
Wyścigom można zapobiegać wykorzystując sekcje krytyczne
(blokady).

#include <mutex>
mutex.lock();
//Sekcja krytyczna, w danej chwili dostęp ma tylko jeden wątek
mutex.unlock();

Niewłaściwe stosowanie blokad może prowadzić do zakleszczeń.

Skalowalność:

Sztuka Wytwarzania Oprogramowania 4/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Obsługa urządzeń wejścia wyjścia

System operacyjny zapewnia 3 metody obsługi urządzeń
wejścia/wyjścia:
▶ synchroniczne blokujące - sterowanie wraca, gdy operacja jest

zakończona
▶ synchronicznie nieblokujące - sterowanie wraca natychmiast z

informacją, czy udało się zrealizować operację (np. z
informacją o ilości odczytanych bajtów), użytkownik może
operację ponowić

▶ asynchroniczne - sterowanie wraca natychmiast, użytkownik
dostarcza uchwyt (handler, callback), który będzie wołany,
gdy operacja się zakończy

Sztuka Wytwarzania Oprogramowania 5/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Obsługa urządzeń bazująca na wątkach

Wykorzystuje synchroniczne metody obsługi wejścia/wyjścia

we/wy

wyślij

odbierz

obsługa

Właściwości:
▶ sekwencyjna (prosta) struktura sterowania
▶ narzuty: synchronizacja, blokady, mechanizm przełączania

wątków

Sztuka Wytwarzania Oprogramowania 6/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Obsługa urządzeń bazująca na zdarzeniach

Wykorzystuje synchroniczne lub asynchroniczne metody obsługi wej-
ścia/wyjścia

we/wy

...

kolejka zdarzeń
uchwyt obsługi zdarzenia

pętla
obsługi
zdarzeń

▶ odwrócenie sterowania: rejestrujemy uchwyty, które będą
wykonywane

▶ brak kontroli nad kolejnością obsługi
▶ brak narzutów na synchronizację, blokady, wątki

Sztuka Wytwarzania Oprogramowania 7/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Boost.Asio - synchroniczne/asynchroniczne we/wy w C++

Przenośna obsługa:
▶ zegarów (timer)
▶ gniazd (socket) UDP, TCP (oraz strumieni z nimi

związanych)
▶ portów szeregowych
▶ sygnałów
▶ synchronicznych/asynchronicznych operacjach na uchwytach

do plików
Wsparcie dla:
▶ Win64, Win32 (np. Windows NT), Windows 95, 98, Me
▶ Linux (jądra od 2.4), 32 i 64bit,
▶ Mac OS X, Solaris, QNX i inne.

Sztuka Wytwarzania Oprogramowania 8/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Boost.Asio - zegary

//Funkcja wołana, gdy zajdzie odpowiednie zdarzenie
void event(const boost::system::error_code&) {

cout << "timer 2 event" << endl;
}

int main() {
boost::asio::io_service io; //obiekt obsługujący zdarzenia
boost::asio::deadline_timer t1(io, boost::posix_time::seconds(3));
t1.wait(); //rejestracja zdarzenia i wykonanie synchroniczne
cout << "timer 1 event" << endl;

boost::asio::deadline_timer t2(io, boost::posix_time::seconds(3));
t2.async_wait(event); //rejestracja zdarzenia i wykonanie synchr.
io.run(); //obsługa zdarzeń asynchronicznych
return 0;

}

Sztuka Wytwarzania Oprogramowania 9/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Wzorzec projektowy reaktora (reactor)

Obsługa urządzeń oparta o zdarzenia. Odwrócenie sterowania.
Wykorzystuje nieblokujące, synchroniczne operacje wejścia-wyjścia.

reactorclient
sync event
demultiplexer callback

register

select()

handle

event

run

Sztuka Wytwarzania Oprogramowania 10/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Wzorzec projektowy proaktora (proactor)
Obsługa urządzeń oparta o zdarzenia. Odwrócenie sterowania.
Wykorzystuje asynchroniczne operacje wejścia-wyjścia.

