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ABSTRACT

Markowitz formulated the portfolio optimization problem through two criteria: the expected return and
the risk, as a measure of the variability of the return. The classical Markowitz model uses the variance as
the risk measure and is a quadratic programming problem. Many attempts have been made to linearize
the portfolio optimization problem. Several different risk measures have been proposed which are com-
putationally attractive as (for discrete random variables) they give rise to linear programming (LP) prob-
lems. About twenty years ago, the mean absolute deviation (MAD) model drew a lot of attention resulting
in much research and speeding up development of other LP models. Further, the LP models based on the
conditional value at risk (CVaR) have a great impact on new developments in portfolio optimization dur-
ing the first decade of the 21st century. The LP solvability may become relevant for real-life decisions
when portfolios have to meet side constraints and take into account transaction costs or when large size
instances have to be solved. In this paper we review the variety of LP solvable portfolio optimization
models presented in the literature, the real features that have been modeled and the solution approaches
to the resulting models, in most of the cases mixed integer linear programming (MILP) models. We also
discuss the impact of the inclusion of the real features.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The portfolio optimization problem considered in this paper fol-
lows the original Markowitz’ formulation and is based on a single
period model of investment. At the beginning of a period, an inves-
tor allocates the capital among various securities, assigning a share
of the capital to each. During the investment period, the portfolio
generates a random rate of return. This results in a new value of
the capital (observed at the end of the period), increased or de-
creased with respect to the invested capital by the average portfo-
lio return. This model has played a crucial role in stock investment
and has served as basis for the development of the modern portfo-
lio financial theory.

In the original Markowitz model (Markowitz, 1952) the risk is
measured by the standard deviation or variance. Several other risk
measures have been later considered, creating a family of mean-
risk models. Whereas the original Markowitz model is a quadratic
programming problem, following Sharpe (1971a), many attempts
have been made to linearize the portfolio optimization problem
(c.f., Speranza (1993) and references therein).
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Nowadays, solution methods available for quadratic program-
ming models are quite competitive also with respect to linear mod-
els. Nevertheless, the introduction of real features involving the
use of integer variables may increase problem complexity signifi-
cantly and makes LP solvable models more competitive with re-
spect to quadratic models for which satisfactory solution
methods are not available. Moreover, the recent advance in com-
puters capability has opened up new solution opportunities and
led to an extraordinary progress in statistics (see Efron (2000)) as
well as in optimization (see Mulvey (2004) and Cornuejols &
Tiitlincii (2007)) with enormous effects in different application
contexts including finance.

Obviously, in order to guarantee that the portfolio takes advan-
tage of diversification, no risk measure can be a linear function of
the portfolio shares. Nevertheless, a risk measure can be LP com-
putable in the case of discrete random variables, when returns
are defined by their realizations under the specified scenarios. This
applies, in particular, to the mean absolute deviation from the
mean. The mean absolute deviation was very early considered in
the portfolio analysis (Sharpe (1971b) and references therein)
while Konno and Yamazaki (1991) presented and analyzed the
complete portfolio optimization model based on this risk measure
- the so-called MAD model. The MAD model presented in 1991 was
not the first LP portfolio optimization model as earlier Yitzhaki
(1982) introduced the mean-risk model using Gini’'s mean
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(absolute) difference as risk measure. Nevertheless, the MAD mod-
el as much simpler computationally has drawn a lot of attention
resulting in much research and speeding up development of other
LP models. Young (1998) analyzed the LP solvable portfolio optimi-
zation model based on risk defined by the worst case scenario
(minmax approach), while Ogryczak (2000) introduced the multi-
ple criteria LP model covering all the above as special aggregation
techniques. Following Rockafellar and Uryasev (2000, 2002), the
CVaR models had a great impact on new developments of risk mea-
sures in finance during the first decade of 21st century. While sev-
eral LP computable measures are dispersion type risk measures,
some are safety measures which, when embedded in an optimiza-
tion model, are maximized instead of being minimized. A first sur-
vey on risk and safety basic LP solvable portfolio optimization
models can be found in Mansini, Ogryczak, and Speranza (2003a).

In practical financial applications the portfolio optimization
problem has to take into account real features such as transaction
costs, minimum transaction lots, cardinality constraints, thresh-
olds on maximum or minimum investments. The impact of the
introduction of real features in a portfolio optimization model on
the resulting portfolio has been discussed in Kellerer, Mansini,
and Speranza (2000), where it is shown on real data that the intro-
duction of fixed transaction costs reduces the number of securities
selected, and that considering transaction lots substantially
changes the structure of the resulting portfolio, both in terms of
securities selected and capital invested in the securities.

In most cases the inclusion of real features in a basic model re-
quires the introduction of integer and binary variables. We refer to
these models as models with real features. In some cases the mod-
eling of real features is possible by using as decision variables the
security shares (percentages). We call the models based on shares
relative models and the investment variables relative. In several
cases the introduction of real features implies the need of variables
that represent the absolute values of the capital invested in each
security. We call this second type of models absolute models and
the investment variables absolute.

In this paper we review the basic LP solvable portfolio models
and the models with real features that were presented in the litera-
ture, together with the solution approaches proposed for the latter
class of models. Though optimization models are a consolidated ap-
proach to solve complex real problems, the relevance of heuristics
has been also well recognized since the eighties (see Zanakis & Evans
(1981)). The use of a heuristic, a threshold-accepting algorithm, for
portfolio optimization is discussed in Dueck and Winker (1992).
Since then, and in particular in the last decade thanks to the enor-
mous growth in computing power, practitioners and financial firms
have made a massive recourse to efficient and easy to implement
heuristic techniques when performing strategic what-if analysis
studies (see Gilli & Schumann (2012)). Besides, a new relevance in
practical applications is obtained by approaches taking into account
the multiple criteria nature of the portfolio problem (see the recent
work by Xidonas, Mavrotas, Zopounidis, & Psarras (2011) for an inte-
grated methodological framework for portfolio optimization based
on multiple criteria decision making (MCDM), Zopounidis & Doum-
pos (2002) and Steuer & Na (2003), for literature reviews on multi-
criteria decision in financial decision making).

The paper is organized as follows. Section 2 is devoted to an
introduction to risk and safety measures and reviews the basic
LP solvable portfolio optimization models. In Section 3 we recall
short fall risk measures as the basic LP computable risk measures.
We also analyze mixed criteria obtained combining basic measures
in weighted sum (enhanced measures). In Section 4 we introduce
the relative and absolute models, then we review the literature
on portfolio optimization problems with real features and classify
them according to the type of variables used (relative or absolute
models). Section 5 is devoted to solution approaches and computa-

tional issues. We survey the main algorithms proposed in the liter-
ature for portfolio problems with real features classifying them
according to their nature in heuristic and exact solution ap-
proaches. Even though the main focus is on mixed integer linear
programming (MILP) models, we briefly survey also main solution
methods for the mean-variance model with real features. A part of
this section will also deal with the important computational issue
concerning the solution of large size LP problems including a high
number of securities and scenarios. We will discuss recent results
from the literature showing how computational efficiency in solv-
ing huge LP portfolio problems can be addressed taking advantages
from LP duality.

2. Introduction to LP solvable models

The portfolio optimization problem considered in this paper fol-
lows the original Markowitz formulation and is based on a single
period model of investment. At the beginning of a period, an inves-
tor allocates the capital among various securities, thus assigning a
nonnegative weight (share of the capital) to each security. During
the investment period, a security generates a random rate of re-
turn. This results in a change of capital invested (observed at the
end of the period) which is measured by the weighted average of
the individual rates of return.

Let J={1,2,...,n} denote a set of securities considered for an
investment. For each security j € J, its rate of return is represented
by a random variable R; with a given mean y; =E {R;}. Further, let
X =(Xj)j-1, .» denote a vector of decision variables x; expressing
the weights defining a portfolio. To represent a portfolio, the
weights must satisfy a set of constraints. The basic set of con-
straints is defined by a requirement that the weights must sum
toone,ie. Y X =1andx; > Oforj=1,...,n. Aninvestor usually
needs to consider some other requirements expressed as a set of
additional side constraints. Most of them can be expressed as lin-
ear equations and inequalities. We will assume that the basic set
of portfolios Q is a general LP feasible set given in a canonical form
as a system of linear equations with nonnegative variables.
Although, in farther sections we show that taking into account real
features such as transaction costs, minimum transaction lots, car-
dinality constraints, thresholds on maximum or minimum invest-
ments in most cases requires the introduction of integer and
binary variables into the LP structure.

Each portfolio x defines a corresponding random variable
Rx = Y4 Rx; that represents a portfolio rate of return. The mean
rate of return for portfolio X is given as: p(X) = E{Rx} = Zj'-’ﬂ,ujxj.
Following Markowitz (1952), the portfolio optimization problem
is modeled as a mean-risk bicriteria optimization problem

max{[u(x),—e(x)] :  x€Q} (1)

where the mean u(x) is maximized and the risk measure go(x) is
minimized. A feasible portfolio x° € Q is called the efficient solution
of problem (1) or the p/o-efficient portfolio if there is no x € Q such
that u(x) > u(x®) and o(x) < o(x°) with at least one inequality
strict.

In the original Markowitz model (Markowitz, 1952) the risk is
measured by the standard deviation or variance: ¢?%(Xx) =
E{(14(X) — Rx)*}. Several other risk measures have been later con-
sidered thus creating the entire family of mean-risk (Markowitz
type) models (cf. Mansini, Ogryczak, & Speranza (2003b)). We
focus our analysis on the class of Markowitz-type mean-risk mod-
els where risk measures, similar to the standard deviation, are shift
independent dispersion parameters. Thus, they are equal to 0 in
the case of a risk free portfolio and take positive values for any
risky portfolio. Moreover, in order to model possible advantages
of a portfolio diversification, risk measure g(x) must be a convex
function of x.
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While the original Markowitz model forms a quadratic pro-
gramming problem, following Sharpe (1971a), many attempts
have been made to linearize the portfolio optimization procedure
(c.f,, Speranza (1993) and references therein). Certainly, to model
advantages of a diversification, risk measures cannot be linear
function of x. Nevertheless, the risk measure can be LP computable
in the case of discrete random variables, i.e., in the case of returns
defined by their realizations under the specified scenarios (actu-
ally, in practice, a variable can still be considered continuous and
then approximated by scenarios using a (typically large) sample).
We will consider T scenarios with probabilities p, (where
t=1,...,T). Assume that for each random variable R; its realization
rj; under the scenario t are known. Typically, the realizations are
derived from historical data though they should represent the dis-
tribution of future returns. Frequently, a straightforward approach
treating T historical periods as equally probable scenarios (p; = 1/T)
is considered. However, we consider any arbitrary probability dis-
tributions represented by various probabilities p,. Similar to the
mean u(x), the realizations of the portfolio returns Ry are given
by y. = >_iiTitX;. Therefore, several risk measures referring to the
realizations can be LP computable. In particular, Konno and Yama-
zaki (1991) presented and analyzed the complete portfolio optimi-
zation model (MAD model) based on the risk measure defined as
the mean absolute deviation from the mean:

