
Biblioteka standardowa C++

(Średnio) zaawansowane programowanie w C++ (ZPR)
Wykład 15 - LLM w wytwarzaniu oprogramowania.

C++14,C++17,C++20,C++23.

Robert Nowak

25Z

(Średnio) zaawansowane programowanie w C++ (ZPR) 1/26

Biblioteka standardowa C++

Plan wykładu

▶ zintegrowanie narzędzia do tworzenia oprogramowania (IDE)
▶ standardy C++, Python, Rust.
▶ biblioteka standardowa C++, uzupełnienie;

(Średnio) zaawansowane programowanie w C++ (ZPR) 2/26

Biblioteka standardowa C++

Zintegrowane narzędzia do tworzenia oprogramowania
(IDE)2

Nazwa Licencja Popularność1 Platforma
VS Code Komer. + wolna 73.6% wiele
Visual Studio Komer. 29.3% Windows, macOS
JetBrains Komer. + Apache 2.0 94.0% wiele
Vim/Neovim Vim + Apache 2.0 34.1% wiele
Sublime Text Komer. + wolna 10.9% wiele
Eclipse EPL 2.0 9.4% wiele
XCode Komer. + wolna 9.3% macOS
VSCodium MIT 4.8% wiele
Emacs GPL v3.0 4.6% wiele

1Ankieta, 2024, 58tys. uczestników
2Na podstawie raportu M. Borek, 2024

(Średnio) zaawansowane programowanie w C++ (ZPR) 3/26

Biblioteka standardowa C++

Narzędzia wspierające tworzenie kodu3

Nazwa Open Source Objaśnianie CLI Praca lokalna
GitHub/Copilot - tak tak -
Tabnine - tak - tak
Codeium - tak - -
Amazon Whisperer - tak tak -
Cody tak tak tak -
Continue tak tak - tak
CodeGeeX tak tak - -
FauxPilot tak - - tak
Tabby tak tak - tak

3Na podstawie raportu M. Borek, 2024
(Średnio) zaawansowane programowanie w C++ (ZPR) 4/26

Biblioteka standardowa C++

Integracja narzędzi z IDE4

Nazwa VS V Vim/ Jet Ecli- Sub- X Cod- Em-
Code S Neo Bra. pse lime Code ium acs

Copilot tak tak tak tak - - - tak tak
Tabnine tak tak tak tak tak - - tak tak
Codeium tak tak tak tak tak tak tak tak tak
Am. W. tak tak - - - - - tak -
Cody tak tak - tak tak - - tak -
Continue tak tak - tak - - - tak -
CodeGee tak tak - tak - - - tak -
FauxPilot - tak tak - - - - tak -
Tabby tak tak tak tak - - - tak -

4Na podstawie raportu M. Borek, 2024
(Średnio) zaawansowane programowanie w C++ (ZPR) 5/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

Standard C++, język C++ jest zgodny wstecz

▶ ISO/IEC 14882, opublikowany w 1998 (C++98)
▶ ISO/IEC 14882:2003, zmodyfikowany w 2003 (C++03)
▶ ISO/IEC 14882:2011, C++11, c++0x (III 2011), draft:N3290

http://www.open-std.org/jtc1/sc22/wg21

▶ ISO/IEC 14882:2014, C++14, c++1y (VIII 2014), draft:N3797
▶ ISO/IEC 14882:2017, C++17, c++1z (XII 2017), draft:N4661
▶ ISO/IEC 14882:2020, C++20, c++2a (XII 2020), draft:N4878
▶ ISO/IEC 14882:2024 C++23, c++2b (XII 2023) draft:N4950
▶ C++26 draft:N5032 (XII 2025)

git clone https://github.com/cplusplus/draft.git

(Średnio) zaawansowane programowanie w C++ (ZPR) 6/26

http://www.open-std.org/jtc1/sc22/wg21
https://github.com/cplusplus/draft.git

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

Standard Python, Python Software Fundation

3 wersje standardu (niezgodne wstecz!):
Python 1 (nie używana), Python 2 (wycofana od 2020), Python 3

Definicja standardu w Python Enhancement Proposals (PEP),
http://python.org, przykłady:
▶ PEP 0 - definicja PEP, lista PEP (jest ich ponad 8000)
▶ PEP 8 - styl kodowania
▶ PEP 20 - ’The Zen of Python’ (przesłanie)

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.

