(Srednio) zaawansowane programowanie w C++ (ZPR)

Wyktad 15 - LLM w wytwarzaniu oprogramowania.
C++14,C++17,C++20,C++23.

Robert Nowak

257

(Srednio) zaawansowane programowanie w C++ (ZPR) 1/26

Plan wyktadu

> zintegrowanie narzedzia do tworzenia oprogramowania (IDE)
» standardy C++, Python, Rust.
» biblioteka standardowa C++, uzupetnienie;

(Srednio) zaawansowane programowanie w C++ (ZPR) 2/26

Zintegrowane narzedzia do tworzenia oprogramowania
(IDE)?

Nazwa Licencja Popularnoéé¢! Platforma

VS Code Komer. + wolna 73.6% wiele
Visual Studio | Komer. 29.3% | Windows, macOS
JetBrains Komer. + Apache 2.0 94.0% wiele
Vim/Neovim | Vim + Apache 2.0 34.1% wiele
Sublime Text | Komer. + wolna 10.9% wiele
Eclipse EPL 2.0 9.4% wiele
XCode Komer. 4+ wolna 9.3% macOS
VSCodium MIT 4.8% wiele
Emacs GPL v3.0 4.6% wiele

! Ankieta, 2024, 58tys. uczestnikéw
2Na podstawie raportu M. Borek, 2024

(Srednio) zaawansowane programowanie w C++ (ZPR) 3/26

Narzedzia wspierajace tworzenie kodu?

Nazwa Open Source | Objasnianie | CLI | Praca lokalna
GitHub/Copilot - tak tak -
Tabnine - tak - tak
Codeium - tak - -
Amazon Whisperer - tak tak -

Cody tak tak tak -
Continue tak tak - tak
CodeGeeX tak tak - -
FauxPilot tak - - tak
Tabby tak tak - tak

3Na podstawie raportu M. Borek, 2024

(Srednio) zaawansowane programowanie w C++ (ZPR)

4/26

Integracja narzedzi z IDE*

Nazwa VS V | Vim/ | Jet | Ecli- | Sub- | X | Cod- | Em-
Code | S Neo | Bra. | pse | lime | Code | ium | acs
Copilot tak | tak | tak | tak - - - tak | tak
Tabnine tak | tak | tak tak | tak - - tak | tak
Codeium tak | tak | tak tak | tak | tak tak tak | tak
Am. W. tak | tak - - - - - tak -
Cody tak | tak - tak | tak - - tak -
Continue | tak | tak - tak - - - tak -
CodeGee tak | tak - tak - - - tak -
FauxPilot - tak | tak - - - - tak -
Tabby tak | tak | tak | tak - - - tak -

“Na podstawie raportu M. Borek, 2024

(Srednio) zaawansowane programowanie w C++ (ZPR) 5/26

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

Standard C++, jezyk C++ jest zgodny wstecz

vy

vVvyyvyyvyy

ISO/IEC 14882, opublikowany w 1998 (C++98)
ISO/IEC 14882:2003, zmodyfikowany w 2003 (C++03)

ISO/IEC 14882:2011, C++11, c++0x (Il 2011), draft:N3290
http://www.open-std.org/jtcl/sc22/wg21

ISO/IEC 14882:2014, C++14, c++1y (VIIl 2014), draft:N3797
ISO/IEC 14882:2017, C++17, c++1z (XI1 2017), draft:N4661
ISO/IEC 14882:2020, C++20, c++2a (XII 2020), draft:N4878
ISO/IEC 14882:2024 C++23, c++2b (XII 2023) draft:N4950

C++26 draft:N5032 (XII 2025)
git clone https://github.com/cplusplus/draft.git

(Srednio) zaawansowane programowanie w C++ (ZPR) 6/26

http://www.open-std.org/jtc1/sc22/wg21
https://github.com/cplusplus/draft.git

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

Standard Python, Python Software Fundation

3 wersje standardu (niezgodne wstecz!):
Python 1 (nie uzywana), Python 2 (wycofana od 2020), Python 3 J

Definicja standardu w Python Enhancement Proposals (PEP),
http://python.org, przyktady:
» PEP 0 - definicja PEP, lista PEP (jest ich ponad 8000)
> PEP 8 - styl kodowania
» PEP 20 - 'The Zen of Python’ (przestanie)
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.

Sparse is better than demnse.
Readability counts.