(X) = E{|1(x) — Ryl.} (2)

For a discrete random variable represented by its realizations the
mean absolute deviation (2) is LP computable as:

T n
mm{z e dp —df =Y (=T, dfdp >0 fort:l“..,T},
t=1 Jj=1
3)

The MAD model proposed increased interest in LP portfolio optimi-
zation approaches resulting in many new developments at the
beginning of the 21st century. However, historically earlier Yitzhaki
(1982) introduced the mean-risk model using Gini’'s mean (abso-
lute) difference as the risk measure (hereafter referred to as GMD
model). For a discrete random variable represented by its realiza-
tions y;, the Gini’'s mean difference is defined as
I(x) =10 S0_ : V¢ — Yulpepe- Thus, obviously, it is LP com-
putable as

T T
=min {_ZZ Py : dpp > zn:(rjr’ - rjt”)xjv dpe >0 fort' t"= ]"""T}'
g | =1
4)

Actually, several risk measures can be expressed as the optimal
value of an LP problem of the following form:

0}, xe€Q, (5)

where v is a vector of auxiliary variables while the portfolio vector
is defined by variables x. One may notice that, except from x € Q, all
the LP constraints are homogeneous. It is related to the fact that the
risk measures ¢o(x) we consider are positively homogeneous func-
tions of x. This property allows us to demonstrate easily that all
the LP computable risk measures (5) are actually convex functions
of x. Indeed, the optimal value of the minimization LP problem
min{c’v: A v=b, v > 0} is subadditive with respect to the vectors
b. Hence, for any 0 < « < 1, one gets:

0(X) =min{c'v: Av=Bx, v >

0(ax’ + (1 — o)x”) = min{c’v: Av =0BX + (1 - o)BXx’, v > 0}
<min{c’v: Av=0oBX, v > 0} + min{c'v: Av= (1 - o)BX", v > 0}
= oe(X) + (1 - x)o(x")

which proves the convexity of o(x).

2.1. Risk and safety measures

The Markowitz model is frequently criticized as not consistent
with axiomatic models of preferences for choice under risk (Roths-
child & Stiglitz (1969)). The Markowitz model is not consistent
with the Second Degree Stochastic Dominance (SSD) since its effi-
cient set may contain portfolios characterized by a small risk but
also very low return (see Ogryczak & Ruszczynski (1999) and refer-
ences therein). Unfortunately, it is a common flaw of all Marko-
witz-type mean-risk models where risk is measured with some
dispersion measures. This can be illustrated by two portfolios x’
and x” (with rate of return given in percents):

o1 172, ¢=30
P R — Fl — ’ N ' [FD R " = = 1 2 = 50
{Re = c} {0, otherwise {Re =} 0/ ' f)therwise

where the risk free portfolio X’ with the guaranteed result 1.0 is
obviously worse than the risky portfolio x” giving 3.0 or 5.0. In all
preference models based on the risk aversion axioms (Artzner, Del-
baen, Eber, & Heath, 1999; Levy, 1992) portfolio X’ is dominated by
X", in particular Ry >=sspRy. On the other hand, when a dispersion
type risk measure g(x) is used, then both the portfolios are efficient
in the corresponding mean-risk model since for each such a mea-
sure o(x”) >0 while o(x') = 0.

In order to overcome this weakness of the Markowitz model al-
ready Yitzhaki (1982) while introducing the Gini’s mean difference
(GMD) model considered maximization of the safety measure
u(x) — I'(x) and demonstrated its SSD consistency. In the literature
some of the LP computable measures are dispersion type risk mea-
sures and some are safety measures, which, when embedded in an
optimization model, are maximized instead of being minimized (or
defined on losses instead of returns and then minimized like in
Rockafellar & Uryasev (2000)). We have shown (Mansini et al.,
2003a) that each risk measure g(x) has a well defined correspond-
ing safety measure pu(x) — o(x) and vice versa. Although the risk
measures are more “natural”, due to the consolidated familiarity
with Markowitz model, the safety measures, contrary to the dis-
persion type risk measures, are SSD consistent, in the sense that

= pX) - o(X) = ux") - o(x). (6)

Moreover, the LP computable safety measures we consider satisfy
axioms of the so-called coherent risk measurement of Artzner
et al. (1999) (with the sign change as shown in Mansini et al.
(2003a)). If the risk measure o(x) is SSD safety consistent (6), then
except for portfolios with identical values of p(x) and o(x), every
efficient solution of the bicriteria problem

max{[u(x), u(x) —e(X)]:  x€Q} (7)

is an SSD efficient portfolio.

Note that a portfolio dominated in the mean-risk model (1) is
also dominated in the corresponding mean-safety model (7).
Hence, the efficient portfolios of problem (7) form a subset of the
entire p/p-efficient set. We illustrate this in the p/g¢ image space
in Fig. 1. Due to the convexity of o(x) and linearity of u(x), the port-
folios x € Q form in the p/o image space a set with the convex
boundary from the side of p-axis (i.e., the set {(u,0): ©=u(x),
0 = 9(X), x € Q} is convex). This boundary represents a curve of
the relative minimum risk portfolios spanning from the best expec-
tation portfolio (BEP) to the worst expectation portfolio (WEP). The
minimum risk portfolio (MRP), defined as the solution of minkcq
o(x), limits the curve to the mean-risk efficient frontier from BEP
to MRP. Similar, the maximum safety portfolio (MSP), defined as
the solution of maxycq[u(Xx)— 0(x)], distinguishes a part of the
mean-risk efficient frontier, from BEP to MSP, which is also
mean-safety efficient. In the case of a SSD safety consistent risk

Ry =sspRy
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slope 1 BEP

MSP,

MRP 0

WEP

Fig. 1. The mean-risk analysis.

measure, this part of the efficient frontier represents portfolios
which are SSD efficient.

2.2. Handling bicriteria mean-risk problems

There are two ways of modeling risk averse preferences and
corresponding approaches to handle bicriteria mean-risk problem
(1): the bounding analysis and the trade-off analysis. The former
is a common approach based on the use of a specified lower bound
Uo on expected returns which results in the following problem:

WX) > [y, X€Q} 8)

This bounding approach provides a clear understanding of investor
preferences. One may use models with bounded risk instead of
bounded return:

min{o(X) :

max{{(x) :  Q(X) < Qo

xeQ} 9)

Due to convexity of risk measures o(x) with respect to Xx,
by solving the parametric problem (8) with changing
Mo € [Minj.y, . n M, Maxy, ., K] one gets various efficient
portfolios. Actually, for po smaller than the expected return of
the MRP, problem (8) generates always the MRP as the solution.
Larger values of po provide the parameterization of the
ujo-efficient frontier by generating efficient portfolios with
W(X) = po. Portfolios corresponding to larger values of bound ppo
exceeding the expected return of the MSP are also efficient
solutions to the corresponding mean-safety problem (7). However,
having a specified value of parameter iy one cannot know if the
optimal solution of (8) is also an efficient portfolio with respect
to the corresponding mean-safety model (7) or not. Therefore,
when using the bounding approach one should rather consider
explicitly a separate problem

max{u(x) —o(x):  U(X) > ty, X€Q} (10)

for the corresponding mean-safety model (7).

Another approach to implementation of the Markowitz-type
mean-risk model takes advantage of the efficient frontier convexity
to perform the trade-off analysis. Having assumed a trade-off coef-
ficient 4 between the risk and the mean, the so-called risk aversion
coefficient, one may directly compare real values p(x) — 29(x) and
find the best portfolio by solving the optimization problem:

max {u(X) —10X): xeQ.} (11)

Various positive values of parameter / allow the generation of var-
ious efficient portfolios. By solving problem (11) with changing 1 > 0

with a special parametric optimization procedures one can deter-
mine the whole frontier, without bothering to invoke an optimiza-
tion solver for many times. In the context of mean-variance model
the technique was introduced by Markowitz (1959) as the so-called
critical line approach. However, the increased computational power
makes such parametric optimization techniques not very attractive.

Due to convexity of risk measures ¢(x) with respect to x, 2>0
provide the parameterization of the entire set of the u/gp-efficient
portfolios (except of its two ends BEP and MRP which are the lim-
iting cases). Note that (1 — A)u(x) + A(u(x) — 9(X)) = u(x) — 10(X).
Hence, bounded trade-off 0 < /<1 in the Markowitz-type mean-
risk model (1) corresponds to the complete weighting parameter-
ization of the model (7). Opposite to the bounding approach, hav-
ing a specified value of parameter 2 one can immediately know if
the optimal solution of (11) is also an efficient portfolio with re-
spect to the mean-safety model (7) or not. Thus, the trade-off mod-
el (11) offers a universal tool covering both the standard mean-risk
and the corresponding mean-safety approaches. It provides easy
modeling of the risk aversion and control of the SSD efficiency.
Therefore, in our analysis we will focus on this specification of
the Markowitz-type mean-risk models.

An alternative specific approach looks for a risky portfolio offer-
ing the maximum increase of the mean return while comparing to
the risk-free investment opportunities. Namely, having given the
risk-free rate of return ry one seeks a risky portfolio x that maxi-
mizes the ratio (u(x) — ro)/o(x). This leads us to the following ratio
optimization problem:

JX) —To
max { 0® 9.

The optimal solution of problem (12) is usually called the tangency
portfolio or the market portfolio. Note that clear identification of disper-
sion type risk measures g(x) for all the LP computable performance
measures allows us to define tangency portfolio optimization for all
the models. For LP computable risk measures (5) the ratio model
(12) can be converted into an LP form (see Mansini et al. (2003a)).

er.} (12)

3. LP computable risk measures
3.1. Shortfall risk measures

The notion of risk is related to a possible failure of achieving
some targets. It was formalized by Roy (1952) as the so-called
safety-first strategies and later led to the concept of below-target
risk measures (Fishburn (1977)) or shortfall criteria. The simplest
shortfall criterion for a specific target value 7 is the mean below-
target deviation (first Lower Partial Moment, LPM)

5:(X) = E{max{T — Ry,0}}. (13)

The mean below-target deviation is LP computable for returns rep-
resented by their realizations as:

T n

d:(x) = min {Zdtpt cd; >t X, d; >0 fort= 1,...,T}4
=1 =

(14)

Actually, as shown in Ogryczak and Ruszczynski (1999), the SSD
relation is defined by pointwise comparison of functions:
FO (1) = [T Fx(&) d& = P{Rx < T}E{T — R¢|[Rx < T} = 3:(X). Hence,
the SSD relation is the Pareto dominance for mean below-target
deviations from infinite number (continuum) of targets.