Konferencja PyCon: http://pycon.org
(Średnio) zaawansowane programowanie w C++ (ZPR) 7/26

http://python.org
http://pycon.org

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

Standard Rust, rust-lang.org

obecnie stabilna wersja 1.87 (od 15.05.2025)

▶ codziennie nowa wersja,
▶ co 6 tygodni wersja beta, która następnie jest ogłaszana jako stabilna
▶ nie ma gwarancji zgodności

Zmiany w git:
https://github.com/rust-lang/rust

Uzgadnianie zmian: RFC (request for comments),
https://rust-lang.github.io/rfcs
np: 0002-rfc-process.md, opisuje RFC dla Rust

(Średnio) zaawansowane programowanie w C++ (ZPR) 8/26

rust-lang.org
https://github.com/rust-lang/rust
https://rust-lang.github.io/rfcs

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

Dokumentacja

Dokumentacja w kodzie zmniejsza ryzyko braku spójności

Komentarze - poprawiają czytelność kodu.
Komentarz mówi DLACZEGO, kod mówi JAK.

▶ każdy byt powinien mieć pojedynczą odpowiedzialność,
▶ dokumentacja projektowa powinna być generowana z kodu.

Hierarchia komentarzy:
1. odpowiedzialność bibliotek, pakietów, przestrzeni nazw, katalogów
2. odpowiedzialność modułów (plików), klas,
3. odpowiedzialność metod publicznych,
4. niebanalne algorytmy

(Średnio) zaawansowane programowanie w C++ (ZPR) 9/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

SWEBOK

IEEE Computer Society,
Guide to the Software Engineering Body of Knowledge
https://www.computer.org/education/bodies-of-knowledge/
software-engineering/v4

▶ zarządzanie wymaganiami,
▶ projektowanie i implementacja

oprogramowania,
▶ testowanie,
▶ dostarczanie, konfiguracja, pielęgnacja,
▶ zarządzanie jakością,
▶ zarządzanie zespołem.

(Średnio) zaawansowane programowanie w C++ (ZPR) 10/26

https://www.computer.org/education/bodies-of-knowledge/software-engineering/v4
https://www.computer.org/education/bodies-of-knowledge/software-engineering/v4

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

std::ref <functional>

std::ref(X) obiekt zaw. wskaźnik do X, możliwość kopiowania, itp.
std::cref(X) obiekt zaw. stały wskaźnik do X

int foo = 10;
auto bar = std::ref(foo);
++bar; //działa na obiecie, foo == 11

void thrd_fun(Data& data) { /* nieistotne */ }
Data data;
auto thr1 = std::thread(thread_fun, data); //pracuje na kopii
auto thr2 = std::thread(thread_fun, ref(data)); //pracuje na oryginale

(Średnio) zaawansowane programowanie w C++ (ZPR) 11/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

rekordy, std::pair

template<class _T1, class _T2>
struct pair {

typedef _T1 first_type;
typedef _T2 second_type;
_T1 first;//Pierwsza składowa
_T2 second;//Druga składowa
pair() : first(), second() { }
pair(const _T1& __a, const _T2& __b)
: first(__a), second(__b) { }

};
//Przykłady użycia
using StringCount = std::pair<std::string,int>;
StringCount f();//funkcja zwraca dwie wartości
//Tworzy parę o typach dedukowanych z argumentów
std::make_pair(24,true);

(Średnio) zaawansowane programowanie w C++ (ZPR) 12/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

rekordy, std::tuple

//struktura zawierająca trzy obiekty (typów A,B,C)
using triple = std::pair<A,std::pair<B,C> >;
tuple<A,B,C> //Zawiera trzy obiekty (typów A,B,C)

▶ dostęp do składowej - get

int i = 3;
tuple<int,double,int&> t(2,1.5,i);
t.get<0>() = 4; //dostęp do elementu
double d = get<1>(t); //dostęp do elementu

▶ make_tuple - nie trzeba podawać typów obiektów
▶ operatory: ==, !=, <, >, <=, >=
▶ funkcja tie

int i; double d;
tie(i,d); //make_tuple(ref(i),ref(d)), zwraca tuple<int&,double&>

(Średnio) zaawansowane programowanie w C++ (ZPR) 13/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

std::function (C++11)

Pozwala przechowywać funkcje i obiekty funkcyjne
▶ obiekt który akcje (np. wskaźnik do funkcji lub metody)
▶ możliwość kopiowania, przypisywania itp.

std::function<void (int, int)> pf; //funkcja dwuargumentowa
//boost::function2<void, int, int> pf; - to samo
void f(int x, int y) { cout << x + y << endl; }
pf = f;
pf(2,3);//wywołanie f dla x = 2, y = 3
struct F {

void operator()(int x, int y);
};
pf = F();
pf(2,3);//wywołanie F.operator() dla x = 2, y = 3
pf = [](int x, int y){ cout << x + y << endl; };
pf(2,3);