proactorclient
async event
demultiplexer callback

execute

wait

handle

result

run

async
operation

register

event

Sztuka Wytwarzania Oprogramowania 11/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Boost.Asio, porty szeregowe
using Time = steady_timer::duration; using Error = const error_code&;
class SerialPort {
public:

SerialPort(const string& n,Time t):io(),timeout(t),port(io,n),timer(io){}
~SerialPort() { port.close(); }
const vector<char>& read_n(int n) { //petla obsl. zdarzen

timer.expires_from_now(timeout);
timer.async_wait([=](Error e){this->timerEvent(e);});
readSomeCall(n);
io.run();
return buffer;

}
private:

io_service io_; Time timeout;
serial_port port;//port szeregowy
steady_timer timer; //zegar
char tab [1]; //bufor transmisji
vector<char> buffer; //bufor odczytu
//...

Sztuka Wytwarzania Oprogramowania 12/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Boost.Asio, porty szeregowe (2)
//...
void readSomeCall(int n) {

port.async_read_some(tab,[=](Error e,int n){this->readEvent(e,n);});
}
void readEvent(Error error, int n) {

if(error) return; //jeżeli wystąpił błąd odczytu
buffer_.push_back(tab[0]);
if(buffer_.size()>=n){ //koniec czytania

timer.cancel();
return;

}
readSomeCall(n);

}
void timerEvent(Error error) {

if(error) return; //jeżeli zdarzenie wycofane, to nic nie rób
port.cancel(); //wygeneruje zdarzenie odczytu z błędem

}
};

Sztuka Wytwarzania Oprogramowania 13/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Instrukcje atomowe
▶ niektóre operacje są transakcjami (wykonują się w całości,

albo wcale)
▶ za pomocą takich operacji możemy tworzyć algorytmy

współbieżne bez blokad (lock-free)
▶ takie algorytmy mogą działać szybciej, niż tworzenie sekcji

krytycznych.
Operacje atomowe: gwarantuje sprzęt (procesor), ale nie tylko!

int x = 0;
++x; //nie jest atomowa!
//1.odczyt z pamięci do rejestru, 2.wykonanie ++x, 3.zapis do pamięci

Przykłady dla C++ std::atomic.
▶ typy danych, które mogą być atomowe,
▶ narzuty przy operacjach na typach atomowych,
▶ algorytmy bez blokad.

Sztuka Wytwarzania Oprogramowania 14/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Instrukcje atomowe - przykład (1)

std::atomic<int> x(0);
++x; //instrukcja atomowa, blokujący dostęp do pewnego obszaru pamięci

CPU registers

L1 cache

L3 cache

RAM

L2 cache L2 cache

x = 0

L1 cache

CPU registers

Sztuka Wytwarzania Oprogramowania 15/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Instrukcje atomowe - przykład (1)

std::atomic<int> x(0);
++x; //instrukcja atomowa, blokujący dostęp do pewnego obszaru pamięci

CPU registers

L1 cache

L3 cache

RAM

L2 cache L2 cache

x = 1

L1 cache

CPU registers

x

x

x

++x

Sztuka Wytwarzania Oprogramowania 16/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Instrukcje atomowe - przykład (1)

std::atomic<int> x(0);
++x; //instrukcja atomowa, blokujący dostęp do pewnego obszaru pamięci

CPU registers

L1 cache

L3 cache

RAM

L2 cache L2 cache

x = 2

L1 cache

CPU registers

x

x

x

++x

x

x

++x

Sztuka Wytwarzania Oprogramowania 17/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Typy danych, które mogą być atomowe

Atomowe mogą być wszystkie typy, dla których kopiowanie jest
trywialne (obiekt to ciągły obszar pamięci, nie ma funkcji
wirtualnych)

std::atomic<int> i=0; //OK
std::atomic<double> d=0.0; //OK
struct A { long x; long y; };
std::atomic<A> a; //OK, nie zawsze lock-free!