The below-target deviations are very useful in investment situ-
ations with clearly defined minimum acceptable returns (e.g.
bankruptcy level, Fishburn (1977)). Otherwise, appropriate selec-
tion of the target value might be a difficult task while the model
is very sensitive to the target value changes as shown by Grootveld
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and Hallerbach (1999). A combination of mean below-target devi-
ations from a few targets was used in the Russel-Yasuda-Kasai
financial planning model (Carino, Myers, & Ziemba, 1998) to define
the corresponding risk measure. However, for portfolio optimiza-
tion they are rather rarely applied. Recently, the so-called Omega
Ratio measure defined for a given target as the ratio of the mean
over-target deviation by the mean below-target deviation has been
introduced by Shadwick and Keating (2002):

—Fx(9)) d¢
Jo Fx(&) d¢

Following Ogryczak and Ruszczynski (1999), one gets

_ E{max{R—17,0}} [~(1
© E{max{t — Ry,0}}

Q:(X)

Thus, Omega ratio maximization is equivalent to the standard ratio
(tangent portfolio) model (12) for the §,(x) measure with T repre-
senting the risk-free rate of return.

The below-target deviations do not represent any shift indepen-
dent dispersion type risk measure to be considered in the Marko-
witz-type mean-risk model. In particular, the below-target
deviation may be equal to O for various risky portfolios, thus violat-
ing the risk relevance requirement. When the mean expected re-
turn is used as a performance measure, then one should consider
the concept of shortfall applied to the mean as a target. This results
in the risk measure known as the downside mean semideviation
from the mean

5(%) = E{max{4u(x) — R, 0}} = F)(u(x)). (15)

The downside mean semideviation is always equal to the upside
one (cf. Speranza (1993) and Ogryczak & Ruszczyniski (1999)) and,
therefore, we refer it hereafter as to the mean semideviation. The
mean semideviation is a half of the mean absolute deviation from
the mean, i.e. §(x) = 25(x). Hence, the corresponding mean-risk
model is equivalent to the MAD model. For a discrete random var-
iable represented by its realizations, the mean semideviation (15) is
LP computable as:

T n
d(x) min{Zdtp[: di =Y (=10, d, >0 fort= 1,...,T}
t=1

=

(16)

As shown in Ogryczak and Ruszczynski (1999), the mean semi-
deviation is SSD safety consistent and the corresponding safety
measure can be expressed as

J%) — 3(%) = E{1(x) — max{((x) — Ry, 0}}
— E{min{Ry, 1(X)}}, (17)

thus representing the mean downside underachievement.

The MAD model introduced by Konno and Yamazaki (1991)
with a directly defined mean absolute deviation was not the first
LP portfolio optimization model. Nevertheless, it has drawn a lot
of attention resulting in much research and speeding up develop-
ment of other LP models. The MAD model was quite extensively
tested on various stock markets (Konno & Yamazaki, 1991; Man-
sini et al., 2003a; Xidonas, Mavrotas, & Psarras, 2010) including
its application to portfolios of mortgage-backed securities by Zen-
ios and Kang (1993) where distribution of rate of return is known
to be not symmetric. The MAD model usually, similar to the
Markowitz one, generated the portfolios with the largest returns
but also entailing the largest risk of underachievements. Certainly,
the MAD measure can be applied to multi-period problems of port-
folio management as demonstrated in Carino et al. (1998), Pflug
and Swietanowski (1999), and Sodhi (2005).

For a discrete random variable represented by its realizations y;,
the worst realization min,., 1y, is a well appealing safety mea-
sure, LP computable as

M(x):max{v: ngrjtxj fort:l,...,T}. (18)

=

The corresponding (dispersion) risk measure A(x)= u(x)— M(x),
the maximum (downside) semideviation, is LP computable as

A(x)min{v: v>i(uj—rﬂ)xj fortl,...,T}. (19)

=1

The measure M(x) was applied to portfolio optimization by Young
(1998) while the maximum semideviation was introduced in Ogryc-
zak (2000) and analyzed Kamil, Mustafa, and Ibrahim (2010).

A natural generalization of the measure M(x) is a measure de-
fined as the mean of the specified size (quantile) of worst realiza-
tions. This leads to the quantile shortfall risk measures related to
the so-called Absolute Lorenz Curves (ALC) (c.f., Shorrocks (1983),
Shalit & Yitzhaki (1994), Ogryczak (1999), & Ogryczak & Rus-
zczynski (2002a)) which represent the second quantile functions
defined as

p
FU2(p) = / Filiaydo forO<p<1 and FL?(0)=0, (20)
0

where F{ " (p) = inf {1 : Fx() > p} is the left-continuous inverse of
the cumulative distribution function F,. Actually, the pointwise
comparison of ALCs provides an alternative characterization of the
SSD relation Ogryczak and Ruszczynski (2002a) in the sense that
Ry =sspRy if and only if F$?(8) > F(,? (B) for all 0 < g < 1. The dual-
ity (conjugency) relation between F~2) and F? Ogryczak and Rus-
zczynski (2002a) leads to the following formula:

Fy? (p) = max [pn — F2'(n)] = max[pn — 5,(x)] 1)
ner neR

where 7 is a real variable taking the value of f-quantile Qg(x) at the

optimum.

For any real tolerance level 0 < < 1, the normalized value of the
ALC defined as My(x) = F{?(8)/8 is the Worst Conditional Expecta-
tion which is now commonly called the Conditional Value-at-Risk
(CVaR). This name was introduced by Rockafellar and Uryasev
(2000) who considered (similar to the Expected Shortfall by Em-
brechts, Kliippelberg, & Mikosch (1997)) the measure CVaR defined
as E {Ry|Ry < F{'V(p)} for continuous distributions showing that it
could then be expressed by a formula analogous to (21) and thus
be potentially LP computable. The approach has been further ex-
panded to general distributions in Rockafellar and Uryasev (2002).
For additional discussion of relations between various definitions
of the measures we refer to Ogryczak and Ruszczynski (2002b).

The CVaR measure is a safety measure according to our classifica-
tion (Mansini et al., 2003b). The corresponding risk measure Ag(-
X) = u(X) — My(x) is called the (worst) conditional semideviation
(Ogryczak & Ruszczynski, 2002b) or drawdown measure (Chekhlov,
Uryasev, & Zabarankin, 2005). Note that, for any 0 < g < 1, the CVaR
measures defined by F=2)(), opposite to below-target mean devia-
tions F2)(n), are risk relevant. They are also coherent as shown by
Pflug (2000) and SSD consistent as demonstrated by Ogryczak and
Ruszczynski (2002a). For a discrete random variable represented
by its realizations, due to (14), problem (21) becomes an LP. Thus

T n
M (x) = max {11 —%Zd;pr cdp =YK, d >0 fort= 1,.A.7T}A
=1 =
(22)

whereas the conditional semideviations may be computed as the
corresponding differences from the mean
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i n 1 T 7 7 n B
Ag(X) = min {Z,ujxj—n+EZdrp,: di > 0=y 1, d >0 fort:l,.,.,T}.
= = =
(23)

Following Rockafellar and Uryasev (2000), the CVaR models had
a great impact on new developments of risk measures in finance
during the first decade of 21st century. The measure was studied
in many applications Andersson, Mausser, Rosen, and Uryasev
(2001), Krokhmal, Palmquist, and Uryasev (2002), Roman, Darby-
Dowman, and Mitra (2007), Topaloglou, Vladimirou, and Zenios
(2002), Mansini et al. (2003a), and Consiglio and Staino (2012)
and expanded in various formats Acerbi (2002), Krzemienowski
(2009), Mansini, Ogryczak, and Speranza (2007). It is important
to notice that, although the quantile risk measures (VaR and CVaR)
were introduced in banking as extreme risk measures for small tol-
erance levels (like g = 0.05), for the portfolio optimization good re-
sults are usually shown by rather larger tolerance levels (Mansini
et al., 2007).

Actually, all the classical LP computable risk measures are well de-
fined characteristics of the Lorenz function (Ogryczak, 2000). However,
both the mean semideviation and the maximum semideviation are
rather rough measure when comparing to the Gini’s mean difference
(Shalit & Yitzhaki, 1989; Ringuest, Graves, & Case, 2004). Note that
the corresponding safety measure p((X) — I'(X) = E{Rx A Rx} expresses
the expectation of the minimum of two iid.r.v. Ry Yitzhaki (1982),
thus representing the mean worse return. This leads to the following
LP formula for the Gini’s mean difference

n T n T-1 T
rx) = min {zujx,- SISt 23 Y weenepe
j=1

=1 j=1 v=1t=t'+1

(24)

3.2. Enhanced risk measures

The most popular LP computable risk measures may be derived
from the shortfall criteria of SSD. They may be further extended to
enhance the risk aversion modeling capabilities. First of all, the
measures may be combined by the weighted sum which allows
the generation of various mixed measures.

In particular, one may build a multiple CVaR measure by con-
sidering, say m, tolerance levels 0 < 8; < B <--- < B, <1 and using
weighted sum of the conditional semideviations A4 (X) as a new
risk measure

m

m
AL X) =Y Wi dp (x), > wi=1, w,>0 fork=1,...,m,
k=1

=1
(25)
with the corresponding safety measure
m
M) (X) = p(X) — 430 (X) = > wiMp (). (26)
k=1

The resulting Weighted CVaR (WCVaR) models Mansini et al. (2007)
use multiple CVaR measures thus allowing for more detailed risk
aversion modeling. The WCVaR risk measure is obviously LP com-
putable as

n m T
A (x) = min {Z,ujxj > wi <11,( - /}—kdetpt> s dy, >0,
=1 =1 =1

d ==Y i fort=1,... Tik=1,...,m}.

=

27)

For appropriately defined weights the WCVaR measures may be
considered some approximations to the Gini’'s mean difference
with the advantage of being computationally much simpler than
the GMD model itself. We analyzed the WCVaR measures defined
as simple combinations of a very few CVaR measures (Mansini
et al., 2007). There were introduced two specific types of weight-
settings which related the WCVaR measure to the Gini’s mean dif-
ference (the Wide WCVaR) and its tail version (the Tail WCVaR).
This allowed us to use a few tolerance levels as only parameters
specifying the entire WCVaR measures while the corresponding
weights are automatically predefined by the requirements of the
corresponding Gini’s measures. Our experimental analysis of the
models performance on the real-life data from the Milan Stock Ex-
change confirmed their attractiveness (Mansini et al., 2007), as the
WCVaR models usually performed better than the GMD, the Mini-
max or the extremal CVaR models.

The risk measures introduced in the previous section, although
all derived from the SSD shortfall criteria, are quite different in
modeling the downside risk aversion. Definitely, the strongest in
this respect is the maximum semideviation 4(x) while the condi-
tional semideviation 4x) (CVaR model) allows us to extend the
approach to a specified g quantile of the worst returns which re-
sults in a continuum of models evolving from the strongest down-
side risk aversion (f close to 0) to the complete risk neutrality
(B=1). The mean (downside) semideviation from the mean, used
in the MAD model, is formally a downside risk measure. However,
due to the symmetry of mean semideviations from the mean (Sper-
anza, 1993; Ogryczak & Ruszczynski, 1999), it is equally appropri-
ate to interpret it as a measure of the upside risk. Similar, the Gini’s
mean difference, although related to all the conditional maximum
semideviations, is a symmetric risk measure (in the sense that for
Ry and —Ry it has exactly the same value). For better modeling of
the risk averse preferences one may enhance the below-mean
downside risk aversion in various measures. The below-mean risk
downside aversion is a concept of risk aversion assuming that the
variability of returns above the mean should not be penalized since
the investors are concerned about an underperformance rather
than the overperformance of a portfolio (Markowitz, 1959). This
can be implemented by focusing on the distribution of downside
underachievements min{Ry, y(x)} instead of the original distribution
of returns Ry.