(Średnio) zaawansowane programowanie w C++ (ZPR) 14/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

std::function - przykłady

using PF = std::function<void (int)>;
PF pf; //Obiekt, który przechowuje komendę
pf(3); //Wyjątek: boost::bad_function_call
class Foo { public: void f(int x); /* ... */ };
Foo foo;
//Związanie obiektu dla którego będzie wołana metoda
pf = std::bind(Foo::f,ref(foo),_1);
pf(4); //Woła foo->f(4)

vector<PF> callbacks; //Możliwość przechowywania w kolekcjach
//Woła wszystkie metody w kolekcji (z argumentem = 7)
for_each(callbacks.begin(), callbacks.end(), [](PF& pf){ pf(7);});

Zastosowanie : wszędzie tam, gdzie wzorzec komendy
▶ separacja tworzenia akcji od jej wołania
▶ kolekcjonowanie poleceń

(Średnio) zaawansowane programowanie w C++ (ZPR) 15/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

inne typy pomocnicze

▶ std::variant (C++11) – unia z wyróżnikiem bieżącego typu
▶ std::optional (C++11) – obiekt z sygnalizacją braku wartości

std::any (C++17)
kontener na wartość dowolnego typu (jak void*)
#include <any>
any a; //dla pustych obiektów wartość przechowywanego typu to void
assert(a.has_value() == false);
a = string("Hello"); //a przechowuje wartość string
assert(a.type() == typeid(string));
string s = any_cast<string>(a); //dostęp do obiektu

//wyjątek bad_any_cast, gdy niezgodne typy
template <typename Val> Val any_cast(const any& a);
//nullptr gdy niezgodne typy

template <typename Val> const Val* any_cast(const any* a);
template <typename Val> Val* any_cast(any* a);

(Średnio) zaawansowane programowanie w C++ (ZPR) 16/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

Tablice wielowymiarowe, Boost.Multi_Array

Wygodne do reprezentacji macierzy, tensorów, itp.

Typowe implementacje:
▶ tablice wielowymiarowe z C, np. int tab[2][3];
▶ wektory wektorów, np. vector<vector<int> > tab;
▶ boost::multi_array <boost/multi_array.hpp>

konstruktor
//liczba elementów - kontener
array< array_type::index, 2> shape = { 2, 3 };
//wymiar - parametr szablonu
multi_array<double, 2> matrix(shape);

dostęp
matrix[1][1] = 2.56; //operator indeksowania
//kontener z indeksami
array< array_type::index, 2> index = { 1, 1 };
matrix(index) = 2.56;

(Średnio) zaawansowane programowanie w C++ (ZPR) 17/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

Tablice wielowymiarowe std::mdspan (C++23)

▶ std::span (C++20) - widok na ciągłą sekwencją obiektów
▶ std::mdspan (C++23) – widok na skewencję jak na wielowymiarową

tablicę

std::array a = {0,1,2,3,4,5,6,7,8,9,10,11};
mdspan(a.data(), 2, 6); //widok na tablice 2D
//[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]
mdspan(a.data(), 3, 4); //widok na tablice 2D
//[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
mdspan(a.data(), 2, 2, 3); //widok na tablice 3D: 2 x 2 x 3
//[[[0, 1, 2], [3, 4, 5]], [6, 7, 8], [9, 10, 11]]]

Pomocnicze: std::rank - zwraca liczbę wymiarów, std::extent - liczba
elementów dla danego wymiaru

(Średnio) zaawansowane programowanie w C++ (ZPR) 18/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

C++11, uzupełnienie

▶ constexpr, wyrażenia, funkcje i in. obliczane w czasie kompilacji
▶ class Foo { //delegacja konstruktora

public:
Foo(const std::string& s) { /* ... */ }
Foo(const char* c) : Foo(std::string(c)) {} //delegacja
/* ... */

//Wskazuje, aby nie tworzyć instancji w bieżącym module
external template class std::vector<Foo>;

▶▶ operator typu wyrażenia decltype
using size_t = decltype(sizeof(0));
using nullptr_t = decltype(nullptr);

(Średnio) zaawansowane programowanie w C++ (ZPR) 19/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

Standard C++14, uzupełnienie

//dedukcja typu zwracanego, kompilator określa, że zwracamy double
auto getValue() {

return 1.0;
}

przydatna do redukcji modyfikacji kodu:
struct Record {

int id; //identyfikator
std::string name;

};
//auto find_id(...) pozwoli uniknąć modyfikacji kodu po zmianie typu
//identyfikatora w klasie Record
int find_id(const vector<Record>& records, const string& name) {

auto it = find_if(records.begin(), records.end(),
[&](const Record& r){ return r.name==name; });

if(it == records.end())
return -1;

return it->id;
}

(Średnio) zaawansowane programowanie w C++ (ZPR) 20/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

Standard C++14, uzupełnienie (2)
▶ atrybut [[deprecated]]

class [[deprecated]] Foo {};

//kompilacja kodu, który używa Foo dostarczy ostrzeżenie, np.
test.cpp:4:6: warning: ‘’Foo is deprecated ...

