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Abstract 

The reference point method (RPM) is a very effective technic for interactive 
analysis of the multiple criteria optimization problems. It provides the DM with a tool 
for an open analysis of efficient frontier either connected or disconnected. The inter-
active analysis is navigated by the commonly accepted control parameters expressing 
reference levels for the individual objective functions. The individual achievement 
functions quantify the DM’s satisfaction from the individual outcomes with respect  
to the given reference levels. The final scalarizing function is built as the augmented 
max-min aggregation of individual achievements which means that the worst individual 
achievement is essentially maximized, but the optimization process is additionally 
regularized with the term representing the average achievement. The regularization  
by the average achievement is easily implementable, but it may disturb the basic max- 
-min aggregation. In order to avoid inconsistencies caused by the regularization,  
the max-min solution may be regularized according to the lexicographic min-order, thus 
leading to the nucleolar RPM model. The nucleolar RPM implements a consequent 
max-min aggregation taking into account also the second-worst achievement, the third- 
-worse, and so on, thus resulting in much better modeling of the reference  
levels concept. The lexicographic min-ordering regularization is more complicated  
in implementation due to the requirement of pointwise ordering of partial achievements. 
Nevertheless, by taking advantage of piecewise linear expression of the cumulated 
ordered achievements, the nucleolar RPM can be formulated as a standard lexicographic 
optimization. Actually, in the case of concave piecewise linear partial achievement 
functions (typically used in the RPM), the resulting formulation extends the original 
constraints and criteria with simple linear inequalities, thus allowing for a quite efficient 
implementation. It can be also approximated with the analytic form using the ordered 
weighted averages. The paper analyzes both the theoretical and practical issues  
of the nucleolar RPM. 
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INTRODUCTION 

Typical multiple criteria optimization methods aggregate the individual 
outcomes with some scalarizing functions to generate a satisfactory efficient 
solution. The scalarizing functions may have various constructions and pro-
perties depending on the specific approach to preference modeling applied  
in several methods. Nevertheless, most scalarizing functions can be viewed as 
two-stage transformation of the original outcomes. First, the individual out-
comes are rescaled to some uniform measures of achievements with respect  
to several criteria and preference parameters. Thus, the individual achievement 
functions are built to measure actual achievement of each outcome with respect 
to the corresponding preference parameters. In particular, in the reference point 
method (RPM) the strictly monotonic partial achievement functions are built  
to measure individual performance with respect to given reference levels. 
Similar constructions appear in fuzzy approaches where the membership 
functions for various fuzzy targets are such individual achievement measures 
scaled to the unit interval or in goal programming where scaled deviations from 
targets may be considered individual achievements. 

Having all the outcomes transformed into a uniform scale of individual 
achievements they are aggregated at the second stage to form a unique scalari-
zation. The aggregation usually measures the total (the average) or the worst 
individual achievement. While several technic and tools for better modeling  
of preferences with partial achievement functions are developed [3], the aggre-
gation itself is much less studied. The RPM is based on the so-called augmented 
(or regularized) max-min aggregation. Thus, the worst individual achievement 
is essentially maximized, but the optimization process is additionally 
regularized with the term representing the average achievement. The max-min 
aggregation guarantees fair treatment of all individual achievements  
by implementing an approximation to the Rawlsian principle of justice. 

The max-min aggregation is crucial for allowing the RPM to generate all 
efficient solutions even for nonconvex (and particularly discrete) problems.  
On the other hand, the regularization is necessary to guarantee that only 
efficient solution are generated. The regularization by the average achievement 
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is easily implementable, but it may disturb the basic max-min model. Actually, 
the only consequent regularization of the max-min aggregation is the lexico-
graphic max-min (nucleolar) solution concept where in addition to the worst 
achievement, the second worst achievement is also optimized (provided that  
the worst remains on the optimal level), the third worst is optimized (provided 
that the two worst remain optimal), and so on. Such a nucleolar regularization  
is the only max-min regularization satisfying the addition/deleting principle, 
thus making the corresponding nucleolar RPM not affected by any passive 
criteria. The recent progress in optimization methods of ordered averages allows 
one to implement the nucleolar RPM quite effectively. The paper analyzes both 
the theoretical and practical issues of the nucleolar RPM. 