Applying the mean semideviation (15) to the distribution of
downside underachievements min{Ry, ;(x)} one gets

02 (X) = E{max{F{min{Ry, (X)}} — Rx,0}}
= F{max{u(x) — 6(x) — Ry, 0}}.

This allows us to define the enhanced risk measure for the original
distribution of returns Ry as 0@ (X) = 6(X) + 6,(x) with the corre-
sponding safety measure p(x) — 5% (x) = u(x) — 6(X) — 5»(x). As
shown in Michalowski and Ogryczak (2001) the above approach
can be repeated recursively resulting in m (defined recursively) dis-
tribution dependent targets p1(X) = ((X), w,(X) = E{min{Rx, 14,(X)}}
for k=1,...,m and the corresponding mean semideviations
01(X) = 8(X), 0x(X) = E{max{u, (X) — Rx,0}} for k=1,...,m.

>Wp>0 (28)

is SSD consistent measure of the m-MAD model (Michalowski &
Ogryczak, 2001). Actually, the measure can be interpreted as a sin-
gle mean semideviation (from the mean) applied with a penalty
function: 54" (x) = E{u(max{u(X) — Ry,0})} where u is increasing
and convex piece-wise linear penalty function with breakpoints
br = u(x) — u(x) and slopes sy=wq+---+wy, k=1,...,m. There-
fore, the measure 5" (x) is referred to as the mean penalized
semideviation
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m T
59 (x) = min {Zwkzk tze— Y pd =0, dy >0,
k=1 t=1

n k-1
de = (W—1i)x—> z fort=1,....T; k:l,...,m}.

=1 i-1

(29)

The Gini's mean difference is a symmetric measure, thus equally
treating both under and overachievements. The enhancement tech-
nique allows us to define the downside Gini’s mean difference by
applying the Gini’s mean difference to the distribution of downside
underachievements min {Ry, u(x)} (Krzemienowski & Ogryczak,
2005). The downside Gini’s safety measure takes the form:

fu(x) — I (%) = E{min{Re A Ry, t(X)}} (30)

which is SSD safety consistent (Krzemienowski & Ogryczak, 2005)
and obviously LP computable.

The LP computable risk measures are based on exactly known
distribution of returns in terms of realizations and probabilities
for several scenarios. Robust variants of the measures have been
recently considered where the underlying distribution is only
known to belong to a certain set P. Zhu and Fukushima (2009) de-
fined such a robust version of CVaR: the Worst-Case CVaR (WCC-
VaR). They showed that its maximization remains LP tractable
under box uncertainty. Generally, such robust versions can be built
for various risk criteria (see Thiele (2008)) leading to LP models
while applied to LP computable measures. Actually, as shown by
Ogryczak for box uncertainty the robust model of the mean is
essentially a CVaR, and also the robust model of the CVaR itself is
a CVaR with appropriately redefined probabilities while robust
MAD model is a nested CVaR measure (Ogryczak, in press). Till
now there are no reported portfolio optimization applications of
LP computable robust risk measures.

3.3. The LP models

As shown in the previous sections several LP computable risk
measures have been considered for portfolio optimization. Some
of them were originally introduced rather as the safety measure
in our classification (e.g., CVaR measures). Nevertheless, all of them
can be represented with positively homogeneous and shift inde-
pendent risk measures ¢ of classical Markowitz type models. Sim-
ple as well as more complicated LP computable risk measures g(x)
can be defined by (5), i.e. as

o(x)=min{c'v: Av=Bx, v >0}, xcQ, (31)

where v is a vector of auxiliary variables while the portfolio vector x
apart from original portfolio constraints x € Q only defines a para-
metric vector b = Bx. Obviously, the corresponding safety measures
are given by a similar LP formula

UX) — 0(X) = max{z,ujxj —c'v: Av=Bx v> 0}, xeQ.
-1

(32)

Table 1 summarizes the major measures with the sizes of the
corresponding LP problems (31) in terms of number of auxiliary
variables and constraints (matrix A dimensionality).

One may notice the number of auxiliary variables and con-
straints used in the MAD model is equal to the number of scenario.
Similar size (with one more variable) has the LP model for the CVaR
measures while the Minimax model requires only one auxiliary
variable. The GMD model is much more complex with number of
auxiliary variables and constraints proportional to T2. The multiple
level MAD and CVaR models (m-MAD and WCVaR, respectively)

multiply the number of auxiliary variables and constraints by the
number of levels. Thus, replacing the GMD with its WCVaR approx-
imation based on a few levels may dramatically reduce the LP
problem complexity (see Table 1).

For each type of model, the mean-risk bounding approach (8)
leads to the LP problem

rgi{n{ch; Av=Bx, v > 0, ;,ujxj > Uy, X € Q}, (33)
while the mean-safety bounding approach (10) results in

n n
n)l‘ax{z,ujxj —c'v: AV=BX, V>0, Y 1x > Iy, X€ Q}.
A =
(34)

Thus, both the LP models extend the basic LP risk model (31) only
with one inequality and the explicit portfolio variables and con-
straints of x € Q. Similarly, the trade-off analysis approach (11) re-
sults in LP model

mx%x{z,ujxj —ic'v: Av=Bx, v> 0, xe Q}, (35)

=

extending the basic one with only the explicit portfolio variables
and constraints of x € Q.

As mentioned, an alternative approach to bicriteria mean-risk
problem of portfolio selection depends on search for the tangency
portfolio which maximizes the ratio u(x)— ro/o(x). The corre-
sponding ratio optimization problem (12) can be converted into
an LP form by the following transformation (Mansini et al.,
2003a): introduce an auxiliary variable z=1/g(x), then replace
the original variables x and v with X = zx and v = zv, respectively,
getting the linear criterion and an LP feasible set. For risk measure
o defined by (31) one gets the following LP formulation of the cor-
responding ratio model

n
m_ax{ZMjij oz €V =z AV=BX V>0,
X\ v,z _}:

X (36)
dX=2z%>0 forjl,...,n},
=

where the second line constraints correspond to the simplest defi-
nition of set Q = {x:ZJ’;Ixj =1,x>0Vj=1,...,n} and can be
accordingly formulated for any other LP set. Once the transformed
problem is solved, the values of the portfolio variables x; can be
found by dividing X; by the optimal value of z.

4. Portfolio optimization with real features

We call real features all the additional characteristics an investor
may wish to consider when selecting a portfolio of securities or is
obliged to include as practical restrictions reflecting common

Table 1
LP computable risk measures.
Risk measure ¢ (X) Auxiliary
Variables Constraints
MAD model 3(x) (15) T T
Minimax model A(X) (19) 1 T
CVaR model Ay(X) (23) T+1 T
GMD model Ir(x) (24) TT-1))2 T(T—-1)
m-MAD model 5 (x) (29) m(T+1) m(T+1)
WCVaR model A<m>(x) (27) m(T+1) mT
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Table 2
Sample mean/risk outcomes.

Model Portfolio (1,0) Portfolio (1,1)

Return  Risk Return Risk
RM b+l j=(b+1-b)} b+}  J=(@b+4-1b+3)}
AM (b+1)a §=(b+1-b)§ (2b+4)a §=((2b+4)—(2b+3))4
RCM  I(b+1) f=(b+1-b§ 12b+4) i=(3(2b+4)-1(2b+3))]

financial market conditions. Real features may include, for exam-
ple, transaction lots, transaction costs, buy-in threshold on invest-
ments or number of securities.

The objective of this section is twofold. We first introduce the
concepts of relative and absolute models. In fact, the modeling of
some real features is possible by using as decision variables the
security shares (percentages). We call the models based on shares
relative models and the investment variables relative. In several
cases, however, the introduction of real features implies the need
of variables that represent the absolute values of the capital in-
vested in each security. We call this second type of models absolute
models and the investment variables absolute. Then, we show how
the introduction of real features modifies the portfolio optimiza-
tion model and review main contributions in the literature dealing
with portfolio real features.

4.1. Relative and absolute models

We define available capital the total amount of money that is
available to the investor, both for the investment in securities
and possible additional costs. In general, part of this money may
also be left uninvested. The invested capital is the capital strictly
used for the investment and that yields a return.

More frequently in portfolio models, the invested capital coin-
cides with the available capital. In this case the capital is treated
as a constant parameter C, and possibly normalized to 1 in the case
of relative models. This leads to relative models (RM), as presented
in earlier section, with general structure as follows:

RM: max z-29(X) (37)
n
2= "ux; (38)
j=1
> xi=1 (39)
j=1
0<x<1 j=1,....n, (40)

with decision variables x; expressing the shares of invested capital.

While taking into account real feature it may be in some cases
necessary to define absolute investments in securities (the in-
vested amounts), e.g. to calculate transaction costs or meet lots
size requirements. In order to clearly distinguish the absolute vari-
ables from the relative variables we denote the former with capital
letters X. In the case of constant invested capital C, absolute values
can easily be defined by a linear transformation X; = Cx;. Actually,
when real features are considered, while the available capital is al-
ways a constant, the invested capital depends on investment
opportunities (restrictions), transaction costs, etc., and it must be
rather treated as a problem variable (we denote it as C). The same
applies to any dynamic portfolio optimization models (portfolio
rebalancing problems) where the amount of capital depends also
on earlier returns. The introduction of the invested capital as a var-
iable causes the use of the quadratic expression Cx; to represent the
absolute investment in security j, j € J.

There are two ways to avoid the quadratic expressions Cx; in an
optimization model. The simplest approach depends on directly

dealing with absolute values instead of shares thus leading to the
so-called absolute model (AM). For the sake of simplicity, we do
not constrain the X variables to a set of linear constraints corre-
sponding to the set Q that we have introduced for the relative mod-
els. Instead, we explicitly write the main linear constraints needed
for the definition of a feasible portfolio. The trade-off model (11)
formulated as an absolute model takes the following form:

AM: maxZ — 9(X) (41)
n
7= Z/.lej (42)
=1
Y Xi=C (43)
=1
Xj=0 forj=1,...,n (44)

where Z is the expected amount of the portfolio return and o(X) is
the risk of the portfolio X computed on returns as absolute values.
The capital C must be obviously in some manner related with the
available capital and/or some functions of decision variables. In
the literature, the capital availability is frequently constrained
through an upper and possibly a lower bound on the variable C:

C<C<Cy. (45)

Upper bound inequality (45) can be reformulated to take into ac-
count an explicit amount Xy of uninvested capital, thus eliminating
the variable C and leading to the following balance equation:

n
Xo + ZX] = fu. (46)
j=1

In practical implementations X, may cover both the transaction
costs and the possible money left uninvested. However, in the lit-
erature such a reformulation of the absolute model is not used.