Konferencja PyCon: http://pycon.org

(Srednio) zaawansowane programowanie w C++ (ZPR) 7/26

http://python.org
http://pycon.org

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

Standard Rust, rust-lang.org

obecnie stabilna wersja 1.87 (od 15.05.2025))

P codziennie nowa wersja,

P co 6 tygodni wersja beta, ktéra nastepnie jest ogtaszana jako stabilna
P nie ma gwarancji zgodnosci

Zmiany w git:
https://github.com/rust-lang/rust

Uzgadnianie zmian: RFC (request for comments),
https://rust-lang.github.io/rfcs
np: 0002-rfc-process.md, opisuje RFC dla Rust

(Srednio) zaawansowane programowanie w C++ (ZPR) 8/26

rust-lang.org
https://github.com/rust-lang/rust
https://rust-lang.github.io/rfcs

. Standardyzacja C++, Python, Rust
Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

Dokumentacja

Dokumentacja w kodzie zmniejsza ryzyko braku spojnosci)

Komentarze - poprawiaja czytelnosé¢ kodu.
Komentarz méwi DLACZEGO, kod méwi JAK.

P kazdy byt powinien mie¢ pojedyncza odpowiedzialnos¢,

» dokumentacja projektowa powinna by¢ generowana z kodu.
Hierarchia komentarzy:

1. odpowiedzialno$¢ bibliotek, pakietéw, przestrzeni nazw, katalogdéw

2. odpowiedzialno$¢ modutéw (plikéw), klas,
3. odpowiedzialno$¢ metod publicznych,
4

. niebanalne algorytmy

(Srednio) zaawansowane programowanie w C++ (ZPR) 9/26

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

SWEBOK

IEEE Computer Society,

Guide to the Software Engineering Body of Knowledge
https://www.computer.org/education/bodies-of-knowledge/
software-engineering/v4

<EEES » zarzadzanie wymaganiami,
@ﬂ] » projektowanie i implementacja
o oprogramowania,
Guide to the .
Software > testowanie,
Engineering
Bodly of » dostarczanie, konfiguracja, pielegnacja,
Knowledge . ; .
V4.0 » zarzadzanie jakoscia,
» zarzadzanie zespotem.

(Srednio) zaawansowane programowanie w C++ (ZPR) 10/26

https://www.computer.org/education/bodies-of-knowledge/software-engineering/v4
https://www.computer.org/education/bodies-of-knowledge/software-engineering/v4

. Standardyzacja C++, Python, Rust
Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

std::ref <functional>

std: :ref (X) obiekt zaw. wskaznik do X, mozliwos¢ kopiowania, itp.

std::cref (X) obiekt zaw. staty wskaznik do X

int foo = 10;
auto bar = std::ref(foo);
++bar; //dziata na obiecie, foo == 11

void thrd_fun(Data& data) { /* nieistotne */ }

Data data;
auto thrl = std::thread(thread_fun, data); //pracuje na kopii
auto thr2 = std::thread(thread_fun, ref(data)); //pracuje na oryginale

(Srednio) zaawansowane programowanie w C++ (ZPR) 11/26

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

rekordy, std::pair

template<class _T1, class _T2>
struct pair {

typedef _T1 first_type;

typedef _T2 second_type;

_T1 first;//Pierwsza sktadowa

_T2 second;//Druga sktadowa

pair() : first(), second() { }

pair(const _T1& __a, const _T2& __b)

: first(__a), second(__b) { }
};
//Przyktady uzycia
using StringCount = std::pair<std::string,int>;
StringCount f();//funkcja zwraca dwie wartosci
//Tworzy pare o typach dedukowanych z argumentéw
std: :make_pair(24,true);

(Srednio) zaawansowane programowanie w C++ (ZPR) 12/26

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

rekordy, std::tuple

//struktura zawierajaca trzy obiekty (typdéw A,B,C)

using triple = std::pair<A,std::pair<B,C> >;

tuple<A,B,C> //Zawiera trzy obiekty (typdéw A,B,C)
» dostep do sktadowej - get

int i = 3;

tuple<int,double,int&> t(2,1.5,1);

t.get<0>() = 4; //dostep do elementu

double d = get<1>(t); //dostep do elementu
> make_tuple - nie trzeba podawad typéw obiektéw
> operatory: ==, |I=, <, >, <=, >=
> funkcja tie

int i; double d;
tie(i,d); //make_tuple(ref(i),ref(d)), zwraca tuple<int&,double&>

(Srednio) zaawansowane programowanie w C++ (ZPR) 13/26

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

std::function (C++11)

Pozwala przechowywa¢ funkcje i obiekty funkcyjne
> obiekt ktéry akcje (np. wskaznik do funkcji lub metody)
> mozliwo$¢ kopiowania, przypisywania itp.

std::function<void (int, int)> pf; //funkcja dwuargumentowa

//boost: :function2<void, int, int> pf; - to samo
void f(int x, int y) { cout << x + y << endl; }
pf = £;
pf(2,3);//wywotanie f dla x = 2, y = 3
struct F {
void operator() (int x, int y);
};
pf = FO;

pf(2,3);//wywotanie F.operator() dla x = 2, y = 3
pf = [I1(int x, int y){ cout << x + y << endl; };

pf(2,3);