1. SCALARIZATIONS  
OF THE REFERENCE POINT METHOD 

In this paper, without loss of generality, it is assumed that all the criteria 
are maximized (that is, for each outcome “more is better”). Hence, we consider 
the following multiple criteria optimization problem: 

 
(1) 

where x denotes a vector of decision variables to be selected within the feasible 
set , and  is a vector function that maps 
the feasible set  into the criterion space . Note that neither any specific 
form of the feasible set  is assumed nor any special form of criteria  
is required. We refer to the elements of the criterion space as outcome vectors. 
An outcome vector  is attainable if it expresses outcomes of a feasible 
solution, i.e. for some . 

Model (1) only specifies that we are interested in maximization of all ob-
jective functions  for . Thus, it allows only to 
identify (to eliminate) obviously inefficient solutions leading to dominated 
outcome vectors, while still leaving the entire efficient set to look for  
a satisfactory compromise solution. In order to make the multiple criteria model 
operational for the decision support process, one needs assume some solution 
concept well adjusted to the DM preferences. This can be achieved with the so- 
-called quasi-satisficing approach to multiple criteria decision problems.  
The best formalization of the quasi-satisficing approach to multiple criteria 
optimization was proposed and developed mainly by Wierzbicki [20] as  
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the reference point method. The RPM was later extended to permit additional 
information from the DM and, eventually, led to efficient implementations  
of the so-called aspiration/reservation based decision support (ARBDS) 
approach with many successful applications [5,21]. 

The RPM is an interactive technic. The basic concept of the interactive 
scheme is as follows. The DM specifies requirements in terms of reference 
levels, i.e. by introducing reference (target) values for several individual 
outcomes. Depending on the specified reference levels, a special scalarizing 
achievement function is built which may be directly interpreted as expressing 
utility to be maximized. Maximization of the scalarizing achievement function 
generates an efficient solution to the multiple criteria problem. The computed 
efficient solution is presented to the DM as the current solution in a form that 
allows comparison with the previous ones and modification of the reference 
levels if necessary. 

While building the scalarizing achievement function the following pro-
perties of the preference model are assumed. First of all, for any individual 
outcome  more is preferred to less (maximization). To meet this requirement 
the function must be strictly increasing with respect to each outcome. Second,  
a solution with all individual outcomes  satisfying the corresponding 
reference levels is preferred to any solution with at least one individual outcome 
worse (smaller) than its reference level. That means, the scalarizing 
achievement function maximization must enforce reaching the reference levels 
prior to further improving of criteria. Thus, similar to the goal programming 
approaches, the reference levels are treated as the targets, but following the 
quasi-satisficing approach they are interpreted consistently with basic concepts 
of efficiency in the sense that the optimization is continued even when the target 
point has been reached already. 

The generic scalarizing achievement function takes the following form 
[20]: 

 
(2) 

where  is an arbitrary small positive number and  
are the partial achievement functions measuring actual achievement of the 
individual outcomes  with respect to the corresponding reference levels. Let 

 denote the partial achievement for the -th outcome   
and  represent the achievement vector. The scalarizing 
achievement function (2) is, essentially, defined by the worst partial (individual) 
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achievement, but additionally regularized with the sum of all partial 
achievements. The regularization term is introduced only to guarantee  
the solution efficiency in the case when the maximization of the main term  
(the worst partial achievement) results in a nonunique optimal solution. Due  
to combining two terms with arbitrarily small parameter , formula (2) is easily 
implementable and it provides a direct interpretation of the scalarizing 
achievement function as expressing utility. When accepting the loss of a direct 
utility interpretation, one may consider a limiting case with  which 
results in lexicographic order applied to two separate terms of function (2). That 
means, the regularization can be implemented with the second level 
lexicographic optimization [14]. Therefore, RPM may be also considered as the 
following lexicographic problem ([13] and references therein): 

 
(3) 

The following two properties of the lexicographic model (3) are crucial 
for the RPM methodology: 
P1: The aggregation is strictly monotonic in the sense that increase of any 
partial achievement ia  leads to a preferred solution. 
P2: For any given target value , the solution generating all partial achieve-
ments equal to is preferred to any solution generating at least 
one partial achievement worse than . 