Alternatively, to avoid the quadratic expressions Cx;, one may
consider shares as the amounts invested relatively to the capital
available Cy rather than to the capital invested C, leading to the fol-
lowing relative to constant model (RCM):

RCM: max z - 79(X) (47)
n
2= 3 1y 48)
=1
n
> x< (49)
j=1
C= gusz (50)
=1
0<x<1 j=1,...,n (51)

The invested amounts corresponding to the shares x; are now avail-
able as quantities Cyx; and the model has linear constraints. Again,
the model can be reformulated to take into account an explicit share
Xo of uninvested capital, thus standardizing the balance constraint
(49) to the following:

n
Xo+» %=1 (52)
j=1

Similarly to the absolute model, xo may cover both the transaction
costs and the possible money left uninvested in practical
implementations.

Both AM and RCM models are consistent with the correspond-
ing bicriteria mean/risk (Markowitz-type) dominance. They are
equivalent in the sense that they apply the same returns to both
risk (safety) measure and mean criterion. The are linearly trans-
formable when balanced with constraints (46) and (52), respec-
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tively. However, in the literature they are considered separately
and, in some cases, they may lead to different results. The selected
trade-off coefficient A may 'push’ the value of the invested capital
towards the lower or the upper bound. Actually, the trade-off opti-
mization supports increase of the invested capital (if profitable).
The other classical mean-risk bounding approach may lead to
unjustified limitation of the invested capital. We illustrate this
with the following example.

Example Let us consider C; = a while the capital to invest is
equal to 2a (Cy = 2a). The set of alternatives consists of two secu-
rities. Security 1 has a minimum lot value of ¢; = a and return equal
to r11=b, ri2=b+2 with y; =b+1. Security 2 is risk free with
C2=a,T1=b+3,1m2=b+3 and u, =b+3. A current portfolio con-
sists of one lot for security 1 and zero lot for security 2. Hence, it is
defined by X] = a and X; = 0 in absolute model AM, by x; = 1 and
x{ =0in RM and by x] = 0.5 and x] = 0 in RCM. Suppose that this
initial portfolio can be expanded (still keeping security 1) by
including one lot of security 2. Expanded portfolio will be equal
to X] =a and X =a in AM, x{ =0.5 and X =0.5 in RM and
RCM. Table 2 provides the outcomes mean returns and risk values
measured by the mean semideviation. In terms of preferences un-
der risk the expanded portfolio is obviously much better than the
original one. One may easily notice that all the models recognize
improvement (higher expected return) while expanding the initial
portfolio. However, only RM model shows also an improvement of
the risk value (lower relative risk) while in AM and RCM models
risk values do not change.

4.2. Modeling real features

In this section we discuss the main portfolio real features and
their introduction in the portfolio optimization models specifying
when the use of absolute or relative variables is required. Main
contributions on portfolio problems with real features are also pro-
vided and classified.

Some real features can be incorporated in both absolute and rel-
ative portfolio optimization models, whereas some others require
the use of absolute variables. To discuss how some of these fea-
tures can be incorporated in a portfolio optimization model we
need additional binary variables z, one for each security j,
j=1,...,n. Variable z; will be equal to 1 when security j is selected
in the portfolio, and to 0 otherwise. In some optimization models,
z; behavior is enforced by means of the linear constraint z; > x; if
the model is relative and by Cz > X; if absolute. Note, however,
that these conditions let variable z; free to take value 1 when x;
(X;) is zero. While it is possible to prove that if x; =0 (X; = 0), then
an optimal solution with z; = 0 always exists, in practice the intro-
duction of these binary variables is usually associated with invest-
ment threshold constraints as ljz; < X; < u;z; if the model is relative,
and Lz; < X; < Ug; if absolute, where u;=1 and U; = C.

Main real features for portfolio selection problems can be clas-
sified as follows:

1. Transaction costs In real financial markets transaction costs are
entailed by purchases and sales of securities and are paid both
in case of portfolio revision and in case of buy and hold invest-
ments. Transaction costs have a direct impact on portfolio per-
formance so that ignoring them may result in inefficient
portfolios (see Arnott & Wagner (1990)). Transaction costs
may be fixed or variable.

While variable transaction costs render individual securities
less attractive but do not inhibit portfolio diversification, fixed
transaction costs provide an explanation for reduced portfolio
size. This is especially true for individual investors who, thanks
to on-line trading services (see Baumann & Trautmann, in
press), access the stock market and typically seek for the num-

ber of securities that optimally trades-off diversification against
(fixed) transaction costs. On the contrary, for large institutional
investors the amount of transaction costs may be practically
meaningless with respect to the huge capital invested. Before
the pioneering work by Patel and Subrahmanyam (1982) where
fixed costs have been explicitly modeled in a mean variance
portfolio problem with absolute variables, the fixed transaction
costs were analyzed only indirectly by placing restrictions on
the number of securities in the optimal portfolio (see, for
instance, Levy (1978)).
1.1 Variable costs These transaction costs depend on the
amount or on the share invested in each security.
If cost is proportional, the models (AM) and (RM) can eas-
ily be adapted to incorporate such a cost by subtracting it
from g in the return constraint (42) and (38), respectively.
In some cases, variable costs might be incurred only if cap-
ital invested overcomes a given amount. More precisely,
non overlapping intervals are specified and a different cost
percentage is applied depending on the interval in which
the capital invested lies. This is the case of the entering
commissions for mutual funds where the applied rates typ-
ically decrease when the capital invested increases (see Chi-
odi, Mansini, & Speranza (2003)). A structure with step
increasing transaction costs can be found in Le Thi, Moeini,
and Pham Dinh (2009). To model this feature we need to
introduce a binary variables z; for each security j and each
interval of investment (and rate) i and to add a number of
constraints depending on the number of securities and of
intervals, i.e. M;_;z; < Xjj < Mz and >,z < 1, where Xj;
is the amount invested for security j in interval i, M;_; ;M
are capital lower and upper bound for interval i, and I is
the set of intervals. This feature can be similarly incorpo-
rated in a relative model (RM) provided that transaction
costs are inserted only in return constraint.
In fact, if costs are charged independently for each security
and thus the total cost is the sum, over all securities, of a
cost that depends on the amount of investment in each
security, then the total capital invested (actually invested
in securities and used to pay costs by an individual investor)
cannot be assumed as known a priori and depend on the
portfolio.
Recalling the discussion of Section 4.1 about the cases
where the capital invested is variable, we need to adapt to
this case constraint (45), where C is a variable of the model.
Let Kj(-) be the transaction cost function for security j. Then,
the constraint
- in absolute models

C < C+) Ki(X) < Cu, (53)
j=1
- in relative models

n
C<C+) Ki(Cx) <Gy (54)

j=1

needs to be added. Notice that (54) introduces a quadratic
expression into the relative model. Moreover, in general,
Kj(-) might be a non linear function of the investment
(see, for instance, Konno & Wijayanayake (2001) where
the authors analyze a concave transaction cost for each
security).

1.2 Fixed costs Fixed costs are odd-lot commissions and/or
lump taxes. A fixed cost f is applied to each security j if
selected in the portfolio (variable z;=1) or may
be incurred if the security investment exceeds a given
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threshold (see, for instance, Kellerer et al. (2000)). In the latter
case variable z; is forced to 1 if amount invested in security j is
larger than a given amount M;, ie. z; > (X; — M;)/C, and 0
otherwise.

In the literature, fixed and variables costs have been
mainly dealt with in absolute models (see Table 3). In
all these contributions but few exceptions, transaction
costs are assumed to be incurred at the end of the period
and therefore globally deducted from the portfolio return.
In the past only Young in Young (1998) when dealing
with transactions costs as possible real extension of his
linear minimax model, inserts them also in the capital
constraint. More recently, Woodside-Oriakhi, Lucas, and
Beasley (2013) bounded transaction costs in a separated
constraint.

2. Transaction lots (rounds) A transaction lot, also called round, is
a minimum transaction unit required to invest in a security.
These constraints are common trading requirements implying
that the investment in a security has to be expressed as a
multiple of a transaction lot. Angelelli, Mansini, and Speranza
(2008) show that ignoring transaction lots may result in
selecting infeasible portfolios. More precisely, they prove that,
in general, the set of securities selected by the optimal solu-
tion of an LP model considering transaction lots may not be
included in the set of securities selected by its continuous
relaxation.

Table 3
State of the art on portfolio selection problems with real features.

Let ¢; represent the monetary value of the transaction lot for
security j and let w; be the variable representing the number
of lots of security j in the portfolio

w; >0  integer.

Then, the transaction lots can be modeled as follows:
e in absolute models

Xj = w;, (35)
e in relative models
CXj = Cjo. (56)

Applying transaction lot constraints, it may not be possible to
exactly satisfy the budget requirement, thus budget is a variable
C ranging in the interval [C;, Cy]. Note that constraint (56) intro-
duces a nonlinear relation into relative models.

Many contributions are available in the literature on portfolio
selection problems including transaction lots either in absolute
and in relative models. For instance, absolute models that include
transaction lots are presented in Mansini and Speranza (1999) and
in Kellerer et al. (2000), whereas Streichert, Ulmer, and Zell (2004)
introduce transaction lots into a relative mean-variance model. In
Chang, Meade, Beasley, and Sharaia (2000) transaction lots are only
mentioned. In Jobst, Horniman, Lucas, and Mitra (2001) the cash
value of each transaction lot is expressed as a fraction of the port-

Relative models

Absolute models

Bertsimas et al. (1999),
Konno and Wijayanayake (2001),
Xue et al. (2006), Bertsimas and Shioda (2009),

Variable costs

Krejic et al. (2011), Woodside-Oriakhi et al. (2013)

Woodside-Oriakhi et al. (2013),
Baumann and Trautmann (in press)

Fixed costs

Transaction lots

Bartholomew-Biggs and Kane (2009),
Chang et al. (2009),
Baumann and Trautmann (in press)

Cardinality constraint Liu and Stefek (1995), Lee and Mitchell (1997),

Sankaran and Patil (1999), Streichert et al. (2004),

Chang et al. (2000), Crama and Schyns (2003),

Jobst et al. (2001), Mitra et al. (2003), Streichert et al. (2004),
Lin and Liu (2008), Bonami and Lejeune (2009),

Young (1998), Speranza (1996),

Mansini and Speranza (1999), Kellerer et al. (2000),
Lobo et al. (2007), Chiodi et al. (2003),

Mansini and Speranza (2005), Konno et al. (2005),
Konno and Yamamoto (2005), Li et al. (2006),

Best and Hlouskova (2005), Angelelli et al. (2008),
Guastaroba et al. (2009a), Le Thi et al. (2009),
Baule (2010), Angelelli et al. (2012)

Patel and Subrahmanyam (1982), Speranza (1996),
Young (1998), Kellerer et al. (2000),