(Srednio) zaawansowane programowanie w C++ (ZPR) 14/26

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

std::function - przyktady

using PF = std::function<void (int)>;

PF pf; //Obiekt, ktdéry przechowuje komende

pf(3); //Wyjatek: boost::bad_function_call

class Foo { public: void f(int x); /* ... %/ };

Foo foo;

//Zwigzanie obiektu dla ktdérego bedzie wotana metoda
pf = std::bind(Foo::f,ref(foo),_1);

pf(4); //Wota foo->f(4)

vector<PF> callbacks; //Mozliwo§¢ przechowywania w kolekcjach
//Wota wszystkie metody w kolekcji (z argumentem = 7)
for_each(callbacks.begin(), callbacks.end(), [1(PF& pf){ pf(7);});

Zastosowanie : wszedzie tam, gdzie wzorzec komendy
P> separacja tworzenia akcji od jej wotania

» kolekcjonowanie polecen

(Srednio) zaawansowane programowanie w C++ (ZPR) 15/26

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

inne typy pomocnicze

» std::variant (C++11) — unia z wyrdznikiem biezacego typu
» std::optional (C+-+11) — obiekt z sygnalizacja braku wartosci

std::any (C++17)
kontener na warto$¢ dowolnego typu (jak voidx)

#include <any>

any a; //dla pustych obiektéw warto§¢ przechowywanego typu to void
assert(a.has_value() == false);

a = string("Hello"); //a przechowuje warto§¢ string
assert(a.type() == typeid(string));

string s = any_cast<string>(a); //dostep do obiektu

//wyjatek bad_any_cast, gdy niezgodne typy

template <typename Val> Val any_cast(const any& a);
//nullptr gdy niezgodne typy

template <typename Val> const Val* any_cast(const any* a);
template <typename Val> Val* any_cast(any* a);

(Srednio) zaawansowane programowanie w C++ (ZPR)

16/26

. Standardyzacja C++, Python, Rust
Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

Tablice wielowymiarowe, Boost.Multi_Array

Wygodne do reprezentacji macierzy, tensoréw, itp.)

Typowe implementacje:
» tablice wielowymiarowe z C, np. int tab[2][3];
» wektory wektoréw, np. vector<vector<int> > tab;

» boost::multi_array <boost/multi_array.hpp>

//liczba elementdédw - kontener
array< array_type::index, 2> shape = { 2, 3 };

konstruktor //wymiar - parametr szablonu
multi_array<double, 2> matrix(shape);
matrix[1] [1] = 2.56; //operator indeksowania
//kontener z indeksami

dostep i . _
array< array_type::index, 2> index = { 1, 1 };

matrix(index) = 2.56;

(Srednio) zaawansowane programowanie w C++ (ZPR) 17/26

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

Tablice wielowymiarowe std: :mdspan (C++23)

» std::span (C++20) - widok na ciggta sekwencja obiektéw

» std::mdspan (C++23) — widok na skewencje jak na wielowymiarowa
tablice

std::array a = {0,1,2,3,4,5,6,7,8,9,10,11};

mdspan(a.data(), 2, 6); //widok na tablice 2D

//t Lo, 1,2,3,4,51, [6, 7,8, 9, 10, 111 1]
mdspan(a.data(), 3, 4); //widok na tablice 2D
//tro,1,2,3, [4,5,6, 7], [8,9, 10, 11]]
mdspan(a.data(), 2, 2, 3); //widok na tablice 3D: 2 x 2 x 3
//ctrto, 1,21, [3, 4,511, [6,7,8], [9, 10, 111 1]

Pomocnicze: std: :rank - zwraca liczbe wymiaréw, std: :extent - liczba
elementéw dla danego wymiaru

(Srednio) zaawansowane programowanie w C++ (ZPR) 18/26

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

C++11, uzupetnienie

> constexpr, wyrazenia, funkcje i in. obliczane w czasie kompilacji

» class Foo { //delegacja konstruktora

public:
Foo(const std::string& s) { /x ... */ }
Foo(const charx c) : Foo(std::string(c)) {} //delegacja
VALV

//Wskazuje, aby nie tworzy¢ instancji w biezacym module
external template class std::vector<Foo>;

P operator typu wyrazenia decltype

using size_t = decltype(sizeof(0));
using nullptr_t = decltype(nullptr);

(Srednio) zaawansowane programowanie w C++ (ZPR) 19/26

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

Standard C++14, uzupetnienie

//dedukcja typu zwracanego, kompilator okresla, ze zwracamy double
auto getValue() {
return 1.0;

¥
przydatna do redukcji modyfikacji kodu:

struct Record {
int id; //identyfikator
std::string name;
};
//auto find_id(...) pozwoli unikngé modyfikacji kodu po zmianie typu
//identyfikatora w klasie Record
int find_id(const vector<Record>& records, const string& name) {
auto it = find_if (records.begin(), records.end(),
[&] (const Record& r){ return r.name==name; });
if (it == records.end())
return -1;
return it->id;

}

(Srednio) zaawansowane programowanie w C++ (ZPR) 20/26

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

Standard C++14, uzupetnienie (2)

» atrybut [[deprecated]]
class [[deprecated]] Foo {};

//kompilacja kodu, ktdéry uzywa Foo dostarczy ostrzezenie, np.
test.cpp:4:6: warning: ‘’Foo is deprecated ...