Property P1 guarantees that while using strictly increasing partial 
achievement functions , every generated solution is efficient. Property P2 
guarantees that while using partial achievement function allocating the same 
value on achieving the reference level, the solution reaching all the reference 
levels is preferred to any solution failing achievement of at least one  
reference level. 

Various functions  provide a wide modeling environment for 
measuring partial achievements [21,8]. To take advantages of properties P1  
and P2 they need to be strictly increasing and to allocate the same value  
on reaching the reference level. The basic RPM model is based on a single 
vector of the reference levels, the aspiration vector . For the sake  
of computational simplicity, the piecewise linear functions  are usually 
employed. In the simplest models, they take a form of two segment piecewise 
linear functions: 
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(4) 

where  and  are positive scaling factors corresponding to under-
achievements and overachievements, respectively, for the -th outcome. Note 
that for any outcome reaching the corresponding aspiration level   

one gets . Hence, when using the RPM (3) with partial achievement 
functions (4), the solution reaching all the aspiration levels is preferred to any 
solution failing achievement of at least one aspiration level. It is usually 
assumed that  and is much larger than . Actually, even linear functions: 

 
(5) 

with positive scaling factors  represent simplified (but still valid) partial 
achievement functions in the sense that while used in the lexicographic RPM 
scheme (3) it guarantees the property P2. Nevertheless, the differentiation of the 
scaling factor is important to enforce the preferences of achieving more 
aspiration levels rather than overstep the others, especially in the analytic 
RPM(2). Figure 1 depicts how differentiated scaling affects the isoline contours  
of the analytic scalarizing achievement function. Certainly, introducing 
lexicographic two-level partial achievements optimization would be a better 
way to model the aspiration properties [11], but also more complicated. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
Fig. 1. Isoline contours for the analytic scalarizing achievement function (2): a) with partial 

achievements (5), (b) with partial achievements (4) 
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Real-life applications of the RPM methodology usually deal with more 
complex partial achievement functions defined with more than one reference 
point [21] which enriches the preference models and simplifies the interactive 
analysis. In particular, the models taking advantages of two reference vectors: 
vector of aspiration levels  and vector of reservation levels  [5] are used, 
thus allowing the DM to specify requirements by introducing acceptable  
and required values for several outcomes. The partial achievement function   

can be interpreted then as a measure of the DM's satisfaction with the current 
value of outcome the -th criterion. It is a strictly increasing function  
of outcome  with value  if , and  for . Thus,  
the partial achievement functions map the outcomes values onto a normalized 
scale of the DM's satisfaction. Various functions can be built meeting those 
requirements. We use the piece-wise linear partial achievement function 
introduced in an implementation of the ARBDS system for the multiple criteria 
transshipment problems with facility location [15]: 

 

(6) 

where  and  are arbitrarily defined parameters satisfying 
. Parameter  represents additional increase of the DM's 

satisfaction over level 1 when a criterion generates outcomes better than the 
corresponding aspiration level. On the other hand, parameter  
represents dissatisfaction connected with outcomes worse than the reservation 
level. 

For outcomes between the reservation and the aspiration levels,  
the partial achievement function  can be interpreted as a membership 
function  for a fuzzy target. However, such a membership function remains 
constant with value 1 for all outcomes greater than the corresponding aspiration 
level and with value 0 for all outcomes below  the  reservation  level  (Figure 2). 