Chiodi et al. (2003), Mansini and Speranza (2005),
Angelelli et al. (2008), Guastaroba et al. (2009a),
Baule (2010), Angelelli et al. (2012)

Konno and Yamazaki (1991), Syam (1998),
Mansini and Speranza (1999), Chiodi et al. (2003),
Kellerer et al. (2000), Gilli and Kéllezi (2002),
Mansini and Speranza (2005), Li et al. (2006),
Angelelli et al. (2008), Angelelli et al. (2012)

Bienstock (1996), Speranza (1996),
Gilli and Kéllezi (2002), Li et al. (2006),
Angelelli et al. (2008), Angelelli et al. (2012)

Jobst et al. (2001), Maringer and Kellerer (2003), Mitra et al. (2003),
Fieldsend et al. (2004), Fernandez and Gémez (2007),

Bertsimas and Shioda (2009), Chang et al. (2009),

Anagnostopoulos and Mamanis (2010),
Anagnostopoulos and Mamanis (2011),
Xidonas et al. (2010), Xidonas et al. (2010),
Kumar et al. (2010), Xidonas et al. (2011),
Baumann and Trautmann (in press)

Wang et al. (2012), Woodside-Oriakhi et al. (2013)
Chang et al. (2000), Konno and Wijayanayake (2001), Mitra et al. (2003),

Investment threshold
Xue et al. (2006), Mansini et al. (2007),
Bonami and Lejeune (2009),
Bartholomew-Biggs and Kane (2009),
Anagnostopoulos and Mamanis (2010),
Baumann and Trautmann (in press)

Xidonas et al. (2010), Xidonas et al. (2010)
Xidonas et al. (2011)

Dependency constraints

Syam (1998), Mansini and Speranza (1999),
Young (1998), Gilli and Kéllezi (2002)

Konno and Yamamoto (2005),

Konno et al. (2005), Best and Hlouskova (2005),
Li et al. (2006), Le Thi et al. (2009)

Syam (1998), Young (1998)
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folio wealth so that the portfolio weights are defined in terms of
such fractions and the integer number of lots. Budget constraint
is made ‘elastic’ using undershoot and overshoot variables, €~
and €*, respectively, which are penalized in the objective function
with a high cost, 7. In an optimum solution €~ and €* are made as
small as possible so that the fractional holdings x; sum to a value as

close as possible to 1.

3. Cardinality constraint One basic implication of modern portfolio
theory is that investors hold well diversified portfolios. How-
ever, there is empirical evidence that individual investors typi-
cally hold only a small number of securities. Market
imperfections such as fixed transaction costs provide one of
the possible explanations for the selection of undiversified port-
folios (see Wilding (2003)), but frequently the need to avoid
costs of monitoring and of portfolio re-weighting leads inves-
tors to the common practice of limiting the number of securities
(portfolio cardinality) that can be selected in a portfolio.
Cardinality constraint can be expressed either as a strict equal-
ity or as an inequality imposing that the number of selected
securities cannot be larger than a predefined number k

sz < k./ (57)
=

and is usually associated with threshold constraints to cor-
rectly enforce the value of binary variables.

Many works both on mean variance approach and on linear
risk/safety measures have been presented in the literature
dealing with cardinality constraint portfolio optimization. In
Chang et al. (2000) the authors extend the relative mean-
variance model to include the cardinality constraint. The
same model was previously studied by Bienstock (1996).
Mean-variance models with the cardinality constraint are
presented in Jobst et al. (2001) and Liu and Stefek (1995),
in Lee and Mitchell (1997), in Li, Sun, and Wang (2006), in
Fieldsend, Matatko, and Peng (2004) and many others (see
Table 3). All these models are relative. Linear models includ-
ing cardinality constraint are proposed by Speranza (1996)
and by Angelelli et al. (2008), Angelelli, Mansini, and Sper-
anza (2012) and are all absolute models. In Sankaran and
Patil (1999) Sankaran and Patil introduce the cardinality con-
straint into an absolute model. Finally, in Anagnostopoulos
and Mamanis (2010) cardinality constraint is directly mini-
mized as an objective function.

4, Investment threshold constraints These constraints define lower
and upper limits on the proportion/amount of each asset held
in the portfolio. They may model institutional restrictions on
the composition of the portfolio and usually are used to rule
out negligible holdings of asset in the portfolio, thus making
its control easier.

If the constraint is on a single security it is commonly formu-
lated as:

<X <y (58)

in relative models, and as
L <X <U; (59)

in absolute models, where [; (y;) and L; (U;) are the lower (upper)
bounds on the investment in security j, the former expressed in per-
centage, the latter in amount of capital. When such constraints are
generalized to all the securities they are modeled using binary vari-
ables.

In general, it may happen that a single security or a little diversified
portfolio is SSD dominating over all other (more diversified) portfo-

lios, and the SSD consistent Markowitz-type models will select such
an undiversified solution. Especially, the SSD consistent models
based on the LP computable risk measures may fail to generate suf-
ficiently diversified portfolios. Therefore, additional restrictions
may be set on the feasible portfolios to guarantee the required
diversification. The simplest way to enforce portfolio diversification
is to limit the maximum share as in (58) and (59). This, however,
may result in a portfolio with a few equal shares depending on
the value set to the maximum share. A better modeling alternative
would be to allow for a relatively large maximum share provided
that the other shares are smaller. Such a rich diversification scheme
may be introduced with the CVaR constructs applied to the right tail
of the distribution of shares (see Mansini et al. (2007) for a detail
description). In particular, any model under consideration can easily
be extended with direct diversification constraints specified as
follows:

S

n

S S .

ks + Y di; < 7, and diy <X — s, dy; > 0 j
=

=1,....n, (60)

where s, is an unbounded variable (representing the kth largest
share at the optimum), dij are additional nonnegative (deviational)
variables, and 7, is the upper bound on the total of the k largest
shares.

Finally, a lower and an upper bound on the investment may also re-
fer to a set of securities instead than to a single one (class con-
straints). These are typical sector/industry constraints (see Chang
et al. (2000) where they are only modeled and Anagnostopoulos &
Mamanis (2010)). Let G, be a set of securities of the same sector s.
A class constraint is, in relative models, formulated as follows:

<) % <us, (61)

JjeGs

where [ and ug are lower and upper bounds expressed as percent-

age on the total unitary investment available for securities belong-

ing to sector s. Similarly, in the case of absolute models, with the X’s

instead of the x’s and the constants that represent amounts.

It is worth noticing that all references reported in Table 3 for cardi-

nality constraints and fixed costs also include threshold constraints

typically used to enforce binary variables z; value. Thus, threshold
bounds only refer to contributions where lower and upper bounds
are the only real feature introduced or where investment bounds

(especially upper bounds) are modeled without the use of binary

variables.

5. Decision dependency constraints Decision dependency require-
ments are common in financial dealings. To be correctly mod-
eled, they need the binary variables z; already described.
Usually they take one of the following forms:

Both securities i and j have to belong to the portfolio if security
k is selected (joint investment):

zZit+z; = 2zy. (62)

Stock i cannot be selected if security j is in the portfolio (mutu-
ally exclusive investment):

zi+z <1 (63)

Security i can be selected only if security j is in the portfolio (contin-
gent investment):

zi < zj. (64)

Combinations of these conditions are also possible, resulting in
more complex relationships. These investment restrictions can be
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an essential part of a diversification strategy for investing in, for in-
stance, a mutual fund.

An early study that incorporated some of these conditions is by
Weingartner (1963). Examples of such kind of constraints can also
be found in Syam (1998) and Young (1998), where the author men-
tions them without any experimental application.

In Table 3 we summarize the main contributions available in
the literature on portfolio selection problems with real features.
We classify them according to the real features considered and
for the type of model (relative or absolute) in which real features
have been inserted. References are sorted by year of publication.

5. Solution algorithms and computational issues

In the last years developments in portfolio optimization have
been especially stimulated by efficiency issues, i.e. by the capabil-
ity to handle in an efficient manner portfolios with a large number
of securities and scenarios and possibly including real features.

Without real features, also a quadratic mean-variance model
can be readily solvable using a standard quadratic programming
solver, and methods available are quite competitive also with re-
spect to linear models. Indeed computational issues may still arise,
but only for problems of very large size and when solutions are
needed quickly. On the contrary the introduction of real features
when requiring integer and/or binary variables may increase prob-
lem complexity significantly, and the gap between linear and qua-
dratic models solution efficiency and effectiveness may become
relevant. We will devote a part of this section to the analysis of
solution algorithms for portfolio optimization with real features
dividing them in exact and heuristic approaches. The focus will
be on methods proposed for solving mixed integer linear program-
ming portfolio problems, but main references on solution algo-
rithms for the mean-variance model with real features will also
be surveyed.

Another important computational issue on portfolio optimiza-
tion is related to the solution of very large size problems including
a high number of securities/stocks and scenarios. LP models have a
number of constraints proportional to the number of scenarios,
whereas the number of variables is proportional to the total of
the number of scenarios and of instruments (see Table 1). They
can be solved effectively with general purpose LP solvers provided
that the number of scenarios is limited. In real-life contexts, finan-
cial decisions are usually based on simulation models employed for
scenario generation where one may have several thousands of
scenarios. This may lead to the solution of LP models with huge
number of variables and constraints, thus decreasing their compu-
tational efficiency and making them hardly solvable by general LP
tools. A part of this section will discuss recent results from the
literature showing how computational efficiency in solving huge
LP portfolio problems can be addressed.

5.1. Exact and heuristic solution algorithms

Nowadays, computationally effective algorithms for the exact
solution of nonconvex quadratic programming in which the feasi-
ble region is a mixed-integer set do not exist, and until recently
there has been relatively little work presented in the literature
on this subject. Thus, while most of the solution methodologies
that tackle discrete features in portfolio selection with mean-var-
iance formulation are heuristic in nature, the computational chal-
lenge of solving large real portfolio problems has justified an
increasing interest for mixed integer LP portfolio models and for
both their exact and heuristic solutions. We recall that finding a
feasible solution for the portfolio selection problem with minimum

transaction lots and for the portfolio selection problem with fixed
costs have been proved to be NP-complete problems (see Mansini
& Speranza (1999) and Kellerer et al. (2000), respectively).

In the following we will analyze the main solution algorithms
proposed in the literature for LP models classifying them according
to their nature in heuristic and exact solution approaches. Even if
the main focus is on mixed integer linear programming models,
we briefly survey also main solution methods for the mean-vari-
ance model with real features. Table 4 report references of exact
algorithms and Table 5 of heuristic methods. References are sorted
by year of publication.

5.1.1. Heuristic methods

A major advantage of modeling a problem as a mixed integer
linear programming problem is that, if the problem is of small size,
it can be solved by a standard (general purpose) MILP solver. How-
ever, if the problem is of medium or large size (as for portfolio
problems) the continuous relaxation of the MILP problem may con-
vey useful information for its solution. Indeed, almost all the heu-
ristics proposed in the literature for MILP portfolio problems use as
starting point the optimal solution of the continuous relaxation
either to get a feasible solution through some rounding procedure
or to “measure” the likelihood of a variable to be in the optimal
solution (i.e., to take a positive value in the optimal solution of
the MILP problem).