Operacje atomowe na typach atomowych:
is_lock_free bada, czy typ nie używa blokad
(constructor) tworzy obiekt
operator=
store zast. wartość atomową, argument nieatomowy
load zwraca wartość atomową jako obiekt nieatomowy
compare_exchange_weak podstawowa operacja dla algorytmów lock-free
compare_exchange_strong podstawowa operacja dla algorytmów lock-free

Sztuka Wytwarzania Oprogramowania 18/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Specjalne typy atomowe

atomic<Integral>
(bool, char, short, int, long, ...
unsigned int, ...)

operator++, operator--,
operator+=, operator-=,
operator&=, operator|=,
operatorˆ=
fetch_add, fetch_sub,
fetch_and, fetch_or, fetch_xor

atomic_signed_lock_free,
atomic_unsigned_lock_free wydajne

atomic<float>,
atomic<double>,
atomic<long double>

fetch_add, fetch_sub

atomic<U*>,
atomic<shared_ptr>,
atomic<weak_ptr>

wskaźnik i sprytne wskaźniki, operacje
na licznikach będą atomowe

Sztuka Wytwarzania Oprogramowania 19/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Struktury danych bez blokad (lock-free)

bool compare_exchange(atomic<T>* obj, T* exp, T val)
if(obj==exp) { obj = val; return true;}
else { exp = obj; return false; }

struct Node { int value; Node* next; };
std::atomic<Node*> head(nullptr);

void push_front(int val) { //może być wołane w różnych wątkach
Node* old_head = head.load();
Node* new_node = new Node {val,old_head};
//założenie - konflikty występują rzadko
while (! head.compare_exchange_weak(old_head,new_node))

new_node->next = old_head;
}

Sztuka Wytwarzania Oprogramowania 20/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Struktury danych bez blokad (lock-free) (2)

void push_front(int val) { //może być wołane w różnych wątkach
Node* old_head = head.load();
Node* new_node = new Node {val,old_head};
//założenie - konflikty występują rzadko
while (! head.compare_exchange_weak(old_head,new_node))

new_node->next = old_head;
}

Przed CAS (bez konfliktu):
next nexthead

old_head

new_node next

Po CAS:
next nexthead

old_head

new_node

next

Sztuka Wytwarzania Oprogramowania 21/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Struktury danych bez blokad (lock-free) (3)

void push_front(int val) { //może być wołane w różnych wątkach
Node* old_head = head.load();
Node* new_node = new Node {val,old_head};
//założenie - konflikty występują rzadko
while (! head.compare_exchange_weak(old_head,new_node))

new_node->next = old_head;
}

Przed CAS, z konfliktem:
next nexthead

old_head

new_node next

next

Po CAS:
next nexthead

old_head

new_node next

next

Sztuka Wytwarzania Oprogramowania 22/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Instrukcje atomowe - podsumowanie

▶ Operacje atomowe są znacznie wolniejsze niż te same
operacje nieatomowe, nawet dla typów takich jak ’int’
(czekają na dostęp do linii cache),

▶ warto je stosować do tworzenia współbieżnych struktur
danych (lock-free),

▶ algorytmy lock-free są trudne do implemtacji
▶ algorytmy lock-free są także trudne do zrozumienia.

Operacje atomowe mogą być szybsze lub wolniejsze niż sekcje
krytyczne.