 
 

 
 
 
 
 
 
 
Fig. 2. ARBDS partial achievement function 
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Hence, the fuzzy membership function is neither strictly monotonic nor 
concave, thus not representing typical utility for a maximized outcome. The 
partial achievement function (6) can be viewed as an extension of the fuzzy 
membership function to a strictly monotonic and concave utility. One may also 
notice that the aggregation scheme used to build the scalarizing achievement 
function (2) from the partial ones may also be interpreted as some fuzzy 
aggregation operator [21]. In other words, maximization of the scalarizing 
achievement function (2) is consistent with the fuzzy methodology in the case 
of not attainable aspiration levels and satisfiable all reservation levels while 
modeling reasonable utility for any values of aspiration and reservation levels. 

2. NUCLEOLAR RPM 

The crucial properties of the RPM are related to the max-min aggregation 
of partial achievements while the regularization is only introduced to guarantee 
the aggregation monotonicity. Unfortunately, the distribution of achievements 
may make the max-min criterion partially passive when one specific 
achievement is relatively very small for all the solutions. Maximization  
of the worst achievement may then leave all other achievements unoptimized.  
In the lexicographic RPM defined by (3) the regularization term is then 
optimized on the second level, thus preventing one from selection of any 
inefficient solution. Nevertheless, the selection is then made according to linear 
aggregation of the regularization term instead of the max-min aggregation, thus 
destroying the preference model of the RPM. This can be illustrated with  
an example of a simple discrete problem of 7 alternative feasible solutions  
to be selected according to 6 criteria. Table 1 presents six partial achievements 
for all the solutions where the partial achievements have been defined according 
to the aspiration/reservation model (6), thus allocating 1 to outcomes reaching  
the corresponding aspiration level. Solution S7 is the only inefficient 
alternative. Solution S1 to S5 oversteps the aspiration levels (achievement 
values 1.2) for four of the first five criteria while failing to reach one of them 
and the aspiration level for the sixth criterion as well (achievement values 0.3). 
Solution S6 meets the aspiration levels (achievement values 1.0) for the first 
five criteria while failing to reach only the aspiration level for the sixth criterion 
(achievement values 0.3). One may easily notice that the sixth partial 
achievement (and the corresponding criterion) is constant for the seven alter-
natives under consideration. Hence, one may expect the same solution selected 
while taking into account this criterion or not. If focusing on only five first 
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criteria, then the RPM (either lexicographic (3) or analytic (2)) obviously selects 
solution S6 as reaching all aspiration levels which results in the worst 
achievement value 1.0. However, while taking into account all six criteria all 
the solutions generate the same worst achievement value 0.3 and the final 
selection of the RPM depends on the total achievement (regularization term). 
Actually, either lexicographic RPM (3) or its analytic version (2) will select 
then one of solutions S1 to S5 as better than S6. 

 
Table 1 

 
Sample achievements with a passive criterion 

Solution a1 a2 a3 a4 a5 a6 6,...,1
min
=i

 ∑ =
6

1i  5,...,1
min
=i

 ∑ =
5

1i  

S1 0.3 1.2 1.2 1.2 1.2 0.3 0.3 5.4 0.3 5.1 
S2 1.2 0.3 1.2 1.2 1.2 0.3 0.3 5.4 0.3 5.1 
S3 1.2 1.2 0.3 1.2 1.2 0.3 0.3 5.4 0.3 5.1 
S4 1.2 1.2 1.2 0.3 1.2 0.3 0.3 5.4 0.3 5.1 
S5 1.2 1.2 1.2 1.2 1.2 0.3 0.3 5.4 0.3 5.1 
S6 1.0 1.0 1.0 1.0 1.0 0.3 0.3 5.3 1.0 5.0 
S7 0.3 1.0 0.3 1.0 0.6 0.3 0.3 3.5 0.3 3.2 