Speranza (1996) analyzes a portfolio problem based on mean
absolute semideviation including minimum transaction lots, fixed
and proportional transaction costs. An intuitive rounding proce-
dure of the continuous relaxation optimal solution to satisfy model
constraints is proposed.

Angelelli et al. (2008) provide a financial and computational
comparison of MAD and CVaR models with real features analyzing
their performance on real size instances. At this aim they use sim-
ple and effective heuristics to be used when integer optimal solu-
tions cannot be found in a reasonable amount of time. Since the
optimal solution of the continuous relaxation of the proposed
models can be efficiently computed by means of a standard com-
mercial software as CPLEX and the time required is very small,
even on problems of realistic size, the basic idea of such heuristics
is that securities selected in the optimal solution of the continuous
relaxation or with the smallest reduced costs are the most interest-
ing. Then, non-interesting securities are discarded and the set of
interesting securities is taken as the only set on which model with
real features is solved. The size of the models becomes in this way
much smaller and the optimal solution can be obtained by means
of a software in a reasonable time.

This idea of identifying a subset of more significant securities
was firstly proposed in Mansini and Speranza (1999) to solve a
portfolio problem with transaction lots optimizing the mean semi-
deviation risk measure, and further developed in other papers
where different portfolio real features were considered (see Keller-
er et al. (2000), Chiodi et al. (2003)) up to a more general heuristic
framework called Kernel Search (see Angelelli et al., 2012) including
and extending all previous approaches. The main idea of Kernel
Search is to obtain a solution, of hopefully high quality, from a
small set of promising securities, called the kernel. The kernel is
initially built using information provided by the solution of the lin-
ear relaxation of the original problem. Then, new promising secu-
rities are identified by solving a sequence of small/moderate size
MILP problems. The first MILP problem is restricted to the initial
kernel. Any other MILP problem in the sequence is restricted to
the previous kernel plus a set of other securities that were initially
excluded. The solution of the current MILP problem may identify
some new securities not yet included in the kernel. If this is the
case, such new securities are added to the kernel. The possibly up-
dated kernel will be forwarded to the next MILP problem of the se-
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Exact algorithms for portfolio problems with real features.

Exact algorithms

Mean variance

LP measures

Variable costs

Fixed costs
Transaction

Cardinality constraint

Investment threshold

Dependency constraints

Best and Hlouskova (2005),
Li et al. (2006)
Xue et al. (2006), Bertsimas and Shioda (2009)

Patel and Subrahmanyam (1982)

Syam (1998), Li et al. (2006), Bonami and Lejeune (2009)

Bienstock (1996), Lee and Mitchell (1997),
Sankaran and Patil (1999), Li et al. (2006),
Bertsimas and Shioda (2009)

Best and Hlouskova (2005), Li et al. (2006),
Xue et al. (2006), Bonami and Lejeune (2009)

Syam (1998)

Konno and Wijayanayake (2001)

Konno and Yamamoto (2005),

Konno et al. (2005), Le Thi et al. (2009),
Mansini and Speranza (2005)

Mansini and Speranza (2005)

Mansini and Speranza (2005)

Konno and Wijayanayake (2001),
Konno and Yamamoto (2005),
Konno et al. (2005), Le Thi et al. (2009)

Young (1998)

Table 5

Heuristic algorithms for portfolio problems with real features.

Heuristic algorithms

Mean variance

LP measures

Variable costs

Fixed costs

Transaction lots

Cardinality constraint

Investment threshold

Lobo et al. (2007),
Bertsimas and Shioda (2009),
Baule (2010)

Baule (2010)

Jobst et al. (2001), Streichert et al. (2004),
Lin and Liu (2008),

Bartholomew-Biggs and Kane (2009),
Chang et al. (2009)

Liu and Stefek (1995), Chang et al. (2000),

Jobst et al. (2001), Crama and Schyns (2003),
Maringer and Kellerer (2003), Fieldsend et al. (2004),
Streichert et al. (2004), Fernandez and Gémez (2007),
Bertsimas and Shioda (2009), Chang et al. (2009),
Anagnostopoulos and Mamanis (2010),
Anagnostopoulos and Mamanis (2011)

Di Gaspero et al. (2011)

Chang et al. (2000), Gilli and Kéllezi (2002)
Bartholomew-Biggs and Kane (2009),
Anagnostopoulos and Mamanis (2010)

Speranza (1996),

Mansini and Speranza (1999),

Kellerer et al. (2000), Chiodi et al. (2003),
Mansini and Speranza (2005),

Angelelli et al. (2008), Angelelli et al. (2012)

Speranza (1996), Kellerer et al. (2000),
Chiodi et al. (2003), Mansini and Speranza (2005),
Angelelli et al. (2008), Angelelli et al. (2012)

Speranza (1996), Mansini and Speranza (1999),
Kellerer et al. (2000), Gilli and Kéllezi (2002),
Chiodi et al. (2003), Mansini and Speranza (2005),
Angelelli et al. (2008), Chang et al. (2009),
Angelelli et al. (2012)

Speranza (1996), Gilli and Kéllezi (2002),
Angelelli et al. (2008), Chang et al. (2009),
Angelelli et al. (2012)

Mansini and Speranza (1999)
Gilli and Kéllezi (2002)

quence. The kernel increases in a monotonic way, i.e. no security
will be discharged at any time, and the solution of any MILP prob-
lem in the sequence provides a bound on the optimal solution for
all the successive ones. One of the main issues the authors address
concerns the size of these MILP problems. This value should be
small enough to limit the computational time required to solve
each MILP problem and large enough to be likely to contain most
of the difficult to select securities (i.e. those that can be selected
only if all securities were considered altogether). Different heuris-
tics can be designed as implementations of the proposed Kernel
Search framework. Such heuristics have two major characteristics
relevant from a practical point of view. The first one is that they re-
quire little implementation effort because the most cumbersome
part of the search is carried out by a software for the solution of lin-
ear and mixed integer linear programming problems. The second
characteristic is that the same heuristic can be easily applicable
also to other problems. The authors apply several of such heuristics
and test them on a complex portfolio optimization problem taking

different real features such as minimum transaction lots and cardi-
nality constraint into account. The model maximizes a perfor-
mance measure represented by the CVaR. Indeed, since the
Kernel Search framework exploits a major characteristic of the
portfolio selection problem which is the fact that the number of
securities selected by an optimization model is usually quite small,
independently of the initial size of the problem, any other mixed
integer linear programming formulation using a different perfor-
mance measure could have been used. Kernel Search can also be
easily applied also to other combinatorial optimization problems
(see, for instance, Angelelli, Mansini, & Speranza (2010)). Computa-
tional results show that this general method is extremely effective
finding the optimal solution in almost all tested instances involv-
ing up to 600 securities and 104 scenarios (2 years weekly returns).

In Mansini and Speranza (2005) a local search heuristic is pro-
posed to solve a mixed integer linear programming portfolio prob-
lem with transaction costs and minimum lots. The method is based
on the optimal solution of the continuous relaxation of subprob-
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lems formulated considering a subset M of securities and by adding
a cardinality constraint ).,z = I. Value of parameter [ is itera-
tively changed by means of a local search procedure. At each iter-
ation an integer solution is constructed by using the optimal
solution of the current relaxed subproblem. More precisely, local
search is guided by the parameter [ and a parameter w, which rep-
resents the maximum number of iterations allowed without any
improvement of the objective function value. First, the value of
the parameter [ is decreased (downside search phase). At each
reduction of one unit of [, the procedure used to construct an inte-
ger solution is repeated and a new subproblem is solved. If the cur-
rent objective function value is not improved, the value of the
parameter w is decreased by one unit. The downside search phase
ends when I=1 or w=0. Then the procedure searches for higher
cardinality portfolios (upside search phase). The value of [ is in-
creased from the initial value to |M|. The upside search phase ends
when [ = |M| or w = 0. The procedure is used as initial solution of an
exact algorithm. Computational results show that this procedure is
extremely efficient and quite effective.

In Lin and Liu (2008) the authors present three possible relative
models for portfolio selection problems with minimum transaction
lots. One of these models is based on MAD measure of risk and is
thus a mixed integer linear programming problem. The authors de-
vise genetic algorithms (GA) to solve all proposed models using
Taiwanese mutual fund data from the year 1997 to 2000. The re-
sults of the empirical study show that the portfolios obtained using
the proposed algorithms are very close to the efficient frontier,
indicating that the proposed method can obtain near optimal and
also practically feasible solutions to the portfolio selection problem
in an acceptable short time (no more than few minutes). This paper
shows that a general metaheuristic approach as GA can be easily
adapted to solve different problems optimizing MAD as well as
variance.

In Gilli and Kéllezi (2002), the authors point out that financial
optimization problems using measures of risks as Value at Risk
(VaR), expected shortfall, mean semi-absolute deviation, semi-var-
iance may become quite complex exhibiting multiple local optima
and discontinuities, in particular when the trading variables are re-
stricted to integers, constraints are added on the holding size of as-
sets or on the maximum number of assets in the portfolio. In these
cases classical optimization methods may fail to work efficiently
and heuristic optimization techniques may be the best alternative.
They show how the particular optimization heuristic, called
Threshold Accepting (TA) proposed by Dueck and Winker (1992),
can be successfully used to solve complex portfolio choice prob-
lems. TA is a meta-heuristic from the class of local search algo-
rithms. The method is similar to simulated annealing, but using
deterministic rule to escape local optima by accepting solutions
which are not worse by more than a given threshold.

Indeed, several contributions can be found in the literature on
metaheuristic approaches for solving the mean-variance model
with different real features (we refer to Di Tollo & Roli (2008) for
a comprehensive survey). See, for instance, among the others, the
metaheuristics proposed for portfolio selection with cardinality
constraint: Maringer and Kellerer (2003) introduce an iterative hy-
brid algorithm combining local search strategies with principles of
simulated annealing and evolutionary strategies; Anagnostopoulos
and Mamanis (2010, 2011) apply multi objective evolutionary
algorithms (MOEA) and state of the art evolutionary multi objec-
tive optimization techniques, namely the Non-dominated Sorting
Genetic Algorithm II (NSGA-II), Pareto Envelope-based Selection
Algorithm (PESA) and Strength Pareto Evolutionary Algorithm 2
(SPEA2), providing their performance comparison; Fieldsend
et al. (2004) provide a modified MOEA to optimize constrained
portfolio frontiers in parallel; Ferniandez and Gémez (2007) pres-
ent a neural networks method; Crama and Schyns (2003) use a

simulated annealing method, whereas Chang et al. (2000) apply
three heuristics based upon genetic algorithms, tabu search and
simulated annealing.