▶ literały binarne: int val = 0b10101010;
▶ separator przy definiowaniu ciągu cyfr (nie ma wpływu na wartość)

int mask = 0b1111’0000’1111’0000;

▶ zmienne szablonowe, np. pi<T>
cout << pi<int> << endl; //3
cout << pi<std::string> << endl; //napis pi

▶ generyczne funkcje anonimowe, (użycie auto w lambda) - podobne do
szablonów
auto add = [](auto x, auto y) { return x + y ; }

(Średnio) zaawansowane programowanie w C++ (ZPR) 21/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

Standard C++17, uzupełnienie
▶ std::string_view (referencja tylko do odczytu do części napisu)
▶ biblioteka do systemu plików (bazuje na Boost.Filesystem)
▶ usunięcie alternatywnych reprezentacji znaków specjalnych (trigraph),

tzn ??= (reprezentuje #), ??/ (reprezentuje \) itp.
▶ inicjacja (opcjonalna) dla if, switch i while

if(int c = get(); c != SUCCESS) { //’c’ istnieje w bloku
/* ... */

}

▶ zmienne inline
▶ dodany typ std::void_t
▶ dodany typ std::byte - reprezentacja bajtów, niedozwolone operacje

arytmetyczne, nie jest to typ znakowy
▶ literały szesnastkowe do reprezentacji zmiennopozycyjnej (IEEE 754)

double v1 = 1.2e3 //120.0
double v2 = 0x1.2p3; //1.125*2ˆ3 = 9.0

(Średnio) zaawansowane programowanie w C++ (ZPR) 22/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

Standard C++17, uzupełnienie (2)

▶ algorytmy STL mogą być wykonywane równolegle (współbieżnie lub
wektorowo)
vector<double> v(1024);
fill(execution::unseq, v.begin(), v.end(), 1.0);
for_each(execution::unseq, v.begin(), v.end(),

[](double& d) { return sin(d) + 2.0*cos(d);});

▶ std::execution::sequenced_policy
▶ std::execution::parallel_policy - można używać wielu wątków
▶ std::execution::unsequenced_policy - można stosować operacje

wektorowe
▶ std::execution::parallel_unsequenced_policy

(Średnio) zaawansowane programowanie w C++ (ZPR) 23/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

Standard C++20, uzupełnienie

operator <=>, porównanie trójstronne (three-way comparison)

(a <=> b)


< 0 jeżeli a < b
== 0 jeżeli a == b
> 0 jeżeli a > b

podobnie jak strcmp w ’C’
std::strong_ordering::equal
std::strong_ordering::less
std::strong_ordering::greater
std::strong_ordering::unordered

Dostarczone dla:
▶ typów liczbowych (całkowite, zmiennopozycyjne)
▶ wskaźników (arytmetyka adresowa)
▶ tablic (napisów)
▶ możliwość dostarczanie dla typów użytkownika

(Średnio) zaawansowane programowanie w C++ (ZPR) 24/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

Standard C++20, uzupełnienie (2)

▶ nowa postać pętli for dla zakresu, for (init; decl : expr)

vector<Foo> vec:
for(int i = 0; Foo f : vec) {

bar(f, i);
++i;

}

▶ napisy jako parametry szablonów (podobnie jak liczby całkowite, napis
nie jest typem)

Foo<"foobar"> f;

C++23 dostępny w następujących narzędziach:
kompilator język biblioteka standardowa
GNU gcc 12 15
Visual Studio 2022 (od ver. 19.44) 2022 (od ver. 19.44)
CLang 16 17

(Średnio) zaawansowane programowanie w C++ (ZPR) 25/26

Biblioteka standardowa C++ Standardyzacja C++, Python, Rust
C++11, C++14, C++17, C++20, C++23

Podsumowanie

KISS (Keep it simple software)
BUZI (bez udziwnień zbędnych idioto)

Dziękuję

(Średnio) zaawansowane programowanie w C++ (ZPR) 26/26

	Biblioteka standardowa C.6ex++
	Standardyzacja C.6ex++, Python, Rust
	C.6ex++11, C.6ex++14, C.6ex++17, C.6ex++20, C.6ex++23