 
In order to avoid inconsistencies caused by the regularization, the max- 

-min solution may be regularized according to the Rawlsian principle of justice. 
Formalization of this concept leads us to the lexicographic max-min ordered or 
nucleolar solution concept. The approach has been used for general linear 
programming multiple criteria problems [1,7] as well as for specialized 
problems related to (multiperiod) resource allocation [6]. In discrete 
optimization it has been considered for various problems including the location- 
-allocation ones [10]. The lexicographic max-min approach can be mathema-
tically formalized as follows. Within the space of achievement vectors  
we introduce map  which orders the coordinates  

of achievements vectors in a nondecreasing order, i.e. 
 if there exists a permutation  

such that  for all  and .  
The standard max-min aggregation depends on maximization of   
and it ignores values of  for . In order to take into account all  
the achievement values, we look for a lexicographic maximum among  
the ordered achievement vectors. 
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Note that the lexicographic RPM model (3) can be expressed as  
the following problem: 

 
thus, in the case of two criteria , representing exactly the lexico-
graphic max-min aggregation. For larger number of criteria  model 
(3) only approximates the lexicographic max-min as all the lower priority 
objective terms are aggregated at the second priority level. One may consider 
the lexicographic max-min approach applied to the partial achievement 
functions (7) as a basis for a corresponding nucleolar RPM model: 

 (7) 

We will use the name nucleolar RPM to avoid any possible 
misunderstandings when referring to the lexicographic RPM. The nucleolar 
RPM implements a consequent max-min aggregation, thus resulting in much 
better modeling of the reference levels concept. 

 
Table 2 

 
Ordered achievements values 

Solution 1θ (a) 2θ (a) 3θ (a) 4θ (a) 5θ (a) 6θ (a) 

S1 0.3 0.3 1.2 1.2 1.2 1.2 
S2 0.3 0.3 1.2 1.2 1.2 1.2 
S3 0.3 0.3 1.2 1.2 1.2 1.2 
S4 0.3 0.3 1.2 1.2 1.2 1.2 
S5 0.3 0.3 1.2 1.2 1.2 1.2 
S6 0.3 1.0 1.0 1.0 1.0 1.0 
S7 0.3 0.3 0.3 0.6 1.0 1.0 

 
One may easily notice that the nucleolar RPM is not affected by any 

adding or eliminating passive criterion. While applying the nucleolar RPM  
the ordered achievement are lexicographically minimized and therefore in our 
example solution S6 is selected for six criteria as it was selected for five criteria 
(Table 2). Actually, the lexicographic max-min is the only regularization of the 
max-min approach satisfying the reduction (addition/deleting) principle [2]. 
Namely, if the individual achievement of an outcome does not distinguish two 
solutions, then it does not affect the preference relation: 
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(8) 

Due to strictly monotonic individual achievement functions, the reduction 
principle is also satisfied in the original outcome space. Moreover, since  
the aggregation is impartial with respect to partial achievements, it depends only  
on distribution of achievements independently from their order. Hence,  
the nucleolar RPM works also properly if the max-min optimization becomes 
passive despite one cannot identify any passive original criterion. This can be 
illustrated with data from Table 3 which differ from those of Table 1 only due 
to permuted achievements of solution S7. This alternative is no longer 
dominated and the sixth criterion is no longer passive. Nevertheless, as  
the distributions of achievement values remain the same, the max-min 
optimization remains passive and the standard forms of the RPM select solution 
S1 to S5 according to regularization term. Similarly, the ordered values  
of achievements remain the same as in Table 2, and the nucleolar RPM still 
selects solution S6 as the best matching the aspiration levels. 

 
Table 3 

 
Sample achievements with passive max-min criterion 

Solution a1 a2 a3 a4 a5 a6 

S1 0.3 1.2 1.2 1.2 1.2 0.3 
S2 1.2 0.3 1.2 1.2 1.2 0.3 
S3 1.2 1.2 0.3 1.2 1.2 0.3 
S4 1.2 1.2 1.2 0.3 1.2 0.3 
S5 1.2 1.2 1.2 1.2 0.3 0.3 
S6 1.0 1.0 1.0 1.0 1.0 0.3 
S7 0.3 0.3 0.3 1.0 0.6 1.0 

 
The following assertions shows that the nucleolar RPM model (7) 

satisfies the basic requirements for the RPM approaches. Namely, model (7) 
guarantees the efficiency of solutions (Theorem 1) and it is possible to generate  
all efficient solutions using nucleolar RPM by appropriately choosing  
the reference vector (Theorem 2). 