Metaheuristics provide flexible and powerful solving strategies
that can effectively and efficiently tackle various instantiations of
the portfolio problem also considering different objective functions
other than variance. Since basic building blocks of metaheuristics
such as the search space and the neighborhood structures usually
do not depend on the problem objective function, we believe that
all metaheuristic methods proposed for mean-variance model
with real features could be easily extended to the corresponding
problems based on LP risk measures with a large saving in terms
of computational time for evaluating solutions. This is still an open
issue of high interest.

5.1.2. Exact algorithms

In the past the lack of computers performance (in terms of
power and memory capability) made even small size LP portfolio
problems with real feature difficult to solve by standard MILP tools
(see, for instance, Mansini & Speranza (1999)). Nowadays, the size
of problems solved has increased (see Angelelli et al. (2008)), while
the development of new specialized exact solution algorithms has
made its appearance in the literature. In this section we will survey
these specialized exact approaches as methods going beyond a
pure model solution through a standard software.

To the best of our knowledge, Mansini and Speranza (2005) pro-
pose the unique exact approach for a MILP portfolio problem.
Other contributions can be found in the literature where the port-
folio problems optimize some LP risk measures, but the resulting
model is nonlinear due to the introduction of concave transaction
costs (see Table 4). In the following we will briefly survey all of
them.

Mansini and Speranza (2005) study the problem of portfolio
selection in which the mean downside underachievement (see
(17)) is maximized while taking into account fixed transaction
costs and integer transaction units (rounds). A capital-gain tax is
also considered as a percentage of the portfolio return. They pro-
pose an exact algorithm able to significantly reduce the memory
and time resources required by CPLEX to find the problem optimal
solution. The algorithm structure is quite general and is based on
the idea of partitioning the feasible solution set of the initial prob-
lem P into subsets and then solving the problem over each of the
subsets. More precisely, the method generates subproblems by
introducing inequalities (cuts) to the initial problem P. Subprob-
lems are solved in sequence so that the solution value of problem
P(i) can be used as a cutoff bound for problem P(i + 1). In particular,
the instantiation for this problem uses information provided by the
optimal solution of the continuous relaxation to partition problem
P into two subproblems. Assets with a reduced cost lower than a
given threshold belong to the first subproblem. The second subset
is obtained by adding to problem P an inequality imposing to select
at least one asset from those not belonging to the first set. The
selection of an appropriate subset of assets entering the first prob-
lem is a critical step in the algorithm. Such a subset should be small
enough to make the first subproblem easy to solve but, at the same
time, should be large enough to contain, with a high probability,
the subset of securities which are selected in the optimal solution.
This algorithm is very simple to implement, when a software for
the solution of linear and mixed-integer linear programs is avail-
able. Moreover, its structure is quite general and can be easily ex-
tended to any other mixed-integer programming model for
portfolio selection. Authors solved instances with up to 1000 secu-
rities and 300 scenarios (almost 6 years weakly returns).

Konno and Wijayanayake (2001) analyze a portfolio construc-
tion/rebalancing problem under concave transaction costs and
minimal transaction unit constraints while employing mean abso-
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lute deviation as risk measure. Since the transaction cost function
((x) is separable, i.e., Z}Llcj(xj), the authors propose a branch and
bound algorithm exploiting this structure. In particular, they solve
linear programming subproblems by introducing (piecewise) lin-
ear underestimating function for the concave transaction cost
functions. As claimed by the authors, due to the recent progress
in global optimization, one can solve a fairly large scale linearly
constrained concave minimization problem using the special struc-
ture of the problem. Nevertheless, the success of their branch and
bound algorithm critically depends upon the employment of the
absolute deviation as risk measure. The proposed method allows
the solution of problems with up to 200 stocks and 60 scenarios
(monthly returns).

Konno and Yamamoto (2005) consider a portfolio optimization
problem based on absolute deviation as risk measure where trans-
action cost functions are piecewise linear concave and piecewise
constant with several jumps. The standard approach for handling
a concave or piecewise constant cost function is to introduce a
number of 0-1 variables and solve the resulting 0-1 integer pro-
gramming problem by branch and bound or branch and cut algo-
rithms. When, however, the number of linear pieces (or number
of jumps) is large, then the problem becomes more difficult requir-
ing the introduction of many integer variables. Their work aims at
comparing the branch and bound approach proposed in Konno and
Wijayanayake (2001) with state-of-the-art integer programming
approach, proving the former method being much faster.

In Konno, Akishino, and Yamamoto (2005), the authors consid-
ered a long-short portfolio optimization problem in the mean-
absolute deviation framework where one can sell assets short if
this leads to a better risk-return structure of the portfolio. The pur-
pose of their paper is to propose a branch and bound algorithm for
solving a class of long-short portfolio optimization problem with
concave transaction costs (when purchasing) and difference of
two convex functions (d.c.) transaction costs (when selling). The
first step for solving the problem is to replace nonconvex cost func-
tion by their maximal linear underestimating functions and then
use a branch and bound approach. Their experiments consider up
to 84 scenarios (monthly return) and 225 stocks.

In the recent work by Le Thi et al. (2009), the authors address a
portfolio optimization problem under step increasing transaction
costs using mean absolute deviation as risk measure. The step
increasing functions are approximated, as closely as desired by a
difference of polyhedral convex functions. Then they apply the dif-
ference of convex functions algorithm (DCA) available from the lit-
erature (see Pham Dinh & Le Thi, 1998) to the resulting program.
For testing the efficiency of their method they compare it with
CPLEX and the branch and bound algorithm proposed by Konno
and Yamamoto (2005) on instances with 457 stocks and 289 sce-
narios (weekly returns).

Finally, Table 4 reports different exact approaches also for
mean-variance model with real features. In particular, Syam
(1998) analyzes a problem with dependency constraints and round
lots. He assumes independence among risky securities, which leads
to a diagonal covariance matrix, and then adopts dual ascent and
branch and bound solution methods. Bienstock (1996) consider a
cardinality constrained portfolio optimization problem and discuss
a number of valid inequalities (cuts) for the problem to be used in a
branch and cut algorithm. Computational results were presented
for both sequential and parallel implementations of his algorithm
involving up to 3897 assets. Lee and Mitchell (1997) study a cardi-
nality constrained portfolio optimization problem and describe an
interior-point algorithm within a parallel branch-and-bound
framework for solving nonlinear mixed integer programs. Best
and Hlouskova (2005) analyze mean-variance problem with trans-
action costs and develop an exact algorithm for its solution in
terms of a sequence of subproblems with corresponding savings

in computer time and storage. The key idea was to treat the trans-
action costs implicitly rather than explicitly. Li et al. (2006) analyze
a round-lots and cardinality constrained portfolio selection under
concave transaction costs. The resulting model is a nonseparable,
nonconvex, nonlinear integer programming problem. The authors
exploit the special features of the mean-variance formulation to
develop a convergent Lagrangian and contour-domain cut method
as an exact solution algorithm and test it on instances with 30
stocks and three years monthly returns. Xue, Xu, and Feng (2006)
modify mean-variance portfolio to introduce concave transaction
costs and thresholds on investment. They propose an exact ap-
proach based on a branch and bound method using underestima-
tion functions for the concave transactions costs. They solve
instances with only 9 securities.

5.2. Large scale LP risk measure optimization

In portfolio models stock returns are represented by their real-
izations under T scenarios. In LP models, the number of structural
constraints (matrix rows) is proportional to the number of scenar-
ios T, while the number of variables (matrix columns) is propor-
tional to the total of the number of scenarios and the number of
instruments T+ n. The fact that the model dimensionality is pro-
portional to the number of scenarios T, does not cause any compu-
tational difficulties if a few hundreds of scenarios are taken into
account. This is the case of the common computational analysis
based on historical data. However, real-life financial analysis must
be usually based on more advanced simulation models employed
for scenario generation (Carino et al. (1998)) using several thou-
sands of scenarios (see Pflug (2001), Guastaroba, Mansini, & Sper-
anza (2009b)). This leads to LP models with a huge number of
auxiliary variables and constraints and thereby hardly solvable
by general LP tools. Actually, in the case of fifty thousand scenarios
and one hundred instruments the model may require more than
one hour of computational time with the state-of-art LP solver
(CPLEX) or even remain unsolved. To overcome this difficulty some
alternative solution approaches were developed trying to reformu-
late the optimization problems as two-stage recourse problems
(Kiinzi-Bay & Mayer (2006)), to employ nondifferential optimiza-
tion techniques (Lim, Sherali, & Uryasev (2010)), cutting planes
(Fabian, Mitra, & Roman (2011)) or to approximate the returns
with a factor representation (Konno, Waki, & Yuuki, 2002).

More recently, in Ogryczak and Sliwinski (2011) Ogryczak and
Sliwifiski show that the computational efficiency can be simply
achieved with an alternative model formulation taking advantage
of the LP duality. In the introduced model the number of structural
constraints is proportional to the number of instruments n while
only the number of variables is proportional to the number of sce-
narios T, thus not affecting so seriously the simplex method effi-
ciency. The new model can effectively be solved with general LP
solvers even for very large numbers of scenarios. In this case, the
computational time for the case of fifty thousand scenarios and
one hundred instruments becomes lower than one minute. The
authors test such a reformulation for all the classical LP portfolio
optimization models using medium scale instances with 5000,
7000 and 10,000 scenarios and 76 securities, and large scale tests
instances with 50 or 100 securities and 50,000 scenarios. Compu-
tational advantages are particularly evident for the model based
on the Weighted CVaR measures defined as combinations of CVaR
measures for m tolerance levels and for model based on Gini's
mean difference (Yitzhaki, 1982) where standard formulation re-
quire T? auxiliary constraints which makes them hard already for
medium numbers of scenarios, like a few hundred scenarios given
by historical data.

Certainly, for large scale problems potential use of parallel opti-
mization algorithms might be crucial for the solution process effi-
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ciency. Parallel algorithms for large scale (stochastic) linear pro-
gramming financial models have been successfully developed as
presented by Censor and Zenios (1997) or Vladimirou and Zenios
(1999). LP computable risk measures enable application of parallel
optimization methods as shown by Pflug, Swietanowski, Dockner,
and Moritsch (2000) for the financial model employing the MAD
measure.

6. Conclusions

Since the milestone work by Markowitz on mean-variance
portfolio selection problem, many alternative risk and safety mea-
sures have been proposed that are computationally attractive as LP
computable in the case of discrete random variables. The LP solv-
ability is very important for applications to real-life problems
where the portfolios have to meet numerous side constraints as
transaction lots, minimum or maximum investment thresholds,
and cardinality constraints or account for transaction costs. The
inclusion of real features in a model has in most cases relevant con-
sequences in terms of modeling. The first is that it may be neces-
sary to express the decision variables in terms of absolute value
of the investment. The second is that the real features usually im-
ply the need of integer and binary variables that make the model
computationally hard to solve.

In this paper we have introduced and surveyed the LP solvable
portfolio optimization models presented in the literature. We have
also discussed the relative (variables as percentages of the capital)
and absolute (variables as absolute values of the capital) form of
the models. The various real features of portfolio selection prob-
lems are discussed and the related literature surveyed, including
the computational approaches adopted for the solution of the
resulting optimization models.
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