Sztuka Wytwarzania Oprogramowania 23/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Powtórzenie

Sztuka Wytwarzania Oprogramowania 24/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Wyścig?
using Counter = int;
struct MTCounter { //wsk. na Counter z mutexem

MTCounter() : counter(new Counter(0)) {}
void inc() { lock_guard lock(m_); *counter += 1; }
int get() { lock_guard lock(m_); return *counter; }
shared_ptr<Counter> counter; //wskaźnik
mutex m_;

};
struct Thread {

Thread(MTCounter counter) : c(counter) {}
void operator()() { for(int i=0;i<1000000;++i) c.inc(); }
MTCounter c;

};
int main() {

MTCounter counter; Thread t1(counter), t2(counter);
thread thrd1(ref(t1)), thrd2(ref(t2));
thrd1.join(); thrd2.join();
return 0;

}

Sztuka Wytwarzania Oprogramowania 25/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Rozwiązanie

//Rozwiązanie - sekcja krytyczna
struct CounterSync {

CounterSync() : value(0) {}
int value; mutex m;

};
struct MTCounterSync {

MTCounterSync() : counter(new CounterSync) {}
void inc() { lock_buard lock(counter->m); counter->value += 1; }
int get(){ lock_guard(counter->m); return counter->value; }
shared_ptr<CounterSync> counter; //współdzielony licznik

};
//Rozwiązanie - licznik wykorzystuje operacje atomowe
using CounterAtomic = std::atomic<int>;
struct MTCounterAtomic {

MTCounterSync() : counter(new CounterAtomic(0)) {}
void inc() { *counter += 1; }
int get(){ return *counter; }
shared_ptr<CounterAtomic> counter; //współdzielony licznik

};
Sztuka Wytwarzania Oprogramowania 26/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Zadanie 2: popraw wydajność. Funkcja main

class Data {/* składowe nieistotne */}; using PData = shared_ptr<Data>;
struct Out {

Out(int size) : size_(size) {}
int size_;
std::vector<PData> v_;
mutex m_;

};
int main() {

Out out(10000);
boost::asio::io_service io;
boost::asio::deadline_timer t01(milliseconds(8));
//...
boost::asio::deadline_timer t99(milliseconds(8));
t01.async_wait([&](const error_code& e){ serve_event(out,t01,e);});
//...
t99.async_wait([&](const error_code& e){ serve_event(out,t99,e);});
io.run();
return 0;

}
Sztuka Wytwarzania Oprogramowania 27/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Zadanie 2: popraw wydajność. Obługa urządzenia

struct Out { //powtórzona z poprzedniego slajdu
Out(int size) : size_(size) {}
int size_;
std::vector<PData> v_;
mutex m_;

};

void serve_event(Out& out, deadline_timer& t, const error_code& error) {
if(error) return;
//obliczenia lokalne, tworzy dane dla nowej paczki
lock_guard<mutex> guard(out.m_);
PData data = PData(new Data()); //tworzy nową paczkę, kopiuje dane
out.v_.push_back(data);
if(out.v_.size() < out.size_) {

t.async_wait([&](const error_code& error){ serve_event(out,t,error);});
}

}

Sztuka Wytwarzania Oprogramowania 28/30

Współbieżność Obsługa wejścia/wyjścia
Instrukcje atomowe

Zadanie 2: popraw wydajność. Rozwiązanie

struct Out { //powtórzona z poprzedniego slajdu
Out(int size) : size_(size) {}
int size_;
std::vector<PData> v_;
mutex m_;

};

//pętla zdarzeń, nie ma konieczności stosowania sekcji krytycznej!
void serve_event(Out& out, boost::asio::deadline_timer& t, const error_code& error) {

if(error) return;
//obliczenia lokalne, tworzy dane dla nowej paczki
PData data = PData(new Data()); //tworzy nową paczkę, kopiuje dane
out.v_.push_back(data);
if(out.v_.size() < out.size_) {

t.async_wait([&](const error_code& error){ serve_event(out,t,error);});
}

}

Sztuka Wytwarzania Oprogramowania 29/30

Dziękuję

robert.nowak@pw.edu.pl

robert.nowak@pw.edu.pl

	Współbieżność
	Obsługa wejścia/wyjścia
	Instrukcje atomowe