Theorem 1  
For any strictly increasing partial achievement functions , if   

is an optimal solution of the problem (7), then  is also an efficient solution  
of the corresponding multicriteria problem (1). 
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Proof 
Suppose optimal to (7) is dominated by some . Thus, due  

to strictly increasing partial achievement functions one gets 
, with at least one inequality strict. 

Hence,  which contradicts optimality  to (7). 
 

Theorem 2 
For any  efficient solution, if the reference level are defined 

as,  and strictly increasing partial achievement functions  taking 
the same value at the reference levels  are used, then   
is an optimal solution of the corresponding nucleolar RPM problem (7). 

Proof 

Note that . If there exist   
for  such that , then  with at least  
one inequality strict. This contradicts the efficiency of .  

 
Note that all typical partial achievement functions, in particular piecewise 

linear functions of the form (4), (5), or (6) are strictly increasing and they assign 
the same value at the reference levels. Thus, Theorem 2 justifies the 
controllability of the nucleolar RPM in the sense that for any  efficient 
solution to multiple criteria problem (1) there exists the reference vector  

such that  is an optimal solution of the corresponding nucleolar RPM problem 
(7) defined with this reference vector. 

3. IMPLEMENTATION ISSUES 

An important advantage of the RPM depends on its easy implementation 
as an expansion of the original multiple criteria model. Actually, even more 
complicated partial achievement functions of the form (6) are strictly increasing 
and concave (under the assumption that ), thus allowing  
for implementation of the entire RPM model (2) by an LP expansion [15].  
The ordered achievements optimized in the nucleolar RPM (7) are, in general, 
hard to implement due to the pointwise ordering. Let us consider cumulated 
achievements expressing, respectively: the worst 
(smallest) achievement, the total of the two worst achievements, the total  
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of the three worst achievements, etc. Within the lexicographic optimization  
a cumulation of criteria does not affect the optimal solution. Hence,  
the nucleolar RPM model (7) can be expressed in terms of the lexicographic 
maximization of quantities : 

 
(9) 

This simplifies dramatically the optimization problem since quantities  
can be optimized without use of any integer variables. First, let us notice that  
for any given vector , the cumulated ordered value  can be found as  
the optimal value of the following LP problem: 

 
(10) 

The above problem is an LP for a given outcome vector a while it becomes 
nonlinear for a being a vector of variables. This difficulty can be overcome by 
taking advantage of the LP dual to (10). Introducing dual variable  
corresponding to the equation  and variables  correspon-
ding to upper bounds on  one gets the following LP dual of problem (10): 

 

(11) 

Due the duality theory, for any given vector a the cumulated ordered coefficient 
can be found as the optimal value of the above LP problem. It follows 

from (11) that  where  denotes 
the nonnegative part of a number and  is an auxiliary (unbounded) variable. 
The latter, with the necessary adaptation to the minimized outcomes in location 
problems, is equivalent to the computational formulation of the -centrum 
model introduced by [17]. Hence, formula (11) provides an alternative proof  
of that formulation. 

Taking advantages of both (9) and (11), the nucleolar RPM can  
be formulated as a standard lexicographic optimization. Moreover, in the case 
of concave piecewise linear partial achievement functions (as typically used  
in the RPM approaches), the resulting formulation extends the original 
constraints and criteria with linear inequalities. In particular, for strictly 
increasing and concave partial achievement functions (6), it can be expressed  
in the form: 
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(12) 

Thus, the nucleolar RPM can be effectively applied to various multiple criteria 
optimization problems including the discrete ones. 