> literaty binarne: int val = 0b10101010;
» separator przy definiowaniu ciggu cyfr (nie ma wptywu na wartos¢)
int mask = 0b1111°0000°1111°0000;

» zmienne szablonowe, np. pi<T>

cout << pi<int> << endl; //3
cout << pi<std::string> << endl; //napis pi

> generyczne funkcje anonimowe, (uzycie auto w lambda) - podobne do
szablonéw

auto add = [](auto x, auto y) { return x +y ; }

(Srednio) zaawansowane programowanie w C++ (ZPR) 21/26

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

Standard C++17, uzupetnienie

> std::string_view (referencja tylko do odczytu do czesci napisu)
» biblioteka do systemu plikéw (bazuje na Boost.Filesystem)
» usuniecie alternatywnych reprezentacji znakéw specjalnych (trigraph),
tzn 77= (reprezentuje #), 77/ (reprezentuje \) itp.
» inicjacja (opcjonalna) dla if, switch i while
if(int ¢ = get(); ¢ != SUCCESS) { //’c’ istnieje w bloku
/* o0 %/
}
» zmienne inline
dodany typ std::void_t
» dodany typ std: :byte - reprezentacja bajtéw, niedozwolone operacje
arytmetyczne, nie jest to typ znakowy
> literaty szesnastkowe do reprezentacji zmiennopozycyjnej (IEEE 754)

double vl = 1.2e3 //120.0
double v2 = 0x1.2p3; //1.125%27°3 = 9.0

v

(Srednio) zaawansowane programowanie w C++ (ZPR) 22/26

Biblioteka standardowa C++

Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

Standard C++17, uzupetnienie (2)

> algorytmy STL moga by¢ wykonywane réwnolegle (wspdtbieznie lub

wektorowo)

vector<double> v(1024);

£i11(execution::unseq, v.begin(), v.end(), 1.0);

for_each(execution::unseq, v.begin(), v.end(),
[1(double& d) { return sin(d) + 2.0*cos(d);});

» std::execution:
» std::execution:
» std::execution:

wektorowe

» std::execution::

:sequenced_policy
:parallel_policy - mozna uzywa¢ wielu watkéw
:unsequenced_policy - mozna stosowaé operacje

parallel_unsequenced_policy

(Srednio) zaawansowane programowanie w C++ (ZPR) 23/26

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

Standard C++20, uzupetnienie

operator <=>, pordéwnanie trdjstronne (three-way comparison))

<0 jezelia <D
(a<=>b)g ==0 jezelia ==
>0 jezelia > b
podobnie jak strcmp w 'C’
std::strong_ordering: :equal
std::strong_ordering: :less
std::strong_ordering: :greater
std::strong_ordering: :unordered
Dostarczone dla:
> typéw liczbowych (catkowite, zmiennopozycyjne)
» wskaznikéw (arytmetyka adresowa)
> tablic (napiséw)

> mozliwos$¢ dostarczanie dla typéw uzytkownika
(Srednio) zaawansowane programowanie w C++ (ZPR) 24/26

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

Standard C++20, uzupetnienie (2)

P> nowa postac petli for dla zakresu, for (init; decl : expr)

vector<Foo> vec:

for(int i = 0; Foo f : vec) {
bar(f, i);
++1i;

}

> napisy jako parametry szablonéw (podobnie jak liczby catkowite, napis
nie jest typem)

Foo<"foobar"> f;

C++23 dostepny w nastepujacych narzedziach:

kompilator jezyk biblioteka standardowa
GNU gcc 12 15

Visual Studio | 2022 (od ver. 19.44) | 2022 (od ver. 19.44)
ClLang 16 17

(Srednio) zaawansowane programowanie w C++ (ZPR) 25/26

Standardyzacja C++, Python, Rust

Biblioteka standardowa C++ C++11, C++14, C++17, C++20, C++23

Podsumowanie

KISS (Keep it simple software)
BUZI (bez udziwnien zbednych idioto)

Dziekuje

(Srednio) zaawansowane programowanie w C++ (ZPR) 26/26

	Biblioteka standardowa C.6ex++
	Standardyzacja C.6ex++, Python, Rust
	C.6ex++11, C.6ex++14, C.6ex++17, C.6ex++20, C.6ex++23