Model (12) provides us with an easily implementable sequential 
algorithm to generate efficient solutions according to the nucleolar RPM 
preference specification. However, it does not introduce any explicit scalarizing 
achievement function which could be directly interpreted as expressing utility  
to be maximized. In order to get such an analytical form (or rather 
approximation) of the nucleolar RPM one needs to replace the lexicographic 
(preemptive) optimization of the ordered achievements in (7) with its weighting 
approximation. Note that the weights are then assigned to the specific positions 
within the ordered achievements rather than to the partial achievements 
themselves, thus representing the so-called Ordered Weighted Averaging 
(OWA) aggregation. With the OWA aggregation one gets the following RPM 
model: 

 
(13) 

where  are positive and strictly decreasing weights. 
When differences among weights tend to infinity, the OWA aggregation 
approximates the leximin ranking of the ordered outcome vectors [22].  
That means, as the limiting case of (13), we get the nucleolar RPM model (7). 
Actually, the standard RPM model with the analytic scalarizing achievement 
function (2) can be expressed as the following OWA model: 
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Hence, the standard RPM model exactly represents the analytic (utility) form  
of the OWA aggregation (13) with strictly decreasing weights in the case  
of . For  it abandons  
the differences in weighting of the second worst achievement, the third worst 
one, etc . 

The OWA aggregation is obviously a piecewise linear function since  
it remains linear within every area of the fixed order of arguments.  
Its optimization can be implemented by expressing in terms of the cumulated 
ordered achievements: 

 
where for , and taking advantages  
of the LP expression (11) of [16]. This leads to a single level computational 
model similar to (12). 

 

 
 
 
 

(14) 

For some special sequences of the OWA weights  this solution concept 
can easily be defined without any need to order outcomes, thus the solution 
procedure may be quite simple. From the properties of the Gini's mean absolute 
difference [12] it follows that: 

 
Hence, the OWA aggregation given by the decreasing sequence of weights  

with a constant step  can be directly expressed as: 

 

 
(15) 
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where . Note that formula (15) defines a piecewise 
linear concave function which guarantees its LP computability when 
maximized. 

The following extension of the analytic RPM model (2) 

(16) 

due to (15), represents the OWA aggregation given by the decreasing  
sequence of weights with  and the constant step 

. Certainly, such an analytic model is only rough 
approximation to the nucleolar RPM. Nevertheless, when applying (16) to our 
sample problem from Table 1, the solution S6 is selected. For strictly increasing 
and concave partial achievement functions (6) the model can be expressed as: 
 

 

 
 
 
 

(17) 

 

4. ILLUSTRATIVE EXAMPLE 

In order to illustrate the nucleolar RPM performances let us analyze  
the multicriteria problem of information system selection. We consider a billing 
system selection for a telecommunication company [19]. The decision is based 
on 7 criteria related to the system functionality, reliability, processing effi-
ciency, investment costs, installation time, operational costs, and warranty 
period. All these attributes may be viewed as criteria, either maximized  
or minimized. Table 4 presents all the criteria with their measures units  
and optimization directions. There are also set the aspiration and reservation 
levels for each criterion. 



REFERENCE POINT METHOD WITH LEXICOGRAPHIC MIN-ORDERING... 171 

 
Table 4 

 
Criteria and their reference levels for the sample billing system selection 

 f1 f2 f3 f4 f5 f6 f7 

 Functionality Reliability Efficiency Investment
cost 

Installation
time 

Operational 
cost 

Warranty 
period 

Units # modules 1-10 CAPS mln PLN months mln PLN years 
Optimization max max max min min min max 

Reservation 4 8 50 2 12 1.25 0.5 
Aspiration 10 10 200 0 6 0.5 2 

 
Five candidate billing systems have been accepted for the final selection 

procedure. All they meet the minimal requirements defined by the reservation 
levels. Table 5 presents for all the systems (columns) their criteria values iy  
and the corresponding partial achievement values ia . The latter are computed 
according to the piece-wise linear formula (6) with α  = 0.1. 

 
Table 5 

 
Criteria values iy  and individual achievements ia  for five billing systems 

i System A System B System C System D System E 
yi ai yi ai yi ai yi ai yi ai 

1 9 0.83 10 1.00 8 0.67 6 0.33 8 0.67 
2 10 1.00 9 0.50 10 1.00 9 0.50 10 1.00 
3 200 1.00 100 0.33 170 0.80 90 0.27 150 0.67 
4 1 0.50 0.3 0.85 0.8 0.60 0.2 0.90 0.5 0.75 
5 10 0.33 3 1.05 6 1.00 8 0.67 5 1.02 
6 1 0.33 1 0.33 0.6 0.87 0.2 1.04 1 0.33 
7 2 1.00 2 1.00 1 0.33 2 1.00 1.5 0.67 

 
Table 6 presents for all the systems (columns) their partial achievement 

values ordered from the worst to the best . Examining row  one 
may notice that except of system D all other systems have the same worst 
achievement value . Selection among systems A, B, C, and E 
depends on the achievements aggregation used in the RPM approach. 
Comparing the second worst achievements  one can see that 
according to the nucleolar RPM (7) system E is the best selection guaranteeing 
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at least 0:67 achievement levels for six criteria. These selection cannot be done  
if using the classical RPM with regularization based on the total achievements. 
Actually, according to row  either lexicographic RPM (3), or its analytic 
version (2) will select system C as better than all the others. However, 
according to row  even an analytic model a rough 
approximation to the nucleolar RPM an analytic model (16) turns out to be 
strong enough to identify system E as the best selection. 

 
Table 6 

 
Ordered achievements for five billing systems 

 A B C D E 

1θ (a) 0.33 0.33 0.33 0.27 0.33 

2θ (a) 0.33 0.33 0.60 0.33 0.67 

3θ (a) 0.50 0.50 0.67 0.50 0.67 

4θ (a) 0.83 0.85 0.80 0.67 0.67 

5θ (a) 1.00 1.00 0.87 0.90 0.75 

6θ (a) 1.00 1.00 1.00 1.00 1.00 

7θ (a) 1.00 1.05 1.00 1.04 1.02 

∑i ia  4.99 5.06 5.27 4.71 5.11 

{ }∑ ∑i k iki aaa ,min  27.33 27.75 29.91 25.10 30.27 

 

CONCLUSIONS 

The reference point method is a very convenient technic for interactive 
analysis of the multiple criteria optimization problems. It provides the DM  
with a tool for an open analysis of the efficient frontier. The interactive analysis  
is navigated with the commonly accepted control parameters expressing 
reference levels for the individual objective functions. The partial achievement 
functions quantify the DM satisfaction from the individual outcomes  
with respect to the given reference levels. The final scalarizing function is built 
as the augmented max-min aggregation of partial achievements, which means 
that the worst individual achievement is essentially maximized, but the optimi-
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zation process is additionally regularized with the term representing the average 
achievement. The regularization by the average achievement is easily 
implementable, but it may disturb the basic max-min aggregation. In order  
to avoid inconsistencies caused by the regularization, the max-min solution may 
be regularized according to the Rawlsian principle of justice leading to  
the nucleolar RPM model. 

The nucleolar RPM implements a consequent max-min aggregation 
taking into account also the second worst achievement, the third worse, and so 
on, thus resulting in much better modeling of the reference levels concept.  
The nucleolar regularization is more complicated in implementation due  
to the requirement of pointwise ordering of partial achievements. Nevertheless,  
by taking advantages of piecewise linear expression of the cumulated ordered 
achievements, the nucleolar RPM can be formulated as a standard lexicographic 
optimization. Actually, in the case of concave piecewise linear partial 
achievement functions (typically used in the RPM), the resulting formulation 
extends the original constraints and criteria with simple linear inequalities, thus 
allowing for a quite efficient implementation. The nucleolar RPM can be also 
approximated with the analytic form using the ordered weighted averaging, thus 
introducing explicit scalarizing achievement function to be interpreted as utility. 

The paper is focused on nucleolar refinement of the reference point 
method. Nevertheless, the same methodology can be easily applied to various 
multiple criteria approaches requiring some fair (equitable) aggregations.  
In particular, to the fuzzy goal programming models. 
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